Skip to main content

Mdm2 and MdmX Involvement in Human Cancer

  • Chapter
  • First Online:
Mutant p53 and MDM2 in Cancer

Part of the book series: Subcellular Biochemistry ((SCBI,volume 85))

Abstract

Discovered in 1987 and 1997 respectively, Mdm2 and MdmX represent two critical cellular regulators of the p53 tumor suppressor. This chapter reviews each from initial discovery to our current understanding of their deregulation in human cancer with a focus on how each regulator impacts p53 function. While p53 independent activities of Mdm2 and MdmX are noted the reader is directed to other reviews on this topic. The chapter concludes with an examination of the various mechanisms of Mdm-deregulation and an assessment of the current therapeutic approaches to target Mdm2 and MdmX overexpression.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Arai Y et al (2010) Genome-wide analysis of allelic imbalances reveals 4q deletions as a poor prognostic factor and MDM4 amplification at 1q32.1 in hepatoblastoma. Genes Chromosom Cancer 49(7):596–609

    CAS  PubMed  Google Scholar 

  2. Barak Y et al (1993) mdm2 expression is induced by wild type p53 activity. EMBO J 12(2):461–468

    CAS  PubMed Central  PubMed  Google Scholar 

  3. Bartel F et al (2004) MDM2 and its splice variant messenger RNAs: expression in tumors and down-regulation using antisense oligonucleotides. Mol Cancer Res 2(1):29–35

    CAS  PubMed  Google Scholar 

  4. Bartel F et al (2004) HDMX amplification and high levels of HDMX-S splice variant are correlated with a poor prognosis in soft tissue sarcomas. Verh Dtsch Ges Pathol 88:199–206

    CAS  PubMed  Google Scholar 

  5. Bartel F et al (2005) Significance of HDMX-S (or MDM4) mRNA splice variant overexpression and HDMX gene amplification on primary soft tissue sarcoma prognosis. Int J Cancer 117(3):469–475

    CAS  PubMed  Google Scholar 

  6. Boesten LS et al (2006) Mdm2, but not Mdm4, protects terminally differentiated smooth muscle cells from p53-mediated caspase-3-independent cell death. Cell Death Differ 13(12):2089–2098

    CAS  PubMed  Google Scholar 

  7. Bommer GT et al (2007) p53-mediated activation of miRNA34 candidate tumor-suppressor genes. Curr Biol 17(15):1298–1307

    CAS  PubMed  Google Scholar 

  8. Bond GL et al (2006) MDM2 SNP309 accelerates tumor formation in a gender-specific and hormone-dependent manner. Cancer Res 66(10):5104–5110

    CAS  PubMed  Google Scholar 

  9. Bond GL et al (2004) A single nucleotide polymorphism in the MDM2 promoter attenuates the p53 tumor suppressor pathway and accelerates tumor formation in humans. Cell 119(5):591–602

    CAS  PubMed  Google Scholar 

  10. Bond GL et al (2005) A single nucleotide polymorphism in the MDM2 gene: from a molecular and cellular explanation to clinical effect. Cancer Res 65(13):5481–5484

    CAS  PubMed  Google Scholar 

  11. Bottger V et al (1999) Comparative study of the p53-mdm2 and p53-MDMX interfaces. Oncogene 18:189–199

    CAS  PubMed  Google Scholar 

  12. Brown DR et al (1998) The human oncoprotein MDM2 arrests the cell cycle: elimination of its cell-cycle-inhibitory function induces tumorigenesis. EMBO J 17(9):2513–2525

    CAS  PubMed Central  PubMed  Google Scholar 

  13. Cahilly-Snyder L et al (1987) Molecular analysis and chromosomal mapping of amplified genes isolated from a transformed mouse 3T3 cell line. Somat Cell Mol Genet 13(3):235–244

    CAS  PubMed  Google Scholar 

  14. Cancer Genome Atlas Research Network (2008) Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature 455(7216):1061–1068

    Google Scholar 

  15. Capoulade C et al (1998) Overexpression of MDM2, due to enhanced translation, results in inactivation of wild-type p53 in Burkitt’s lymphoma cells. Oncogene 16(12):1603–1610

