Skip to main content

Forest Trees Under Air Pollution as a Factor of Climate Change

  • Chapter
  • First Online:
Trees in a Changing Environment

Part of the book series: Plant Ecophysiology ((KLEC,volume 9))

Abstract

Air pollution and climate change are inherently linked to each other. After introducing into the presently prevalent air pollutants and their relevance for forest tree and ecosystem performance, the account focuses on nitrogen deposition and tropospheric ozone (O3), the latter being regarded as potentially most detrimental to vegetation, and hence, as negating carbon sink strength and storage. Mechanisms of O3 action in trees and stands are highlighted, stressing interactions with other abiotic and biotic factors, including volatile organic compounds, as a fundamental pre-requisite for understanding O3 effects. O3 is emphasized as a globally effective agent of climate change, regarding relevance for forest productivity, in particular, at hot spots of air pollution in the southern hemisphere, prognosticated for the upcoming decades. Adaptation capacities of forest trees are discussed in view of the rapidity in the progression of environmental change.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Aber JD, McDowell W, Nadelhoffer K, Magill A, Berntsen G, Kamakea M, McNulty S, Currie W, Rustad L, Fernandez I (1998) Nitrogen saturation in temperate forest ecosystems: hypothesis revisited. BioScience 48:921–934

    Google Scholar 

  • Akimoto H (2003) Global air quality and pollution. Science 302:1716

    CAS  PubMed  Google Scholar 

  • Alonso R, Elvira S, Castillo FJ, Gimeno BS (2001) Interactive effects of ozone and drought stress on pigments and activities of antioxidative enzymes in Pinus halepensis. Plant Cell Environ 24:905–916

    CAS  Google Scholar 

  • Alscher RG, Amundson RG, Cumming JR, Fellows S, Fincher J, Rubin G, Van Leuken P, Weinstein LH (1989) Seasonal changes in pigments, carbohydrates and growth of red spruce as affected by ozone. New Phytol 113:211–223

    CAS  Google Scholar 

  • Andersen CP (2003) Source-sink balance and carbon allocation below ground in plants exposed to ozone. New Phytol 157:213–228

    CAS  Google Scholar 

  • Andersen CP, Rygiewicz PT (1991) Stress interactions and mycorrhizal plant response: understanding carbon allocation priorities. Environ Pollut 73:217–244

    CAS  PubMed  Google Scholar 

  • Andersen CP, Scagel CF (1997) Nutrient availability alters belowground respiration of ozone-exposed ponderosa pine. Tree Physiol 17:377–387

    CAS  PubMed  Google Scholar 

  • Andersen CP, Hogsett WE, Wessling R, Plocher M (1991) Ozone decreases spring root growth and root carbohydrate content in ponderosa pine the year following exposure. Can J For Res 21:1288–1291

    CAS  Google Scholar 

  • Andreae MO, Rosenfeld D, Artaxo P, Costa AA, Frank GP, Longo KM, Silva-Dias MAF (2004) Smoking rain clouds over the Amazon. Science 303:1337–1342

    CAS  PubMed  Google Scholar 

  • Atkinson R, Arey J (1998) Atmospheric chemistry of biogenic organic compounds. Account Chem Res 31:574–583

    CAS  Google Scholar 

  • Bahnweg G, Heller W, Stich S, Knappe C, Betz G, Heerdt C, Kehr RD, Ernst D, Langebartels C, Nunn AJ, Rothenburger J, Schubert R, Wallis P, Muller-Starck G, Werner H, Matyssek R, Sandermann H (2005) Beech leaf colonization by the endophyte Apiognomonia errabunda dramatically depends on light exposure and climatic conditions. Plant Biol 7:659–669

    CAS  PubMed  Google Scholar 

  • Barbo DN, Chappelka AH, Somers GL, Miller-Goodman MS, Stolte K (1998) Diversity of an early successional plant community as influenced by ozone. New Phytol 138:653–662

    CAS  Google Scholar 

  • Barbo DN, Chappelka AH, Somers GL, Miller-Goodman MS, Stolte K (2002) Ozone impacts on loblolly pine (Pinus taeda L.) grown in a competitive environment. Environ Pollut 116:27–36

    CAS  PubMed  Google Scholar 

  • Bardossy A, Caspary HJ (1990) Detection of climate change in Europe by analyzing European atmospheric circulation patterns from 1881 to 1989. Theor Appl Climatol 42:155–167

    Google Scholar 

  • Barnes JD, Eamus D, Brown KA (1990a) The influence of ozone, acid mist and soil nutrient status on Norway spruce (Picea abies (L.) Karst): I. Plant-water relations. New Phytol 114:713–720

    CAS  Google Scholar 

  • Barnes JD, Eamus D, Brown KA (1990b) The influence of ozone, acid mist and soil nutrient status on Norway spruce (Picea abies (L.) Karst): II. Photosynthesis, dark respiration and soluble carbohydrates of trees during late autumn. New Phytol 115:149–156

    CAS  Google Scholar 

  • Barnes JD, Pfirrmann T, Steiner K, Lütz C, Busch U, Küchenhoff H, Payer H-D (1995) Effects of elevated CO2, O3, and K deficiency on Norway spruce (Picea abies [L.] Karst.). II. Seasonal changes in photosynthesis and non-structural carbohydrate content. Plant Cell Environ 18:1345–1357

    CAS  Google Scholar 

  • Bell N, Heard DE, Pilling MJ, Tomlin AS (2003) Atmospheric lifetime as a probe of radical chemistry in the boundary layer. Atmos Environ 37:2193–2205

    CAS  Google Scholar 

  • Bennett JP, Rassat P, Berrang P, Karnosky DF (1992) Relationships between leaf anatomy and ozone sensitivity of Fraxinus pennsylvanica Marsh. and Prunus serotina Ehrh. J Exp Bot 32:33–41

    CAS  Google Scholar 

  • Bertschi IT, Jaffe DA (2005) Long-range transport of ozone, carbon monoxide, and aerosols in the NE Pacific troposphere during the summer of 2003: observations of smoke plumes from Asian boreal fires. J Geophys Res 110:D05303

    Google Scholar 

  • Bielenberg DG, Lynch JP, Pell EJ (2001) A decline in nitrogen availability affects plant response to ozone. New Phytol 151:413–425

    CAS  Google Scholar 

  • Biesenthal TA, Wu TAQ, Shepson PB, Wiebe HA, Anlauf KG, MacKay GI (1997) A study of relationships between isoprene, its oxidation products, and ozone, in the lower Fraser valley, BC. Atmos Environ 31:2049–2058

    CAS  Google Scholar 

  • Blande JD, Holopainen JK, Li T (2010) Air pollution impedes plant-to-plant communication by volatiles. Ecol Lett 13:1172–1181

    PubMed  Google Scholar 

  • Blumenröther MC, Löw M, Matyssek R, Orwald W (2007) Flux-based response of sucrose and starch in leaves of adult beech trees (Fagus sylvatica L.) under chronic free-air O3 fumigation. Plant Biol 9:207–214

    PubMed  Google Scholar 

  • Boian C, Kirchhoff VWJH (2005) Surface ozone enhancements in the south of Brazil owing to large-scale air mass transport. Atmos Environ 39:6140–6146

    CAS  Google Scholar 

  • Bonello P, Heller W, Sandermann H (1993) Ozone effects on root-disease susceptibility and defence responses in mycorrhizal and non-mycorrhizal seedlings of Scots pine (Pinus sylvestris L.). New Phytol 124:653–663

    CAS  Google Scholar 

  • Bowman DM, Balch JS, Artaxo JK, Bond P, Carlson WJ, Cochrane JM, D’Antonio MA, DeFries CM, Doyle RS, Harrison JC, Johnston SP, Keeley FH, Krawchuk JE, Kull MA, Marston CA, Moritz JB, Prentice MA, Roos CI, Scott AC, Swetnam TW, van der Werf GR, Pyne SJ (2009) Fire in the earth system. Science 324:481–484

    CAS  PubMed  Google Scholar 

  • Brilli F, Barta C, Fortunati A, Lerdau M, Loreto F, Centritto M (2007) Response of isoprene emission and carbon metabolism to drought in white poplar (Populus alba) saplings. New Phytol 175:244–254

    CAS  PubMed  Google Scholar 

  • Broadmeadow MSJ, Heath J, Randle TJ (1999) Environmental limitations to O3 uptake – some key results from young trees growing at elevated CO2 concentrations. Water Air Soil Pollut 116:99–310

    Google Scholar 

  • Bulbovas P, Moraes RM, Rinaldi MCS, Cunha AL, Delitti WBC, Domingos M (2010) Leaf antioxidant fluctuations and growth responses in saplings of Caesalpinia echinata Lam. (Brazilwood) under an urban stressing environment. Ecotox Environ Safe 73:664–670

    CAS  Google Scholar 

  • Calatayud V, Marco F, Cervero J, Sánchez-Peña G, Sanz MJ (2010) Contrasting ozone sensitivity in related evergreen and deciduous shrubs. Environ Pollut 158:3580–3587

