Skip to main content

Cortical Regions Involved in the Generation of Musical Structures During Improvisation in Pianists

  • Chapter
  • First Online:
The Systems Model of Creativity

Abstract

Studies on simple pseudorandom motor and cognitive tasks have shown that the dorsolateral prefrontal cortex and rostral premotor areas are involved in free response selection. We used functional magnetic resonance imaging to investigate whether these brain regions are also involved in free generation of responses in a more complex creative behavior: musical improvisation. Eleven professional pianists participated in the study. In one condition, Improvise, the pianist improvised on the basis of a visually displayed melody. In the control condition, Reproduce, the participant reproduced his previous improvisation from memory. Participants were able to reproduce their improvisations with a high level of accuracy, and the contrast Improvise versus Reproduce was thus essentially matched in terms.

Reproduced with permission from S. L. Bengtsson, M. Csikszentmihalyi and F. Ullén, Cortical Regions Involved in the Generation of Musical structures during Improvisation in Pianists, Journal of Cognitive Neuroscience, volume 19−5 (May 2007), pp 830−842, Copyright © 2007 by the Massachusetts Institute of Technology MIT Press

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 84.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdullaev, Y., & Posner, M. I. (1997). Time course of activating brain areas in generating verbal associations. Psychological Science, 8, 56–59.

    Article  Google Scholar 

  • Andersen, R. Α., Snyder, L. H., Bradley, D. C., & Xing, J. (1997). Multimodal representation of space in the posterior parietal cortex and its use in planning movements. Annual Review of Neuroscience, 20, 303–330.

    Article  PubMed  Google Scholar 

  • Ashburner, J., & Friston, K. J. (1997). Multimodal image coregistration and partitioning: A unified framework. Neuroimage, 6, 209–217.

    Article  PubMed  Google Scholar 

  • Baddeley, A. (1986). Working memory. Oxford: Clarendon Press.

    Google Scholar 

  • Barbas, H., & Pandya, D. N. (1987). Architecture and frontal cortical connections of the premotor cortex (area 6) in the rhesus monkey. Journal of Comparative Neurology, 256, 211–228.

    Article  PubMed  Google Scholar 

  • Bates, J. P., & Goldman·Rakic, P. S. (1993). Prefrontal connections of medial motor areas in the rhesus monkey. Journal of Comparative Neurology, 336, 211–228.

    Article  PubMed  Google Scholar 

  • Bengtsson, S., Ehrsson, H. H., Forssberg, H., & Ullén, F. (2004). Dissociating brain regions controlling the temporal and ordinal structure of learned movement sequences. European Journal of Neuroscience, 19, 2591–2602.

    Article  PubMed  Google Scholar 

  • Bengtsson, S. L., Ehrsson, H. H., Forssberg, H., & Ullén, F. (2005). Effector-independent voluntary timing: Behavioural and neuroimaging evidence. European Journal of Neuroscience, 22, 3255–3265.

    Article  PubMed  Google Scholar 

  • Bengtsson, S. L., & Ullén, F. (2006). Different neural correlates for melody and rhythm processing during piano performance from musical scores. Neuroimage, 30, 272–284.

    Article  PubMed  Google Scholar 

  • Campbell, D. T. (1960). Blind variation and selective retention in creative thought as in other knowledge processes. Psychological Review, 67, 380–400.

    Article  PubMed  Google Scholar 

  • Carlsson, I., Wendt, P. E., & Risberg, J. (2000). On the neurobiology of creativity. Differences in frontal activity between high and low creative subjects. Neuropsychologia, 38, 873–885.

    Article  PubMed  Google Scholar 

  • Csikszentmihalyi, M. (1997). Creativity: Flow and the psychology of discovery and invention. New York: Perennial.

    Google Scholar 

  • Cummings, J. L. (1993). Frontal-subcortical circuits and human behavior. Archives of Neurology, 50, 873–880.