    CAS  PubMed  Google Scholar 

  16. Chang TC et al (2007) Transactivation of miR-34a by p53 broadly influences gene expression and promotes apoptosis. Mol Cell 26(5):745–752

    CAS  PubMed Central  PubMed  Google Scholar 

  17. Cordon CC et al (1994) Molecular abnormalities of mdm2 and p53 genes in adult soft tissue. Cancer Res 54(3):794–799

    Google Scholar 

  18. Dang J et al (2002) The RING domain of Mdm2 can inhibit cell proliferation. Cancer Res 62(4):1222–1230

    CAS  PubMed  Google Scholar 

  19. Danovi D et al (2004) Amplification of Mdmx (or Mdm4) directly contributes to tumor formation by inhibiting p53 tumor suppressor activity. Mol Cell Biol 24(13):5835–5843

    CAS  PubMed Central  PubMed  Google Scholar 

  20. De Clercq S et al (2010) Widespread overexpression of epitope-tagged Mdm4 does not accelerate tumor formation in vivo. Mol Cell Biol 30(22):5394–5405

    PubMed Central  PubMed  Google Scholar 

  21. de Graaf P et al (2003) Hdmx protein stability is regulated by the ubiquitin ligase activity of Mdm2. J Biol Chem 278(40):38315–38324

    PubMed  Google Scholar 

  22. de Oliveira Reis AH et al (2012) Influence of MDM2 and MDM4 on development and survival in hereditary retinoblastoma. Pediatr Blood Cancer 59(1):39–43

    PubMed  Google Scholar 

  23. de Rozieres S et al (2000) The loss of mdm2 induces p53-mediated apoptosis. Oncogene 19(13):1691–1697

    PubMed  Google Scholar 

  24. el-Deiry WS et al (1993) WAF1, a potential mediator of p53 tumor suppression. Cell 75(4):817–825

    CAS  PubMed  Google Scholar 

  25. Evans SC et al (2001) An alternatively spliced HDM2 product increases p53 activity by inhibiting HDM2. Oncogene 20(30):4041–4049

    CAS  PubMed  Google Scholar 

  26. Fakharzadeh SS et al (1991) Tumorigenic potential associated with enhanced expression of a gene that is amplified in a mouse tumor cell line. EMBO J 10(6):1565–1569

    CAS  PubMed Central  PubMed  Google Scholar 

  27. Finch RA et al (2002) mdmx is a negative regulator of p53 activity in vivo. Cancer Res 62(11):3221–3225

    CAS  PubMed  Google Scholar 

  28. Finlay CA (1993) The mdm-2 oncogene can overcome wild-type p53 suppression of transformed cell growth. Mol Cell Biol 13(1):301–306

    CAS  PubMed Central  PubMed  Google Scholar 

  29. Francoz S et al (2006) Mdm4 and Mdm2 cooperate to inhibit p53 activity in proliferating and quiescent cells in vivo. Proc Natl Acad Sci U S A 103(9):3232–3237

    CAS  PubMed Central  PubMed  Google Scholar 

  30. Garcia D et al (2011) Validation of MdmX as a therapeutic target for reactivating p53 in tumors. Genes Dev 25(16):1746–1757

    CAS  PubMed Central  PubMed  Google Scholar 

  31. Gembarska A et al (2012) MDM4 is a key therapeutic target in cutaneous melanoma. Nat Med 18:1239–1247

    CAS  PubMed  Google Scholar 

  32. Gilkes DM et al (2008) Regulation of MDMX expression by mitogenic signaling. Mol Cell Biol 28(6):1999–2010

    CAS  PubMed Central  PubMed  Google Scholar 

  33. Graves B et al (2012) Activation of the p53 pathway by small-molecule-induced MDM2 and MDMX dimerization. Proc Natl Acad Sci U S A 109(29):11788–11793