    CAS  PubMed  Google Scholar 

  • Ceulemans R, Janssens IA, Jach ME (1999) Effects of CO2 enrichment on trees and forests: lessons to be learned in view of future ecosystem studies. Ann Bot 84:577–590

    CAS  Google Scholar 

  • Chappelka AH, Kush JS, Meldahl RS, Lockaby BG (1990) An ozone-low temperature interaction in loblolly pine (Pinus taeda L.). New Phytol 114:721–726

    CAS  Google Scholar 

  • Ciais P, Reichstein M, Viovy N, Granier A, Ogée J, Allard V, Aubinet M, Buchmann N, Bernhofer C, Carrara A, Chevallier F, De Noblet N, Friend AD, Friedlingstein P, Gruenwald T, Heinesch B, Keronen P, Knohl A, Krinner G, Loustau D, Manca G, Matteucci G, Miglietta F, Ourcival JM, Papale D, Pilegaard K, Rambal S, Seufert G, Soussana JF, Sanz MJ, Schulze ED, Vesala T, Valentini R (2005) Europe-wide reduction in primary productivity caused by the heat and drought in 2003. Nature 437:529–534

    CAS  PubMed  Google Scholar 

  • Coleman MD, Dickson RE, Isebrands JG, Karnosky DF (1995) Carbon allocation and partitioning in aspen clones varying in sensitivity to tropospheric ozone. Tree Physiol 15:721–726

    Google Scholar 

  • De Vries W, Posch M (2011) Modelling the impact of nitrogen deposition, climate change and nutrient limitations on tree carbon sequestration in Europe for the period 1900–2050. Environ Pollut 159:2289–2299

    PubMed  Google Scholar 

  • Demirbas A (2008) Biofuels sources, biofuel policy, biofuel economy and global biofuel projections. Energy Convers Manag 49:2106–2116

    CAS  Google Scholar 

  • Dentener F, Stevenson D, Ellingsen K, van Noije T, Schultz M, Amann M, Atherton C, Bell N, Bergmann D, Bey I, Bouwman L, Butler T, Cofala J, Collins B, Drevet J, Doherty R, Eickhout B, Eskes H, Fiore A, Gauss M, Hauglustaine D, Horowitz L, Isaksen ISA, Josse B, Lawrence M, Krol M, Lamarque JF, Montanaro V, Muller JF, Peuch VH, Pitari G, Pyle J, Rast S, Rodriguez J, Sanderson M, Savage NH, Shindell D, Strahan S, Szopa S, Sudo K, Van Dingenen R, Wild O, Zeng G (2006) The global atmospheric environment for the next generation. Environ Sci Technol 40:3586–3594

    CAS  PubMed  Google Scholar 

  • Derwent RG, Stevenson DS, Collins WJ, Johnson CE (2004) Intercontinental transport and the origins of the ozone observed at surface sites in Europe. Atmos Environ 38:1891–1901

    CAS  Google Scholar 

  • Dicke M, Baldwin IT (2010) The evolutionary context for herbivore-induced plant volatiles: beyond the cry for help. Trends Plant Sci 15:167–175

    CAS  PubMed  Google Scholar 

  • Dizengremel P, Le Thiec D, Hasenfratz-Sauder MP, Vaultier MN, Bagard M, Jolivet Y (2009) Metabolic-dependent changes in plant cell redox power after ozone exposure. Plant Biol 11:35–42

    CAS  PubMed  Google Scholar 

  • Durka W, Schulze ED, Gebauer G, Voerkelius S (1994) Effects of forest decline on uptake and leaching of deposited nitrate determined from 15N and 18O measurements. Nature 372:765–767

    CAS  Google Scholar 

  • Einig W, Lauxmann U, Hauch B, Hampp R, Landolt W, Maurer S, Matyssek R (1997) Ozone-induced accumulation of carbohydrates changes enzyme activities of carbohydrate metabolism in birch leaves. New Phytol 137:673–680

    CAS  Google Scholar 

  • Emberson LD, Ashmore MR, Murray F, Kuylenstierna JCI, Percy KE, Izuta T, Zheng Y, Shimizu H, Sheu BH, Liu CP, Agrawal M, Wahid A, Abdel-Latif NM, van Tienhoven M, de Bauer LI, Domingos M (2001) Impacts of air pollutants on vegetation in developing countries. Water Air Soil Pollut 130:107–118

    CAS  Google Scholar 

  • Ericsson T, Rytter L, Vapaavuori E (1996) Physiology and allocation in trees. Biomass Bioenergy 11:115–127

    CAS  Google Scholar 

  • Fabian P (2002) Leben im Treibhaus – Unser Klimasystem und was wir daraus machen. Springer, Berlin, p 258

    Google Scholar 

  • Fiore AM, Jacob DJ, Bey I, Yantosca RM, Field BD, Fusco AC, Wilkinson JG (2002) Background ozone over the United States in summer: origin, trend, and contribution to pollution episodes. J Geophys Res 107:D4275

    Google Scholar 

  • Fontaine V, Cabané M, Dizengremel P (2003) Regulation of phosphoenolpyruvate carboxylase in Pinus halepensis needles submitted to ozone and water stress. Physiol Plant 117:445–452

    CAS  PubMed  Google Scholar 

  • Fowler D, Amann M, Anderson R, Ashmore M, Cox P, Depledge M, Derwent D, Grennfelt P, Hewitt N, Hov O, Jenkin M, Kelly F, Liss P, Pilling M, Pyle J, Slingo J, Stefenson D (2008) Ground-level ozone in the 21st century: future trends, impacts and policy implications. The Royal Society Policy Document

    Google Scholar 

  • Foyer CH, Lelandais M, Edwards EA, Mullineaux PM (1991) The role of ascorbate in plants, interactions with photosynthesis, and regulatory significance. In: Pell E, Steffen K (eds) Active oxygen/oxidative stress and plant metabolism. American Society of Plant Physiologists, Rockville

    Google Scholar 

  • Fredericksen TS, Joyce BJ, Skelly JM, Steiner KC, Kolb TE, Kouterick KB, Savage JE, Snyder KR (1995) Physiology, morphology, and ozone uptake of leaves of black cherry seedlings, saplings, and canopy trees. Environ Pollut 89:273–283

    CAS  PubMed  Google Scholar 

  • Fredericksen TS, Skelly JM, Steiner KC, Kolb TE, Kouterick KB (1996a) Size-mediated foliar response to ozone in black cherry trees. Environ Pollut 91:53–63

    CAS  PubMed  Google Scholar 

  • Fredericksen TS, Skelly JM, Snyder KR, Steiner KC, Kolb TE (1996b) Predicting ozone uptake from meteorological and environmental variables. J Air Waste Manage Assoc 46:464–469

    CAS  Google Scholar 

  • Frieldingstein P, Fung I, Holland E, John J, Brasseur G, Erickson D, Schimel D (1005) On the contribution of CO2 fertilization to the missing biospheric sink. Glob Biogeochem Cycl 9:541–556

    Google Scholar 

  • Fuentes JD, Lerdau M, Atkinson R, Baldocchi, Bottenheim JW, Ciccioli P, Lamp C, Geron C, Gu L, Gunether A, Sharkey TD, Stockwell W (2000) Biogenic hydrocarbons in the atmospheric boundary layer: a review. Bull Am Meteorol Soc 81:1537–1575

    Google Scholar 

  • Furlan CM, Moraes RM, Bulbovas P, Domingos M, Salatino A, Sanz MJ (2007) Psidium guajava ‘Paluma’ (the guava plant) as a new bio-indicator of ozone in the tropics. Environ Pollut 147:691–695

    CAS  PubMed  Google Scholar 

  • Furlan CM, Moraes RM, Bulbovas P, Sanz MJ, Domingos M, Salatino A (2008) Tibouchina pulchra (Cham.) Cogn., a native Atlantic forest species, as a bio-indicator of ozone: visible injury. Environ Pollut 152:361–365

    CAS  PubMed  Google Scholar 

  • Galloway JN, Dentener FJ, Capone DG, Boyer EW, Howarth RW, Seitzinger SP, Asner GP, Cleveland CC, Green PA, Holland EA, Karl DM, Michaels AF, Porter JH, Townsend AR, Vörösmarty CJ (2004) Nitrogen cycles: past, present, and future. Biogeochemistry 70:153–226

    CAS  Google Scholar 

  • Gehring CA, Cobb NS, Whitman TG (1997) Three way interactions among ectomycorrhizal mutualists, scale insects, and resistant and susceptible pinyon pines. Amer Nat 149:824–841

    CAS  Google Scholar 

  • Gerant D, Podor M, Grieu P, Afif D, Cornu S, Morabito D, Banvoy J, Robin C, Dizengremel P (1996) Carbon metabolism, enzyme activities and carbon partitioning in Pinus halepensis Mill. to mild drought and ozone. J Plant Physiol 148:142