    Article  PubMed  Google Scholar 

  • Deiber, M. P., Passingham, R. E., Colebatch, J. G., Friston, K. J., Nixon, P. D., & Frackowlak, R. S. J. (1991). Cortical areas and the selection of movement: A study with positron emission tomography. Experimental Brain Research, 84, 393–402.

    Google Scholar 

  • Desmond, J. E., Gabrieli, J. D. E., & Glover, G. H. (1998). Dissociation of frontal and cerebellar activity in a cognitive task: Evidence for a distinction between selection and search. Neuroimage, 7, 368–376.

    Article  PubMed  Google Scholar 

  • Duvernoy, H. M. (2000). The human brain: Surface, blood supply and three-dimensional sectional anatomy. Wien: Springer.

    Google Scholar 

  • Eyscnck, H. (1995). Genius. The natural history of creativity. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Frith, C. D. (2000). The role of dorsolateral prefrontal cortex in the selection of action. In S. Monsell & J. Driver (Eds.), Control of cognitive processes: Attention and performance (Vol. 18, pp. 429–565). Cambridge: MIT Press.

    Google Scholar 

  • Frith, C. D., Friston, K. J., Liddle, P. F., & Frackowiak, R. S. J. (1991). Willed action and the prefrontal cortex in man: A study with PET. Proceedings of the Royal Society of London, Series B, 2.14, 241–246.

    Google Scholar 

  • Fuster, J. (2001). The prefrontal cortex: An update time is of the essence. Neuron, 30, 319–333.

    Article  PubMed  Google Scholar 

  • Gaab, N., Gaser, C., Zaehic, T., Jancke, L., & Schlaug, G. (2003). Functional anatomy of pitch memory: An fMRI study with sparse temporal sampling. Neuroimage, 19, 1417–1426.

    Google Scholar 

  • Genovese, C. R., Lazar, Ν. A., & Nichols, T. (2002). Thresholding of statistical maps in functional neuroimaging using the false discovery rate. Neuroimage, 15, 870–878.

    Article  PubMed  Google Scholar 

  • Grafton, S. T., Fagg, Λ, I. I., & Arbib, M. A. (1998). Dorsal premotor cortex and conditional movement selection: A PET functional mapping study. J Neurophys, 70, 1092–1097.

    Google Scholar 

  • Griffiths, T. D., Buchel, C., Frackowiak, R. S., & Patterson, R. D. (1998). Analysis of temporal structure in sound by the human brain. Nature Neuroscience, 1, 422–427.

    Google Scholar 

  • Hickok, G., Buchsbaum, B., Humphries, C., & Muftuler, T. (2003). Auditory-motor interaction revealed by fMRI: Speech, music, and working memory in area Spt. Journal of Cognitive Neuroscience, 15, 673–682.

    Article  PubMed  Google Scholar 

  • Hickok, G., & Poeppel, D. (2000). Towards a functional neuroanatomy of speech perception. Trends Cogn Sci, 4, 131–138.

    Article  PubMed  Google Scholar 

  • Howard-Jones, P.A., Blakemore, S. J., Samuel, Ε. A., Summers, I. R., & Claxton, G. (2005). Semantic divergence and creative story generation: An fMRI investigation. Cognitive Brain Research, 25, 240–250.

    Google Scholar 

  • Jahamhahi, M., & Dirnberger, G. (1999). The left dorsolateral prefrontal cortex and random generation of responses: Studies with transcranial magnetic stimulation. Neuropsychologia, 37, 181–190.

    Article  Google Scholar 

  • Jahanshahi, M., Dirnberger, G., Fuller, R., & Frith, C. D. (2000). The role of the dorsolateral prefrontal cortex in random number generation: A study with positron emission tomography. Neuroimage, 12, 713–725.

    Google Scholar 

  • Jahanshahi, M., & Frith, C. D. (1998). Willed action and its impairments. Cognitive Neuropsychology, 15, 483–533.

    Google Scholar 

  • Jahanshahi, M., Jenkins, I. H., Brown, R. G., Marsden, C. D., Brooks, D. J., & Passingham, R. E. (1995a). Self-initiated versus externally-triggered movements: Effects of stimulus predictability assessed with positron emission tomography. Journal of Psychophysiology, 9, 177–178.