    CAS  PubMed Central  PubMed  Google Scholar 

  34. Grier JD et al (2006) Tissue-specific differences of p53 inhibition by Mdm2 and Mdm4. Mol Cell Biol 26(1):192–198

    CAS  PubMed Central  PubMed  Google Scholar 

  35. Guo Y et al (2008) Expression of p14ARF, MDM2, and MDM4 in human retinoblastoma. Biochem Biophys Res Commun 375(1):1–5

    CAS  PubMed Central  PubMed  Google Scholar 

  36. Han X et al (2007) HDM4 (HDMX) is widely expressed in adult pre-B acute lymphoblastic leukemia and is a potential therapeutic target. Mod Pathol 20(1):54–62

    CAS  PubMed  Google Scholar 

  37. Haupt Y et al (1997) Mdm2 promotes the rapid degradation of p53. Nature 387(6630):296–299

    CAS  PubMed  Google Scholar 

  38. He L et al (2007) A microRNA component of the p53 tumour suppressor network. Nature 447(7148):1130–1134

    CAS  PubMed  Google Scholar 

  39. Hollstein M et al (1994) Database of p53 gene somatic mutations in human tumors and cell lines. Nucleic Acids Res 22(17):3551–3555

    CAS  PubMed Central  PubMed  Google Scholar 

  40. Hu B et al (2006) MDMX overexpression prevents P53 activation by the MDM2 inhibitor nutlin. J Biol Chem 281:33030–33035

    CAS  PubMed  Google Scholar 

  41. Jackson MW, Berberich SJ (1999) Constitutive mdmx expression during cell growth, differentiation, and DNA damage. DNA Cell Biol 18(9):693–700

    CAS  PubMed  Google Scholar 

  42. Jackson MW, Berberich SJ (2000) MdmX protects p53 from Mdm2-mediated degradation. Mol Cell Biol 20(3):1001–1007

    CAS  PubMed Central  PubMed  Google Scholar 

  43. Jones SN et al (1998) Overexpression of Mdm2 in mice reveals a p53-independent role for Mdm2 in tumorigenesis. Proc Natl Acad Sci U S A 95(26):15608–15612

    CAS  PubMed Central  PubMed  Google Scholar 

  44. Jones SN et al (1995) Rescue of embryonic lethality in Mdm2-deficient mice by absence of p53. Nature 378:206–208

    CAS  PubMed  Google Scholar 

  45. Juven T et al (1993) Wild type p53 can mediate sequence-specific transactivation of an internal promoter within the mdm2 gene. Oncogene 8(12):3411–3416

    CAS  PubMed  Google Scholar 

  46. Kawai H et al (2003) DNA damage-induced MDMX degradation is mediated by MDM2. J Biol Chem 278(46):45946–45953

    CAS  PubMed  Google Scholar 

  47. Kojima K et al (2010) The novel tryptamine derivative JNJ-26854165 induces wild-type p53- and E2F1-mediated apoptosis in acute myeloid and lymphoid leukemias. Mol Cancer Ther 9(9):2545–2557

    CAS  PubMed Central  PubMed  Google Scholar 

  48. Kranz D, Dobbelstein M (2006) Nongenotoxic p53 activation protects cells against S-phase-specific chemotherapy. Cancer Res 66(21):10274–10280

    CAS  PubMed  Google Scholar 

  49. Kubbutat MH et al (1997) Regulation of p53 stability by Mdm2. Nature 387(6630):299–303

    CAS  PubMed  Google Scholar 

  50. Kussie PH et al (1996) Structure of the MDM2 oncoprotein bound to the p53 tumor suppressor transactivation domain. Science 274(5289):948–953

    CAS  PubMed  Google Scholar 

  51. Landers JE et al (1997) Translational enhancement of mdm2 oncogene expression in human tumor cells containing a stabilized wild-type p53 protein. Cancer Res 57(16):3562

    CAS  PubMed  Google Scholar 

  52. Landers JE et al (1994) Enhanced translation: a novel mechanism of mdm2 oncogene overexpression identified in human tumor cells. Oncogene 9(9):2745–2750