    CAS  Google Scholar 

  • Gessler A, Keitel C, Kreuzwieser J, Matyssek R, Seiler W, Rennenberg H (2007) Potential risks for European beech (Fagus sylvatica L.) in a changing climate. Trees 21:1–11

    Google Scholar 

  • Gloudemans AMS, Krol MC, Meirink JF, de Laat ATJ, van der Werf GR, Schrijver H, van den Broek MMP, Aben I (2006) Evidence for long-range transport of carbon monoxide in the Southern Hemisphere from SCIAMACHY observations. Geophys Res Lett 33:L16807

    Google Scholar 

  • Grams TEE, Andersen CP (2007) Competition for resources in trees: physiological versus morphological plasticity. In: Esser K, Lüttge U, Beyschlag W, Murata J (eds) Progress in botany. Springer-Verlag, Berlin

    Google Scholar 

  • Grams TEE, Matyssek R (1999) Elevated CO2 counteracts the limitation by chronic ozone exposure on photosynthesis in Fagus sylvatica L.: comparison between chlorophyll fluorescence and leaf gas exchange. Phyton Ann Rei Bot 39:31–40

    CAS  Google Scholar 

  • Grams TEE, Matyssek R (2010) Stable isotope signatures reflect competitiveness between trees under changed CO2/O3 regimes. Environ Pollut 158:1036–1042

    CAS  PubMed  Google Scholar 

  • Grams TEE, Anegg S, Häberle K-H, Langebartels C, Matyssek R (1999) Interactions of chronic exposure to elevated CO2 and O3 levels in the photosynthetic light and dark reactions of European beech (Fagus sylvatica). New Phytol 144:95–107

    CAS  Google Scholar 

  • Grams TEE, Kozovits AR, Häberle K-H, Matyssek R, Dawson TE (2007) Combining δ13C and δ18O analyses to unravel competition, CO2 and O3 effects on the physiological performance of different-aged trees. Plant Cell Environ 30:1023–1034

    CAS  PubMed  Google Scholar 

  • Grebenc T, Kraigher H (2007) Changes in the community of ectomycorrhizal fungi and increased fine root number under adult beech trees chronically fumigated with double ambient ozone concentration. Plant Biol 9:279–287

    CAS  PubMed  Google Scholar 

  • Greitner CS, Winner WE (1989) Nutrient effects on responses of willow and alder to ozone. In: Olson RK, Lefohn AS (eds) Transaction: effects of air pollution on Western Forests. Air and Waste Management Association, Anaheim

    Google Scholar 

  • Grulke NE, Balduman L (1999) Deciduous conifers: high N deposition and O3 exposure effects on growth and biomass allocation in Ponderosa pine. Water Air Soil Pollut 116:235–248

    CAS  Google Scholar 

  • Grulke NE, Johnson R, Esperanza A, Jones D, Nguyen T, Posch S, Tausz M (2003) Canopy transpiration of Jeffrey pine in mesic and xeric microsites: O3 uptake and injury response. Trees 17:292–298

    Google Scholar 

  • Grulke NE, Minnich RA, Paine TD, Seybold SJ, Chavez DJ, Fenn ME, Riggan PJ, Dunn A (2009) Air pollution increases forest susceptibility to wildfires: a case study in the San Bernardino Mountains in Southern California. In: Bytnerowicz A, Arbaugh M, Riebau A, Andersen C (eds) Developments in environmental science, vol 8. Elsevier, Oxford/UK

    Google Scholar 

  • Guenther AB, Hewitt CN, Erickson D, Fall R, Geron C, Graedel T, Harley P, Klinger L, Lerdau M, McKay WA, Pierce T, Scholes B, Steinbrecher R, Tallamraju R, Taylor J, Zimmerman P (1995) A global model of natural volatile organic compound emissions. J Geophys Res 100:8873–8892

    CAS  Google Scholar 

  • Günthardt-Goerg MS, Matyssek R, Scheidegger C, Keller T (1993) Differentiation and structural decline in the leaves and bark of birch (Betula pendula) under low ozone concentrations. Trees 7:104–114

    Google Scholar 

  • Haberer K, Grebenc T, Alexou M, Gessler A, Kraigher H, Rennenberg H (2007) Effects of long-term free-air ozone fumigation on δ15N and total N in Fagus sylvatica and associated mycorrhizal fungi. Plant Biol 9:242–252

    CAS  PubMed  Google Scholar 

  • Hahlbrock K, Bednarek P, Ciolkowski I, Hamberger B, Heise A, Liedgens H, Logemann E, Nürnberger T, Schmelzer E, Somssich IE, Tan J (2003) Non-self recognition, transcriptional reprogramming, and secondary metabolite accumulation during plant/pathogen interactions. Proc Natl Acad Sci U S A 100:14569–14576

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hättenschwieler S, Schweingruber FH, Körner C (1996) Tree ring responses to elevated CO2 and increased N deposition in Picea abies. Plant Cell Environ 19:1369–1378

    Google Scholar 

  • Hayes F, Mills G, Harmens H, Norris D (2007) Evidence of widespread ozone damage to vegetation in Europe (1990–2006). Programme Coordinating Centre for the ICP Vegetation, Centre for Ecology and Hydrology, Bangor, http://www.icpvegetation.ceh.ac.uk

    Google Scholar 

  • Heath RL (1980) Initial events in injury to plants by air pollutants. Annu Rev Plant Physiol 31:395–401

    CAS  Google Scholar 

  • Heath RL, Taylor GE (1997) Physiological processes and plant responses to ozone exposure. In: Sandermann H, Wellburn AR, Heath RL (eds) Forest decline and ozone, a comparison of controlled chamber and field experiments, Ecological Studies 127. Springer-Verlag, Berlin

    Google Scholar 

  • Herms DA, Mattson WJ (1992) The dilemma of plants: to grow or defend. Q Rev Biol 67:283–335

    Google Scholar 

  • Hewitt CN, MacKenzie AR, Di Carlo P, Di Marco CF, Dorsey JR, Evans M, Fowler D, Gallagher MW, Hopkins JR, Jones CE, Langford B, Lee JD, Lewis AC, Lim SF, McQuaid J, Misztal P, Moller SJ, Monks PS, Nemitz E, Oram DE, Owen SM, Phillips GJ, Pugh TAM, Pyle JA, Reeves CE, Ryder J, Sion J, Skiba U, Stewart DJ (2009) Nitrogen management is essential to prevent tropical oil palm plantations from causing ground-level ozone pollution. Proc Natl Acad Sci U S A 106:18447–18451

    CAS  PubMed Central  PubMed  Google Scholar 

  • Holopainen JK, Gershenzon J (2010) Multiple stress factors and the emission of plant VOCs. Trends Plant Sci 15:176–184

    CAS  PubMed  Google Scholar 

  • IPCC (2007) Climate change 2007: synthesis report. Summary for policymakers. WG1, AR4. http://ipcc-wg1.ucar.edu/wg1/wg1-report.html

  • Iriti M, Faoro F (2009) Chemical diversity and defence metabolism: how plants cope with pathogens and ozone pollution. Int J Mol Sci 10:3371–3399

    CAS  PubMed Central  PubMed  Google Scholar 

  • Jehnes S, Betz G, Bahnweg G, Haberer K, Sandermann H, Rennenberg H (2007) Tree internal signalling and defence reactions under ozone exposure in sun and shade leaves of European Beech (Fagus sylvatica L.) trees. Plant Biol 9:253–264

    CAS  PubMed  Google Scholar 

  • Josipovic M, Annegarn HJ, Kneen MA, Piernaar JJ, Piketh SJ (2010) Concentrations, distributions and critical level exceedance assessment of SO2, NO2 and O3 in South Africa. Environ Monit Assess 171:181–196

    CAS  PubMed  Google Scholar 

  • Kangasjärvi J, Jaspers P, Kollist H (2005) Signalling and cell death in ozone-exposed plants. Plant Cell Environ 28:1021–1036

    Google Scholar 

  • Karlsson PE, Medin E-L, Wickström H, Selldén G, Wallin G, Ottoson S, Skärby L (1995) Ozone and drought stress: interactive effects on the growth and physiology of Norway spruce (Picea abies L. Karst.). Water Air Soil Pollut 85:1325–1330

    CAS  Google Scholar 

  • Karlsson PE, Pleijel H, Karlsson GP, Medin EL, Skärby L (2000) Simulations of stomatal conductance and ozone uptake to Norway spruce saplings in open-top chambers. Environ Pollut 109:443–451

    CAS  PubMed  Google Scholar 

  • Karlsson PE, Pleijel H, Simpson D (2009) Ozone exposure and impacts on vegetation in the Nordic and Baltic countries. Ambio 38:402–405

    CAS  PubMed  Google Scholar 

  • Karnosky DF, Gagnon ZE, Dickson RE, Coleman MD, Lee EH, Isebrands JG (1996) Changes in growth, leaf abscission, and biomass associated with seasonal tropospheric ozone exposure of Populus tremuloides clones and seedlings. Can J For Res 26:23–37