    CAS  PubMed  Google Scholar 

  53. Lane D, Levine A (2010) p53 research: the past thirty years and the next thirty years. Cold Spring Harb Perspect Biol 2(12):a000893

    CAS  PubMed Central  PubMed  Google Scholar 

  54. Laurie NA et al (2006) Inactivation of the p53 pathway in retinoblastoma. Nature 444(7115):61–66

    CAS  PubMed  Google Scholar 

  55. Lenos K et al (2011) Oncogenic functions of hMDMX in in vitro transformation of primary human fibroblasts and embryonic retinoblasts. Mol Cancer 10:111

    CAS  PubMed Central  PubMed  Google Scholar 

  56. Lenos K et al (2012) Alternate splicing of the p53 inhibitor HDMX offers a superior prognostic biomarker than p53 mutation in human cancer. Cancer Res 72(16):4074–4084

    CAS  PubMed  Google Scholar 

  57. Li Q, Lozano G (2012) Molecular pathways: targeting Mdm2 and Mdm4 in cancer therapy. Clin Cancer Res 19:34–41

    PubMed Central  PubMed  Google Scholar 

  58. Liang M et al (2010) HDM4 is overexpressed in mantle cell lymphoma and its inhibition induces p21 expression and apoptosis. Mod Pathol 23(3):381–391

    CAS  PubMed  Google Scholar 

  59. Linares LK et al (2003) HdmX stimulates Hdm2-mediated ubiquitination and degradation of p53. Proc Natl Acad Sci U S A 100(21):12009–12014

    CAS  PubMed Central  PubMed  Google Scholar 

  60. Linzer DIH, Levine AJ (1979) Characterization of a 54 K dalton cellular SV40 tumor antigen present in SV40-transformed cells and uninfected embryonal carcinoma cells. Cell 17:43–52

    CAS  PubMed  Google Scholar 

  61. Lundgren K et al (1997) Targeted expression of MDM2 uncouples S phase from mitosis and inhibits mammary gland development independent of p53. Genes Dev 11(6):714–725

    CAS  PubMed  Google Scholar 

  62. Mandke P et al (2012) MicroRNA-34a modulates MDM4 expression via a target site in the open reading frame. PLoS One 7(8):e42034

    CAS  PubMed Central  PubMed  Google Scholar 

  63. Marine JC (2011) MDM2 and MDMX in cancer and development. Curr Top Dev Biol 94:45–75

    CAS  PubMed  Google Scholar 

  64. Markey M, Berberich SJ (2008) Full-length hdmX transcripts decrease following genotoxic stress. Oncogene 27(52):6657–6666

    CAS  PubMed Central  PubMed  Google Scholar 

  65. Matijasevic Z et al (2008) MdmX regulates transformation and chromosomal stability in p53-deficient cells. Cell Cycle 7(19):2967–2973

    CAS  PubMed Central  PubMed  Google Scholar 

  66. Matijasevic Z et al (2008) MdmX promotes bipolar mitosis to suppress transformation and tumorigenesis in p53-deficient cells and mice. Mol Cell Biol 28(4):1265–1273

    CAS  PubMed Central  PubMed  Google Scholar 

  67. Mayo LD, Donner DB (2001) A phosphatidylinositol 3-kinase/Akt pathway promotes translocation of Mdm2 from the cytoplasm to the nucleus. Proc Natl Acad Sci U S A 98(20):11598–11603

    CAS  PubMed Central  PubMed  Google Scholar 

  68. Melo AN, Eischen CM (2012) Protecting the genome from mdm2 and mdmx. Genes Cancer 3(3–4):283–290

    CAS  PubMed Central  PubMed  Google Scholar 

  69. Migliorini D et al (2002) Mdm4 (Mdmx) regulates p53-induced growth arrest and neuronal cell death during early embryonic mouse development. Mol Cell Biol 22(15):5527–5538

    CAS  PubMed Central  PubMed  Google Scholar 

  70. Momand J et al (1998) The MDM2 gene amplification database. Nucleic Acids Res 26(15):3453–3459

    CAS  PubMed Central  PubMed  Google Scholar 

  71. Momand J et al (1992) The mdm-2 oncogene product forms a complex with the p53 protein and inhibits p53-mediated transactivation. Cell 69(7):1237–1245

    CAS  PubMed  Google Scholar 

  72. Montes de Oca Luna R et al (1997) Deletion of p21 cannot substitute for p53 loss in rescue of mdm2 null lethality. Nat Genet 16(3):336–337

    CAS  PubMed  Google Scholar 

  73. Montes de Oca Luna R et al (1995) Rescue of early embryonic lethality in mdm2-deficient mice by deletion of p53. Nature 378:203–206

    CAS  PubMed  Google Scholar 

  74. Okoro DR et al (2012) Splicing up mdm2 for cancer proteome diversity. Genes Cancer 3(3–4):311–319

    CAS  PubMed Central  PubMed  Google Scholar 

  75. Oliner JD et al (1992) Amplification of a gene encoding a p53-associated protein in human sarcomas. Nature 358(6381):80–83

    CAS  PubMed  Google Scholar 

  76. Otto A, Deppert W (1993) Upregulation of mdm-2 expression in meth A tumor cells tolerating wild-type p53. Oncogene 8:2591–2603

    CAS  PubMed  Google Scholar 

  77. Pan Y, Chen J (2003) MDM2 promotes ubiquitination and degradation of MDMX. Mol Cell Biol 23(15):5113–5121

    CAS  PubMed Central  PubMed  Google Scholar 

  78. Parant J et al (2001) Rescue of embryonic lethality in Mdm4-null mice by loss of Trp53 suggests a nonoverlapping pathway with MDM2 to regulate p53. Nat Genet 29(1):92–95

    CAS  PubMed  Google Scholar 

  79. Patterson H et al (1997) Amplification and over-expression of the MDM2 gene in human soft tissue tumours. Sarcoma 1(1):17–22

    CAS  PubMed Central  PubMed  Google Scholar 

  80. Perry ME et al (1993) The mdm-2 gene is induced in response to UV light in a p53-dependent. Proc Natl Acad Sci U S A 90(24):11623–11627

    CAS  PubMed Central  PubMed  Google Scholar 

  81. Phillips A et al (2010) HDMX-L is expressed from a functional p53-responsive promoter in the first intron of the HDMX gene and participates in an autoregulatory feedback loop to control p53 activity. J Biol Chem 285(38):29111–29127

    CAS  PubMed Central  PubMed  Google Scholar 

  82. Post SM et al (2010) A high-frequency regulatory polymorphism in the p53 pathway accelerates tumor development. Cancer Cell 18(3):220–230

    CAS  PubMed Central  PubMed  Google Scholar 

  83. Prodosmo A et al (2008) Analysis of human MDM4 variants in papillary thyroid carcinomas reveals new potential markers of cancer properties. J Mol Med (Berl) 86(5):585–596

    CAS  Google Scholar 

  84. Reed D et al (2010) Identification and characterization of the first small molecule inhibitor of MDMX. J Biol Chem 285(14):10786–10796

    CAS  PubMed Central  PubMed  Google Scholar 

  85. Riemenschneider MJ et al (1999) Amplification and overexpression of the MDM4 (MDMX) gene from 1q32 in a subset of malignant gliomas without TP53 mutation or MDM2 amplification. Cancer Res 59(24):6091–6096

    CAS  PubMed  Google Scholar 

  86. Riemenschneider MJ et al (2003) Refined mapping of 1q32 amplicons in malignant gliomas confirms MDM4 as the main amplification target. Int J Cancer 104(6):752–757

    CAS  PubMed  Google Scholar 

  87. Roxburgh P et al (2012) Small molecules that bind the Mdm2 RING stabilize and activate p53. Carcinogenesis 33(4):791–798

    CAS  PubMed  Google Scholar 

  88. Senturk E, Manfredi JJ (2012) Mdm2 and tumorigenesis: evolving theories and unsolved mysteries. Genes Cancer 3(3–4):192–198