    CAS  Google Scholar 

  • Karnosky DF, Mankovska B, Percy K, Dickson DE, Podila GK, Sober A, Noormets G, Hendrey MD, Coleman M, Kubiske M, Pregitzer KS, Isebrands JG (1999) Effects of tropospheric O3 on trembling aspen and interaction with CO2: results from a O3 gradient and a FACE experiment. Water Air Soil Pollut 116:311–322

    CAS  Google Scholar 

  • Karnosky DE, Oksanen E, Dickson RE, Isebrands JG (2001) Impacts of interacting greenhouse gases on forest ecosystems. In: Karnosky DF, Scarascia-Mugnozza G, Ceulemans R, Innes JL (eds) The impacts of carbon dioxide and other greenhouse gases on forest ecosystems. CABI Press, Wallingford

    Google Scholar 

  • Karnosky DF, Percy KE, Xiang BX, Callan B, Noormets A, Mankovska B, Hopkin A, Sober J, Jones W, Dickson RE, Isebrands JG (2002) Interacting elevated CO2 and tropospheric O3 predisposes aspen (Populus tremuloides Michx.) to infection by rust (Melampsora medusae f. sp tremuloidae). Glob Change Biol 8:329–338

    Google Scholar 

  • Karnosky DF, Zak D, Pregnitzer K, Awmack C, Bockheim J, Dickson R, Hendrey G, Host G, King J, Kopper B, Kruger E, Kubiske M, Lindroth R, Mattson W, McDonald E, Noormets A, Oksanen E, Parsons W, Percy K, Podila G, Riemenschneider D, Sharma P, Thakur R, Sober A, Sober J, Jones W, Anttonen S, Vapaavuori E, Manskovska B, Heilman W, Isebrands J (2003) Tropospheric O3 moderates responses of temperate hardwood forests to elevated CO2: a synthesis of molecular to ecosystem results from the Aspen FACE project. Funct Ecol 17:289–304

    Google Scholar 

  • Karnosky DF, Pregitzer KS, Zak DR, Kubiske ME, Hendrey GR, Weinstein D, Nosal M, Percy KE (2005) Scaling ozone responses of forest trees to the ecosystem level in a changing climate. Plant Cell Environ 28:965–981

    CAS  Google Scholar 

  • Karnosky DF, Werner H, Holopainen T, Percy K, Oksanen T, Oksanen E, Heerdt C, Fabian P, Nagy J, Heilman W, Cox R, Nelson N, Matyssek R (2007) Free-Air exposure systems to scale up ozone research to mature trees. Plant Biol 9:181–190

    CAS  PubMed  Google Scholar 

  • Keating TW, West JJ, Farrell AE (2004) Prospects for international management of inter-continental air pollution transport. In: Stohl A (ed) The intercontinental transport of air pollution. Springer, Berlin

    Google Scholar 

  • Keller T, Häsler R (1987) The influence of a fall fumigation with ozone on the stomatal behavior of spruce and fir. Oecologia 64:284–286

    Google Scholar 

  • Keppler F, Hamilton JTG, Brar M, Röckmann T (2006) Methane emissions from terrestrial plants under aerobic conditions. Nature 439:187–191

    CAS  PubMed  Google Scholar 

  • Keppler F, Boros M, Frankenberg C, Lelieveld J, McLeod A, Pirttilä AM, Röckmann T, Schnitzler JP (2009) Methane formation in aerobic environments. Environ Chem 6:459–465

    CAS  Google Scholar 

  • Kesselmeier J, Staudt M (1999) Biogenic volatile organic compounds (VOC): an overview on emission, physiology and ecology. J Atmos Chem 33:23–88

    CAS  Google Scholar 

  • Kiendler-Scharr A, Wildt J, Dal Maso M, Hohaus T, Kleist E, Mentel TF, Tillmann R, Uerlings R, Schurr U, Wahner A (2009) New particle formation in forests inhibited by isoprene emissions. Nature 461:381–384

    CAS  PubMed  Google Scholar 

  • King JS, Kubiske ME, Pregitzer KS, Hendrey GR, McDonald EP, Giardina CP, Quinn VS, Karnosky DF (2005) Tropospheric ozone compromises net primary production in young stands of trembling aspen, paper birch, and sugar maple in response to elevated CO2. New Phytol 168:623–636

    CAS  PubMed  Google Scholar 

  • Kitao M, Löw M, Heerd C, Grams TEE, Häberle K-H, Matyssek R (2009) Effects of chronic elevated ozone exposure on gas exchange responses of adult beech trees (Fagus sylvatica) as related to the within-canopy light gradient. Environ Pollut 157:537–544

    CAS  PubMed  Google Scholar 

  • Kivimäenpää M, Sutinen S, Karlsson PE, Sellden G (2003) Cell structural changes in the needles of Norway spruce exposed to long-term ozone and drought. Ann Bot 92:779–793

    PubMed  Google Scholar 

  • Klingberg J, Engardt M, Uddling J, Karlsson PE, Pleijel H (2010) Ozone risk for vegetation in the future climate of Europe based on stomatal ozone uptake calculations. Tellus A 63:174–187

    Google Scholar 

  • Kolb TE, Matyssek R (2001) Limitations and perspectives about scaling ozone impact in trees. Environ Pollut 115:373–393

    CAS  Google Scholar 

  • Kolb TE, Fredericksen TS, Steiner KC, Skelly JM (1997) Issues in scaling tree size and age responses to ozone: a review. Environ Pollut 98:195–208

    CAS  Google Scholar 

  • Kopper BJ, Lindroth RL (2002) Effects of elevated carbon dioxide and ozone on the phytochemistry of aspen and performance of an herbivore. Oecologia 134:95–103

    PubMed  Google Scholar 

  • Körner C (2003) Carbon limitation in trees. J Ecol 91:4–17

    Google Scholar 

  • Körner C (2006) Plant CO2 responses: an issue of definition, time and resource supply. New Phytol 172:393–411

    PubMed  Google Scholar 

  • Kozovits AR, Matyssek R, Blaschke H, Göttlein A, Grams TEE (2005a) Competition increasingly dominates the responsiveness of juvenile beech and spruce to elevated CO2 and/or O3 concentrations throughout two subsequent growing seasons. Glob Change Biol 11:1387–1401

    Google Scholar 

  • Kozovits AR, Matyssek R, Winkler B, Göttlein A, Blaschke H, Grams TEE (2005b) Above-ground space sequestration determines competitive success in juvenile beech and spruce trees. New Phytol 167:181–196

    PubMed  Google Scholar 

  • Kreuzwieser J, Gessler A (2010) Global climate change and tree nutrition: influence of water availability. Tree Physiol 30:1221–1234

    CAS  PubMed  Google Scholar 

  • Kronfuß G, Polle A, Tausz M, Havranek WM, Wieser G (1998) Effects of ozone and mild drought stress on gas exchange, antioxidants and chloroplast pigments in current-year needles of young Norway spruce [Picea abies (L.) Karst.]. Trees 12:482–489

    Google Scholar 

  • Kubiske ME, Quinn VS, Heilman WE, McDonald EP, Marquardt PE, Teclaw RM, Friend AL, Karnosky DF (2006) Interannual climatic variation mediates elevated CO2 and O3 effects on forest growth. Glob Change Biol 12:1054–1068

    Google Scholar 

  • Kubiske ME, Quinn VS, Marquardt PE, Karnosky DF (2007) Effects of elevated atmospheric CO2 and/or O3 on intra- and interspecific competitive ability of aspen. Plant Biol 9:342–355

    CAS  PubMed  Google Scholar 

  • Kytöviita M-M, Pelloux J, Fontaine V, Botton B, Dizengremel P (1999) Elevated CO2 does not amerliorate effects of ozone on carbon allocation in Pinus halepensis and Betula pendula in symbiosis with Paxillus involutus. Physiol Plant 106:370–377

    Google Scholar 

  • Lal R (1999) World soils and the greenhouse effect. IGBP Newslett 37:4–5

    Google Scholar 

  • Landolt W, Pfenninger I, Lüthy-Krause B (1989) The effect of ozone and season on the pool sizes of cyclitols in Scots pine (Pinus sylvestris). Trees 3:85–88

    Google Scholar 

  • Langebartels C, Ernst D, Heller W, Lütz C, Payer H-D, Sandermann H Jr (1997) Ozone responses of trees: results from controlled chamber exposures at the GSF phytotron. In: Sandermann H Jr, Wellburn AR, Heath RL (eds) Forest decline and ozone. Springer, Berlin

    Google Scholar 

  • Langmann B, Duncan B, Textor C, Trentmann J, van der Werf GR (2009) Vegetation fire emissions and their impact on air pollution and climate. Atmos Environ 43:107–116

    CAS  Google Scholar 

  • Laothawornkitkul J, Taylor JE, Paul ND, Hewitt CN (2009) Biogenic volatile organic compounds in the Earth system. New Phytol 183:27–51

    CAS  PubMed  Google Scholar 

  • Laurence JA, Amundson RG, Friend AL, Pell EJ, Temple PJ (1994) Allocation of carbon in plants under stress: an analysis of the ROPIS experiment. J Environ Qual 23:412–417

    Google Scholar 

  • Lautner S, Ehlting B, Windeisen E, Rennenberg H, Matyssek R, Fromm J (2007) Calcium nutrition has a significant influence on wood formation in poplar. New Phytol 173:743–752

    CAS  PubMed  Google Scholar 

  • Lindroth RL (2010) Impacts of elevated atmospheric CO2 and O3 on forests: phytochemistry, trophic interactions, and ecosystem dynamics. J Chem Ecol 36:2–21

    CAS  PubMed  Google Scholar 

  • Lippert M, Steiner K, Payer H-D, Simons S, Langebartels C, Sandermann H Jr (1996) Assessing the impact of ozone on photosynthesis of European beech (Fagus sylvatica L.) in environmental chambers. Trees 10:268–275

    Google Scholar 

  • Loreto F, Schnitzler JP (2010) Abiotic stresses and induced BVOCs. Trends Plant Sci 15:154–166

    CAS  PubMed  Google Scholar 

  • Loreto F, Velikova V (2001) Isoprene produced by leaves protects the photosynthetic apparatus against ozone damage, quenches ozone products, and reduces lipid peroxidation of cellular membranes. Plant Physiol 127:1781–1787

    CAS  PubMed Central  PubMed  Google Scholar 

  • Löw M, Herbinger K, Nunn AJ, Häberle K-H, Leuchner M, Heerdt C, Werner H, Wipfler P, Pretzsch H, Tausz M, Matyssek R (2006) Extraordinary drought of 2003 overrules ozone impact on adult beech trees (Fagus sylvatica). Trees 20:539–548

    Google Scholar 

  • Löw M, Häberle K-H, Warren CR, Matyssek R (2007) O3 flux-related responsiveness of photosynthesis, respiration, and stomatal conductance of adult Fagus sylvatica to experimentally enhanced free-air O3 exposure. Plant Biol 9:197–206

    PubMed  Google Scholar 

  • Luedemann G, Matyssek R, Fleischmann F, Grams TEE (2005) Acclimation to ozone affects host/pathogen interaction and competitiveness for nitrogen in juvenile Fagus sylvatica and Picea abies trees infected with Phytophthora citricola. Plant Biol 7:640–649

    CAS  PubMed  Google Scholar 

  • Luedemann G, Winkler JB, Matyssek R, Grams TEE (2009) Contrasting ozone x pathogen interaction as mediated through competition between juvenile European beech (Fagus sylvatica) and Norway spruce (Picea abies). Plant Soil 323:47–60

    CAS  Google Scholar 

  • Lütz C, Anegg S, Gerant D, Alaoui-Sosse B, Gerard J, Dizengremel P (2000) Beech trees exposed to high CO2 and to simulated summer ozone levels: effects on photosynthesis, chloroplast components and leaf enzyme activity. Physiol Plant 109:252–259

    Google Scholar 

  • Luyssaert S, Schulze ED, Börner A, Knohl A, Hessenmöller D, Law BE, Grace J, Ciais P (2008) Old-growth forests as global carbon sinks. Nature 455:213–215

    CAS  PubMed  Google Scholar 

  • Maier-Maercker U (1998) Image analysis of the stomatal cell walls of Picea abies (L.) Karst. in pure and ozone-enriched air. Trees 12:181–185

    Google Scholar 

  • Manes F, Vitale M, Donato E, Paoletti E (1998) O3 and O3 + CO2 effects on a Mediterranean evergreen broadleaf tree, Holm Oak (Quercus ilex L.). Chemosphere 36:801–806

    CAS  Google Scholar 

  • Mankovska B, Percy KE, Karnosky DF (2005) Impacts of greenhouse gases on epicuticular waxes of Populus tremuloides Michx.: results from an open-air exposure and a natural O3 gradient. Environ Pollut 137:580–586

    CAS  PubMed  Google Scholar 

  • Manning WJ, v Tiedemann A (1995) Climate change: potential effects of increase atmospheric carbon dioxide (CO2), ozone (O3), and ultraviolet-B (UV-B) radiation on plant diseases. Environ Pollut 88:219–225

    CAS  PubMed  Google Scholar 

  • Marscher H (1991) Mechanisms of adaptation of plants to acid soils. Plant Soil 134:1–20

    Google Scholar 

  • Matyssek R (2001) How sensitive is birch to ozone? Responses in structure and function. J For Sci 47:8–20

    Google Scholar 

  • Matyssek R, Innes JL (1999) Ozone – a risk factor for trees and forests in Europe? Water Air Soil Pollut 116:199–226

    CAS  Google Scholar 

  • Matyssek R, Sandermann H (2003) Impact of ozone on trees: an ecophysiological perspective. Prog Bot 64:349–404

    CAS  Google Scholar 

  • Matyssek R, Reich PB, Oren R, Winner WE (1995) Response mechanisms of conifers to air pollutants. In: Smith WK, Hinckley TH (eds) Physiological ecology of coniferous forests. Physiological Ecology Series, Academic Press, New York

    Google Scholar 

  • Matyssek R, Havranek WM, Wieser G, Innes JL (1997a) Ozone and the forests in Austria and Switzerland. In: Sandermann H Jr, Wellburn AR, Heath RL (eds) Forest decline and ozone: a comparison of controlled chamber and field experiments, Ecological Studies 127. Springer, Berlin

    Google Scholar 

  • Matyssek R, Maurer S, Günthardt-Goerg MS, Landolt W, Saurer M, Polle A (1997b) Nutrition determines the ‘strategy’ of Betula pendula for coping with ozone stress. Phyton Ann Rei Bot 37:157–167

    CAS  Google Scholar 

  • Matyssek R, Agerer R, Ernst D, Munch J-C, Osswald W, Pretzsch H, Priesack E, Schnyder H, Treutter D (2005) The plant’s capacity in regulating resource demand. Plant Biol 7:560–580

    CAS  PubMed  Google Scholar 

  • Matyssek R, Le Thiec D, Löw M, Dizengremel P, Nunn AJ, Häberle K-H (2006) Interaction between drought stress and O3 stress in forest trees. Plant Biol 8:11–17

    CAS  PubMed  Google Scholar 

  • Matyssek R, Sandermann H, Wieser G, Booker F, Cieslik S, Musselman R, Ernst D (2008) The challenge of making ozone risk assessment for forest trees more mechanistic. Environ Pollut 156:567–582

    CAS  PubMed  Google Scholar 

  • Matyssek R, Karnosky DF, Wieser G, Percy K, Oksanen E, Grams TEE, Kubiske M, Hanke D, Pretzsch H (2010a) Advances in understanding ozone impact on forest trees: messages from novel phytotron and free-air fumigation studies. Environ Pollut 158:1990–2006

    CAS  PubMed  Google Scholar 

  • Matyssek R, Wieser G, Ceulemans R, Rennenberg H, Pretzsch H, Haberer K, Löw M, Nunn AJ, Werner H, Wipfler P, Oßwald W, Nikolova P, Hanke DE, Kraigher H, Tausz M, Bahnweg G, Kitao M, Dieler J, Sandermann H, Herbinger K, Grebenc T, Blumenröther M, Deckmyn G, Grams TEE, Heerdt C, Leuchner M, Fabian P, Häberle K-H (2010b) Enhanced ozone strongly reduces carbon sink strength of adult beech (Fagus sylvatica) – resume from the free-air fumigation study at Kranzberg Forest. Environ Pollut 158:2527–2532

    CAS  PubMed  Google Scholar 

  • Maurer S, Matyssek R (1997) Nutrition and the ozone sensitivity of birch (Betula pendula), II. Carbon balance, water-use efficiency and nutritional status of the whole plant. Trees 12:11–20

    Google Scholar 

  • Maurer S, Matyssek R, Günthhardt-Goerg MS, Landolt W, Einig W (1997) Nutrition and the ozone sensitivity of birch (Betula pendula). I Responses at the leaf level. Trees 12:1–10

    Google Scholar 

  • McDonald EP, Kruger EL, Riemenschneider DE, Isebrands JG (2002) Competitive status influences tree-growth responses to elevated CO2 and O3 in aggrading aspen stands. Funct Ecol 16:792–801

    Google Scholar 

  • Mieville A, Granier C, Liousse C, Guillaume B, Mouillot F, Lamarque JF, Grégoire JM, Pétron G (2010) Emissions of gases and particles from biomass burning during the 20th century using satellite data and an historical reconstruction. Atmos Environ 44:1469–1477

    CAS  Google Scholar 

  • Mikkelsen TN, Ro-Poulsen H (1995) Exposure of Norway spruce to ozone increases the sensitivity of current-year needles to photoinhibitions and desiccation. New Phytol 128:153–163

    Google Scholar 

  • Millenium Ecosystem Assessment (2005) Ecosystems and human well-being: synthesis. Island Press, Washington