    PubMed Central  PubMed  Google Scholar 

  89. Shvarts A et al (1997) Isolation and identification of the human homolog of a new p53-binding protein, Mdmx. Genomics 43(1):34

    CAS  PubMed  Google Scholar 

  90. Shvarts A et al (1996) MDMX: a novel p53-binding protein with some functional properties of MDM2. EMBO J 15(19):5349–5357

    CAS  PubMed Central  PubMed  Google Scholar 

  91. Snyder LC, Trusko SP, Freeman N, Eshleman JR, Fakharzadeh SS, George DL (1988) A gene amplified in a transformed mouse cell line undergoes complex transcriptional processing and encodes a nuclear protein. J Biol Chem 263:17150–17158

    CAS  PubMed  Google Scholar 

  92. Stad R et al (2001) Mdmx stabilizes p53 and Mdm2 via two distinct mechanisms. EMBO Rep 2(11):1029–1034

    CAS  PubMed Central  PubMed  Google Scholar 

  93. Stad R et al (2000) Hdmx stabilizes Mdm2 and p53. J Biol Chem 275(36):28039–28044

    CAS  PubMed  Google Scholar 

  94. Tanimura S et al (1999) MDM2 interacts with MDMX through their RING finger domains [In Process Citation]. FEBS Lett 447(1):5–9

    CAS  PubMed  Google Scholar 

  95. Valentin-Vega YA et al (2007) High levels of the p53 inhibitor MDM4 in head and neck squamous carcinomas. Hum Pathol 38(10):1553–1562

    CAS  PubMed Central  PubMed  Google Scholar 

  96. Valentin-Vega YA et al (2009) Mdm4 loss in the intestinal epithelium leads to compartmentalized cell death but no tissue abnormalities. Differentiation 77(5):442–449

    CAS  PubMed Central  PubMed  Google Scholar 

  97. Vassilev LT et al (2004) In vivo activation of the p53 pathway by small-molecule antagonists of MDM2. Science 303(5659):844–848

    CAS  PubMed  Google Scholar 

  98. Veerakumarasivam A et al (2008) High-resolution array-based comparative genomic hybridization of bladder cancers identifies mouse double minute 4 (MDM4) as an amplification target exclusive of MDM2 and TP53. Clin Cancer Res 14(9):2527–2534

    CAS  PubMed  Google Scholar 

  99. Wade M et al (2012) MDM2, MDMX and p53 in oncogenesis and cancer therapy. Nat Rev Cancer 13(2):83–96

    Google Scholar 

  100. Wade M et al (2010) The p53 orchestra: Mdm2 and Mdmx set the tone. Trends Cell Biol 20(5):299–309

    CAS  PubMed Central  PubMed  Google Scholar 

  101. Wade M et al (2006) Hdmx modulates the outcome of p53 activation in human tumor cells. J Biol Chem 281(44):33036–33044

    CAS  PubMed  Google Scholar 

  102. Watanabe T et al (1994) The MDM2 oncogene overexpression in chronic lymphocytic leukemia and low-grade lymphoma of B-cell origin. Blood 84(9):3158–3165

    CAS  PubMed  Google Scholar 

  103. Xiong S et al (2010) Spontaneous tumorigenesis in mice overexpressing the p53-negative regulator Mdm4. Cancer Res 70(18):7148–7154

    CAS  PubMed Central  PubMed  Google Scholar 

  104. Xiong S et al (2006) Synergistic roles of Mdm2 and Mdm4 for p53 inhibition in central nervous system development. Proc Natl Acad Sci U S A 103(9):3226–3231

    CAS  PubMed Central  PubMed  Google Scholar 

  105. Yang Y et al (2005) Small molecule inhibitors of HDM2 ubiquitin ligase activity stabilize and activate p53 in cells. Cancer Cell 7(6):547–559

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steven J. Berberich Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Berberich, S.J. (2014). Mdm2 and MdmX Involvement in Human Cancer. In: Deb, S., Deb, S. (eds) Mutant p53 and MDM2 in Cancer. Subcellular Biochemistry, vol 85. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-9211-0_15

Download citation

Publish with us

Policies and ethics