    Google Scholar 

  • Miller PR, McBride JM (1999) Oxidant air pollution impacts in the montane forest of Southern California, Ecological Studies 134. Springer, Berlin

    Google Scholar 

  • Monks PS, Granier C, Fuzzi S, Stohl A et al (2009) Atmospheric composition change – global and regional air quality. Atmos Environ 43:5268–5350

    CAS  Google Scholar 

  • Monson RK, Jaeger CH, Adams WW, Driggers EM, Silver GM, Fall R (1992) Relationship among isoprene emission rate, photosynthesis, and isoprene synthase activity as influenced by temperature. Plant Physiol 98:1175–1180

    CAS  PubMed Central  PubMed  Google Scholar 

  • Mooney HA, Winner WE (1991) Partitioning response of plants to stress. In: Mooney HA, Winner WE, Pell EJ (eds) Response of plants to multiple stresses. Academic, San Diego

    Google Scholar 

  • Moraes RM, Bulbovas P, Furlan CM, Domingos M, Meirelles ST, Delitti WBC, Sanz MJ (2006) Physiological responses of saplings of Caesalpinia echinata Lam., a Brazilian tree species, under ozone fumigation. Ecotox Environ Safe 63:306–312

    CAS  Google Scholar 

  • Morris GA, Hersey S, Thompson AM, Pawson S, Nielsen JE, Colarco PR, McMillan WW, Stohl A, Turquety S, Warner J, Johnson BJ, Kucsera TL, Larko DE, Olrmans SJ, Witte JC (2006) Alaskan and Canadian forest fires exacerbate ozone pollution over Houston, Texas, on 19 and 20 July 2004. J Geophys Res 111:D24S03

    Google Scholar 

  • Muramoto CA, Lopes CFF, Lacava CIV (2003) Study of tropospheric ozone in São Paulo metropolitan region. In: A&WMA’s 96th annual conference & exhibition “Energy, economic and global challenges”, San Diego

    Google Scholar 

  • Musselman RC, Lefohn AS, Massman WJ, Heath RL (2006) A critical review and analysis of the use of exposure- and flux-based ozone indices for predicting vegetation effects. Atmos Environ 40:1869–1888

    CAS  Google Scholar 

  • Myneni RB, Keeling CD, Tucker CJ, Asrar G, Nemani RR (1997) Increased plant growth in the northern high latitudes from 1981 to 1991. Nature 386:698–702

    CAS  Google Scholar 

  • Nadelhoffer KJ, Emmett BA, Gundersen P, Kjønaas OJ, Koopmans CJ, Schleppi P, Tietema A, Wright RF (1999) Nitrogen deposition makes a minor contribution to carbon sequestration in temperate forests. Nature 398:145–148

    CAS  Google Scholar 

  • Nali C, Paoletti E, Marabottini R, Della Rocca G, Lorenzini G, Paolacci AR, Ciaffi M, Badiani M (2004) Ecophysiological and biochemical, strategies of response to ozone in Mediterranean evergreen broadleaf species. Atmos Environ 38:2247–2257

    CAS  Google Scholar 

  • Newell RE, Evans MJ (2000) Seasonal changes in pollutant transport to the north Pacific: the relative importance of Asian and European sources. Geophys Res Lett 27:2509–2512

    CAS  Google Scholar 

  • Niinemets U (2010) Responses of forest trees to single and multiple environmental stresses from seedlings to mature plants: past stress history, stress interactions, tolerance and acclimation. Forest Ecol Manag 260:1623–1639

    Google Scholar 

  • Nikolova P, Raspe S, Andersen C, Mainiero R, Blaschke H, Matyssek R, Häberle K-H (2009) Effects of the extreme drought in 2003 on soil respiration in a mixed Forest. Eur J For Res 128:87–98

    Google Scholar 

  • Nikolova PS, Andersen CP, Blaschke H, Matyssek R, Häberle K-H (2010) Below-ground effects of enhanced tropospheric ozone and drought in a beech/spruce forest (Fagus sylvatica L./ Picea abies [L.] Karst). Environ Pollut 158:1071–1078

    CAS  PubMed  Google Scholar 

  • Norby RJ, Wullschleger SD, Gunderson CA, Johnson DW, Ceulemans R (1999) Tree response to rising CO2 in experiments field: implications for the future forests. Plant Cell Environ 22:683–714

    CAS  Google Scholar 

  • Nunn AJ, Reiter IM, Häberle K-H, Werner H, Langebartels C, Sandermann H, Heerdt C, Fabian P, Matyssek R (2002) “Free-air” ozone canopy fumigation in an old-growth mixed forest: concept and observations in beech. Phyton Ann Rei Bot 42:105–119

    CAS  Google Scholar 

  • Nunn AJ, Kozovits AR, Reiter IM, Heerdt C, Leuchner M, Lütz C, Liu X, Winkler JB, Grams TEE, Häberle K-H, Werner H, Fabian P, Rennenberg H, Matyssek R (2005a) Comparison of ozone uptake and responsiveness between a phytotron study with young and a field experiment with adult beech (Fagus sylvatica). Environ Pollut 137:494–506

    CAS  PubMed  Google Scholar 

  • Nunn AJ, Reiter IM, Haberle K-H, Langebartels C, Bahnweg G, Pretzsch H, Sandermann H, Matyssek R (2005b) Response patterns in adult forest trees to chronic ozone stress: identification of variations and consistencies. Environ Pollut 136:365–369

    CAS  PubMed  Google Scholar 

  • Oksanen E (2003) Responses of selected birch (Betula pendula Roth) clones to ozone change over time. Plant Cell Environ 26:875–886

    PubMed  Google Scholar 

  • Olbrich M, Gerstner E, Bahnweg G, Häberle K-H, Matyssek R, Welzl G, Ernst D (2010) Transcriptional signatures in leaves of adult European beech trees (Fagus sylvatica L.) in an experimentally enhanced free air ozone setting. Environ Pollut 158:977–982

    CAS  PubMed  Google Scholar 

  • Olcese LE, Toselli BM (1998) Unexpected high levels of ozone measured in Córdoba, Argentina. J Atmos Chem 31:269–279

    CAS  Google Scholar 

  • Pääkkönen E, Holopainen T (1995) Influence of nitrogen supply on the response of clones of birch (Betula pendula Roth.) to ozone. New Phytol 129:595–603

    Google Scholar 

  • Pääkkönen E, Vahala J, Pohjolai M, Holopainen T, Kärenlampi L (1998a) Physiological, stomatal and ultrastructural ozone responses in birch (Betula pendula Roth) are modified by water stress. Plant Cell Environ 21:671–684

    Google Scholar 

  • Pääkkönen E, Seppänen S, Holopainen T, Kokko H, Kärenlampi S, Kärenlampi L, Kangasjärvi J (1998b) Induction of genes for the stress proteins PR-10 and PAL in relation to growth, visible injuries and stomatal conductance in birch (Betula pendula) clones exposed to ozone and/or drought. New Phytol 138:295–305

    Google Scholar 

  • Panek JA, Goldstein AH (2001) Response of stomatal conductance to drought in ponderosa pine: implications for carbon and ozone uptake. Tree Physiol 21:337–344

    CAS  PubMed  Google Scholar 

  • Panek JA, Kurpius MR, Goldstein AH (2002) An evaluation of ozone exposure metrics for a seasonally drought-stressed ponderosa pine ecosystem. Environ Pollut 117:93–100

    CAS  PubMed  Google Scholar 

  • Paoletti E (2006) Impact of ozone on Mediterranean forests: a review. Environ Pollut 144:463–474

    CAS  PubMed  Google Scholar 

  • Pearson M, Mansfield TA (1993) Interacting effects of ozone and water-stress on the stomatal-resistance of Beech (Fagus sylvatica L.). New Phytol 123:351–358

    CAS  Google Scholar 

  • Pelloux J, Jolivet Y, Fontaine V, Banvoy J, Dizengremel P (2001) Changes in Rubisco and Rubisco activate gene expression and polypeptide content in Pinus halepensis Mill. subjected to ozone and drought. Plant Cell Environ 24:123–132

    CAS  Google Scholar 

  • Peñuelas J, Staudt M (2010) BVOCs and global change. Trends Plant Sci 15:133–144

    PubMed  Google Scholar 

  • Percy KE, Awmack CS, Lindroth RL, Kubiske ME, Kopper BJ, Isebrands JG, Pregitzer KS, Hendrey GR, Dickson RE, Zak DR, Oksanen E, Sober J, Harrington R, Karnosky DF (2002) Altered performance of forest pests under CO2- and O3-enriched atmospheres. Nature 420:403–407

    CAS  PubMed  Google Scholar 

  • Pina JM, Moraes RM (2010) Gas exchange, antioxidants and foliar injuries in saplings of a tropical woody species exposed to ozone. Ecotox Environ Safe 73:685–691

    CAS  Google Scholar 

  • Pinto DM, Blande JD, Souza SR, Nerg A-M, Holopainen JK (2010) Plant volatile organic compounds (VOCs) in ozone (O3) polluted atmospheres: the ecological effects. J Chem Ecol 36:22–34

    CAS  PubMed  Google Scholar 

  • Poisson N, Kanakidou M, Crutzen PJ (2000) Impact of non-methane hydrocarbons on tropospheric chemistry and the oxidizing power of the global troposphere: 3-dimensional modelling results. J Atmos Chem 36:157–230

    CAS  Google Scholar 

  • Polle A, Matyssek R, Günthardt-Goerg MS, Maurer S (2000) Defense strategies against ozone in trees: the role of nutrition. In: Agrawal SB, Agrawal M (eds) Environmental pollution and plant responses. Lewis Publishers, New York

    Google Scholar 

  • Poorter H, Navas ML (2003) Plant growth and competition at elevated CO2: on winners, losers and functional groups. New Phytol 157:175–198

    Google Scholar 

  • Pretzsch H (1996) Growth trends in forests in Southern Germany. In: Spiecker H, Mielikäinen K, Köhl M, Skovsgaard JP (eds) Growth trends in european forests. Springer, Berlin

    Google Scholar 

  • Pretzsch H, Dieler J (2010) The dependency of the size-growth relationship of Norway spruce (Picea abies [L.] Karst.) and European beech (Fagus sylvatica [L.]) in forest stands on long-term site conditions, drought events, and ozone stress. Trees 25:355–369

    Google Scholar 

  • Pretzsch H, Dieler J, Matyssek R, Wipfler P (2010) Tree and stand growth of mature Norway spruce and European beech under long-term ozone fumigation. Environ Pollut 158:1061–1070

    CAS  PubMed  Google Scholar 

  • Pronos J, Merril L, Dahsten D (1999) Insects and pathogens in a pollution-stressed forest. In: Miller PR, McBride JM (eds) Oxidant air pollution impacts in the montane forest of southern California, Ecological Studies 134. Springer-Verlag, Berlin

    Google Scholar 

  • Real E, Law KS, Weinzierl B, Fiebig M, Petzold A, Wild O, Methven J, Arnold S, Stohl A, Huntrieser H, Roiger A, Schlager H, Stewart D, Avery M, Sachse G, Browell E, Ferrare R, Blake D (2007) Processes influencing ozone levels in Alaskan forest fire plumes during long-range transport over the North Atlantic. J Geophys Res 112:D10S41

    Google Scholar 

  • Reich PB (1987) Quantifying plant response to ozone: a unifying theory. Tree Physiol 3:63–91

    CAS  PubMed  Google Scholar 

  • Reilly J, Paltsev S, Felzer B, Wang X, Kicklighter D, Melillo J, Prinn R, Sarofim M, Sokolov A, Wang C (2007) Global economic effects of changes in crops, pasture, and forests due to changing climate, carbon dioxide, and ozone. Ergon Policy 36:5370–5383

    Google Scholar 

  • Reiter IM, Haberle K-H, Nunn AJ, Heerdt C, Reitmayer H, Grote R, Matyssek R (2005) Competitive strategies in adult beech and spruce: space-related foliar carbon investment versus carbon gain. Oecologia 146:337–349

    CAS  PubMed  Google Scholar 

  • Retzlaff WA, Arthur MA, Grulke NE, Weinstein DA, Gollands B (2000) Use of a single-tree simulation model to predict effects of ozone and drought on growth of a white fir tree. Tree Physiol 20:195–202

    CAS  PubMed  Google Scholar 

  • Rezende FM, Furlan CM (2009) Anthocyanins and tannins in ozone-fumigated guava trees. Chemosphere 76:1445–1450

    PubMed  Google Scholar 

  • Riefler M, Novak O, Strnad M, Schmülling T (2006) Arabidopsis cytokinin receptor mutants reveal functions in shoot growth, leaf senescence, seed size, germination, root development, and cytokinin metabolism. Plant Cell 18:40–54

    CAS  PubMed Central  PubMed  Google Scholar 

  • Rosenfeld D (1999) TRMM observed first direct evidence of smoke from forest fires inhibiting rainfall. Geophy Res Lett 26:3105–3108

    Google Scholar 

  • Rosenstiel TN, Potosnak MJ, Griffin KL, Fall R, Monson RK (2003) Increased CO2 uncouples growth from isoprene emission in an agriforest ecosystem. Nature 421:256–259

    CAS  PubMed  Google Scholar 

  • Sánchez-Ccoyllo OR, Ynoue YR, Martins DL, Andrade FM (2006) Impacts of ozone precursor limitation and meteorological variables on ozone concentration in Sao Paulo, Brazil. Atmos Environ 40:S552–S562

    Google Scholar 

  • Sandermann H Jr, Wellburn AR, Heath RL (1997) Forest decline and ozone: synopsis. In: Sandermann H Jr, Wellburn AR, Heath RL (eds) Forest decline and ozone: a comparison of controlled chamber and field experiments, Ecological Studies 127. Springer, Berlin

    Google Scholar 

  • Saugier B, Roy J, Mooney HA (2001) Terrestrial global productivity. Academic, San Diego

    Google Scholar 

  • Saxe H, Ellsworth DS, Heath J (1998) Tree and forest functioning in an enriched CO2 atmosphere. New Phytol 139:395–436

    Google Scholar 

  • Scarascia-Mugnozza GE, Karnosky DF, Ceulemans R, Innes JL (2001) The impact of CO2 and other greenhouse gases on forest ecosystems: an introduction. In: Karnosky DF, Scarascia-Mugnozza G, Ceulemans R, Innes JL (eds) The impacts of carbon dioxide and other greenhouse gases on forest ecosystems. CABI Press, Washington

    Google Scholar 

  • Schulze E-D, Lange OL, Oren R (1989) Forest decline and air pollution – a study of spruce (Picea abies) on acid soils, Ecological studies 77. Springer, New York, p 475

    Google Scholar 

  • Schulze E-D (1994) The regulation of plant transpiration: interactions of feedforward, feedback, and futile cycles. In: Schulze E-D (ed) Flux control in biological systems. Academic, New York

    Google Scholar 

  • Schulze E-D, Beck E, Müller-Hohenstein K (2005) Plant ecology. Springer, Berlin

    Google Scholar 

  • Schulze E-D, Luyssaert S, Ciais P, Freibauer A, Janssens IA, Soussana JF, Smith P, Grace J, Levin I, Thiruchittampalam B, Heimann M, Dolman AJ, Valentini R, Bousquet P, Peylin P, Peters W, Roedenbeck C, Etiope G, Vuichard N, Wattenbach M, Nabuurs GJ, Poussi Z, Nieschulze J et al (2009) Importance of methane and nitrous oxide for Europe’s terrestrial greenhouse-gas balance. Nat Geosci 2:842–850

    CAS  Google Scholar 

  • Schupp R, Rennenberg H (1988) Diurnal changes in the glutathione content of spruce needles (Picea abies L.). Plant Sci 57:113–117

    CAS  Google Scholar 

  • Sharkey TD, Chen X, Yeh S (2001) Isoprene increases thermotolerance of fosmidomycin-fed leaves. Plant Physiol 125:2001–2006

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sheppard LJ (1994) Causal mechanisms by which sulphate, nitrate and acidity influence frost hardiness in red spruce. Review and hypothesis. New Phytol 127:69–82

    CAS  Google Scholar 

  • Siegwolf RTW, Matyssek R, Saurer M, Maurer S, Günthardt-Goerg MS, Schmutz P, Bucher JB (2001) Stable isotope analysis reveals differential effects of soil nitrogen and nitrogen dioxide on the water-use efficiency in hybrid poplar leaves. New Phytol 149:233–246

    Google Scholar 

  • Singh HB, Herlth D, Kolyer R, Chatfield R, Viezee W, Salas LJ, Chen Y, Bradshaw JD, Sandholm ST, Talbot R, Gregory GL, Anderson B, Sachse GW, Browell E, Bachmeier AS, Blake DR, Heikes B, Jacob D, Fuelberg HE (1996) Impact of biomass burning emissions on the composition of the South Atlantic troposphere: reactive nitrogen and ozone. J Geophys Res 101:24203–24219

    CAS  Google Scholar 

  • Sitch S, Cox PM, Collins WJ, Huntingford C (2007) Indirect radiative forcing of climate change through ozone effects on the land-carbon sink. Nature 448:791–795

    CAS  PubMed  Google Scholar 

  • Skärby L, Ro-Poulsen H, Wellburn FAM, Sheppard LJ (1998) Impacts of ozone on forests: a European perspective. New Phytol 139:109–122

    Google Scholar 

  • Sowden M, Zunckel M, van Tienhoven AM (2007) Assessment of the status of biogenic organic emissions and impacts on air quality in southern Africa. Tellus 59B:535–541

    CAS  Google Scholar 

  • Spinnler D, Egh P, Körner C (2002) Four-year growth dynamics of beech-spruce model ecosystems under CO2 enrichment on two different forest soils. Trees 16:423–436

    CAS  Google Scholar 

  • Stockwell WR, Kramm G, Scheel HE, Mohnen VA, Seiler W (1997) Ozone formation, destruction and exposure in Europe and the United States. In: Sandermann H Jr, Wellburn AR, Heath RL (eds) Forest decline and ozone, a comparison of controlled chamber and field experiments, Ecological Studies 127. Springer, Berlin

    Google Scholar 

  • Stohl A, Eckhardt S, Forster C, James P, Spichtinger N (2002) On the pathways and timescales of intercontinental air pollution transport. J Geophys Res 107:D4684

    Google Scholar 

  • Takemoto BK, Bytnerowicz A, Fenn ME (2001) Current and future effects of ozone and atmospheric nitrogen deposition on California’s mixed conifer forests. Forest Ecol Manag 144:159–173

    Google Scholar 

  • Teixeir EC, de Santana ER, Wiegand F, Fachel J (2009) Measurement of surface ozone and its precursors in an urban area in South Brazil. Atmos Environ 43:2213–2220

    Google Scholar 

  • Thompson AM (1992) The oxidizing capacity of the earth’s atmosphere: probable past and future change. Science 256:1157–1165

    CAS  PubMed  Google Scholar 

  • Tjoelker MG, Luxmoore RJ (1991) Soil nitrogen and chronic ozone stress influence physiology, growth and nutrient status of Pinus taeda L. and Liriodendron tulipifera L. seedlings. New Phytol 119:69–81

    CAS  Google Scholar 

  • Tjoelker MG, Volin JC, Oleksyn J, Reich PB (1995) Interaction of ozone pollution and light effects on photosynthesis in a forest canopy experiment. Plant Cell Environ 18:895–905

    CAS  Google Scholar 

  • Torsethaugen G, Pell EJ, Assmann SM (1999) Ozone inhibits guard cell K+ channels implicated in stomatal opening. Proc Natl Acad Sci U S A 96:13577–13582

    CAS  PubMed Central  PubMed  Google Scholar 

  • Tunved P, Hansson HC, Kerminen VM, Ström J, Dal Maso M, Lihavainen H, Viisanen Y, Aalto PP, Komppula M, Kulmala M (2006) High natural aerosol loading over boreal forests. Science 312:261–263

    CAS  PubMed  Google Scholar 

  • Unsicker SB, Kunert G, Gershenzon J (2009) Protective perfumes: the role of vegetative volatiles in plant defense against herbivores. Curr Opin Plant Biol 12:479–485

    CAS  PubMed  Google Scholar 

  • Van Dingenen R, Dentener FJ, Raes F, Krol MC, Emberson L, Cofala J (2009) The global impact of ozone on agricultural crop yields under current and future air quality legislation. Atmos Environ 43:604–618

    Google Scholar 

  • Van Tienhoven AM, Scholes MC (2003) Air pollution impacts on vegetation in South Africa. In: Emberson LD, Ashmore MR, Murray F (eds) Air pollution impacts on crops and forests: a global assessment. Imperial College Press, London

    Google Scholar 

  • Vanderheyden D, Skelly J, Innes J, Hug C, Zhang J, Landolt W, Bleuler P (2001) Ozone exposure thresholds and foliar injury on forest plants in Switzerland. Environ Pollut 111:321–331

    CAS  PubMed  Google Scholar 

  • Vingarzan R (2004) A review of surface O3 background levels and trends. Atmos Environ 38:3431–3442

    CAS  Google Scholar 

  • Volin JC, Tjoelker MG, Oleksyn J, Reich PB (1993) Light environment alters response to ozone stress in Acer saccharum Marsh. and hybrid Populus L. seedlings. II. Diagnostic gas exchange and leaf chemistry. New Phytol 124:637–646

    CAS  Google Scholar 

  • Volin JC, Reich PB, Givnish T (1998) Elevated carbon dioxide ameliorates the effects of ozone on photosynthesis and growth: species respond similarly regardless of photosynthetic pathway or plant functional group. New Phytol 138:315–325

    CAS  Google Scholar 

  • Wamelink GWW, Wieggers HJJ, Reinds GJ, Kros J, Mol-Dijkstra JP, van Oijen M, de Vries W (2009) Modelling impacts of changes in carbon dioxide concentration, climate and nitrogen deposition on carbon sequestration by European forests and forest soils. Forest Ecol Manag 258:1794–1805

    Google Scholar 

  • Wang H, Jacob DJ, Le Sager P, Streets DG, Park RJ, Gilliland AB, van Donkelaar A (2009) Surface ozone background in the United States: Canadian and Mexican pollution influences. Atmos Environ 43:1310–1319

    CAS  Google Scholar 

  • Werner H, Fabian P (2002) Free-air fumigation of mature trees. Environ Sci Pollut Res 9:117–121

    Google Scholar 

  • Westerling AL, Hidalgo HG, Cayan DR, Swetnam TW (2006) Warming and earlier spring increase western U.S. forest wildfire activity. Science 313:940–943

    CAS  PubMed  Google Scholar 

  • Wiedinmyer C, Tie XX, Guenther A, Neilson R, Granier C (2006) Future changes in biogenic isoprene emissions: how might they affect regional and global atmospheric chemistry? Earth Interact. doi:10.1175/EI174.1, 10

    Google Scholar 

  • Wieser G (1999) Evaluation of the impact of ozone on conifers in the Alps: a case study on spruce, pine and larch in the Austrian Alps. Phyton Ann Rei Bot 39:241–252

    CAS  Google Scholar 

  • Wieser G, Havranek WM (1993) Ozone uptake in the sun and shade crown of spruce: quantifying the physiological effects of ozone exposure. Trees 7:227–232

    Google Scholar 

  • Wieser G, Havranek WM (1995) Environmental control of ozone uptake in Larix decidua Mill : a comparison between different altitudes. Tree Physiol 15:253–258

    CAS  PubMed  Google Scholar 

  • Wieser G, Matyssek R (2007) Linking ozone uptake and defense towards a mechanistic risk assessment for forest trees. New Phytol 174:7–9

    CAS  PubMed  Google Scholar 

  • Wieser G, Tausz M (eds) (2007) Trees at their upper limit. Tree life limitation at the alpine timberline, Springer Series Plant Ecophysiology. Springer, Dordrecht

    Google Scholar 

  • Wieser G, Tegischer K, Tausz M, Häberle K-H, Grams TEE, Matyssek R (2002) Age effects on Norway spruce (Picea abies) susceptibility to ozone uptake: a novel approach relating stress avoidance to defense. Tree Physiol 22:583–590

    PubMed  Google Scholar 

  • Wilkinson S, Davies WJ (2010) Drought, ozone, ABA and ethylene: new insights from cell to plant to community. Plant Cell Environ 33:510–525

    CAS  PubMed  Google Scholar 

  • Winwood J, Pate AE, Price J, Hanke DE (2007) Effects of long-term, free-air ozone fumigation on the cytokinin content of mature beech trees. Plant Biol 9:265–278

    CAS  PubMed  Google Scholar 

  • Wipfler P, Seifert T, Heerdt C, Werner H, Pretzsch H (2005) Growth of adult Norway spruce (Picea abies [L.] Karst.) and European beech (Fagus sylvatica L.) under free-air ozone fumigation. Plant Biol 7:611–618

    CAS  PubMed  Google Scholar 

  • Wittig VE, Ainsworth EA, Long SP (2007) To what extent do current and projected increases in surface ozone affect photosynthesis and stomatal conductance of trees? A meta-analytic review of the last 3 decades of experiments. Plant Cell Environ 30:1150–1162

    CAS  PubMed  Google Scholar 

  • Wittig VE, Ainsworth EA, Naidu SL, Karnosky DF, Long SP (2009) Quantifying the impact of current and future tropospheric ozone on tree biomass, growth, physiology and biochemistry: a quantitative meta-analysis. Glob Change Biol 15:396–424

    Google Scholar 

  • Wolfenden J, Mansfield TA (1991) Physiological disturbances in plants caused by air pollutants. Proc Roy Soc Edinburgh 97B:117–138

    Google Scholar 

  • Yamaguchi M, Watanabe M, Matsumura H, Kohno Y, Izuta T (2010) Effects of ozone on nitrogen metabolism in the leaves of Fagus crenata seedlings under different soil nitrogen loads. Trees 24:175–184

    CAS  Google Scholar 

  • Zunckel M, Venjonoka K, Pienaar JJ, Brunke E-G, Pretorius O, Koosailee A, Raghunandan A, van Tienhoven AM (2004) Surface ozone over southern Africa: synthesis of monitoring results during the Cross Border Air Pollution Impact Assessment Project. Atmos Environ 38:6139–6147

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rainer Matyssek .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Matyssek, R., Kozovits, A.R., Schnitzler, JP., Pretzsch, H., Dieler, J., Wieser, G. (2014). Forest Trees Under Air Pollution as a Factor of Climate Change. In: Tausz, M., Grulke, N. (eds) Trees in a Changing Environment. Plant Ecophysiology, vol 9. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-9100-7_7

Download citation

Publish with us

Policies and ethics