    Google Scholar 

  • Jahanshahi, M., Jenkins, I, H., Brown, R. G., Marsden, C. D., Passingham, R, E., & Brooks, D. J., (1995b). Self-initiated versus externally triggered movements: I. An investigation using measurement of regional cerebral blood flow with PET and movement-related potentials in normal and Parkinson’s disease subjects. Brain, 118, 913–933.

    Google Scholar 

  • Jahanshahi, M., Profice, P., Brown, R. G., Ridding, M. C., Dirnberger, G., & Rothwell, J. C. (1998). The effects of transcranial magnetic stimulation over the dorsolateral prefrontal cortex on suppression of habitual counting during random number generation. Brain, 121, 1533–1544.

    Article  PubMed  Google Scholar 

  • Jäncke, L., Loose, R., Lutz, Κ., Specht, Κ., & Shah, Ν. J. (2000). Conical activations during paced finger-tapping applying visual and auditory pacing stimuli. Cognitive Brain Research, 10, 51–66.

    Article  PubMed  Google Scholar 

  • Johansen-Berg, H., Behrens, T. E., Robson, M. D., Drobnjak, I., Rushworth, M. F., Brady, J. M., et al. (2004). Changes in connectivity profiles define functionally distinct regions in human medial frontal cortex. Proceedings of the National Academy of Sciences USA, 101, 13335–13340.

    Google Scholar 

  • Jueptner, M., Stephan, Κ. M., Frith, C. D., Brooks, D. J., Frackowiak, R. S., & Passingham, R. E. (1997). Anatomy of motor learning: I. Frontal cortex and attention to action. Journal of Neurophysiology, 77, 1313–1324.

    PubMed  Google Scholar 

  • Knuth, D. E. (1981). Supernatural numbers. In D. A. Klarner (Ed.), The mathematical gardener (pp. 310–325). Belmont: Wadsworth.

    Chapter  Google Scholar 

  • Larsson, J., Gulyás, B., & Roland, P. E. (1996). Cortical representation of self-paced finger movement. NeuroReport, 7, 463–468.

    Article  PubMed  Google Scholar 

  • Lau, C, I. I., Rogers, R. D., Ramnani, N., & Passingham, R. E. (2004). Willed action and attention to the selection of action. Neuroimage, 21, 1407–1415.

    Article  PubMed  Google Scholar 

  • Levenshtein, V. I. (1966). Binary codes capable of correcting deletions, Insertions and reversals. Soviet Physics Doklady, 6, 707–710.

    Google Scholar 

  • Lewis, P. A., Wing, A. M., Pope, P. A., Praamstra, P., & Mlall, R. C. (2004). Brain activity correlates differentially with increasing temporal complexity of rhythms during initialisation, synchronisation, and continuation phases of paced finger tapping. Neuropsychologia, 42, 1301–1312.

    Article  PubMed  Google Scholar 

  • Lu MT, Preston JΒ, Strick PL (1994) Interconnections between the prefrontal cortex and the premotor areas in the frontal lobe. J Comp Neurol 341:375–392

    Google Scholar 

  • Luria, A. R. (1966). Higher cortical functions in man. New York: Basic Books.

    Google Scholar 

  • Lutz, K., Specht, Κ., Shah, N. J., & Jäncke, L. (2000). Tapping movements according to regular and irregular visual timing signals Investigated with fMRI. NeuroReport, 11, 1301–1306.

    Article  PubMed  Google Scholar 

  • Macar, F., Lejeune, H., Bonnet, M., Ferrara, Α., Pouthas, V., Vidal, F., et al. (2002). Activation of the supplementary motor area and of attentional networks during temporal processing. Experimental Brain Research, 142, 475–485.

    Article  PubMed  Google Scholar 

  • Nathaniel-James, D. A., & Frith, C. D. (2002). The role of the dorsolateral prefrontal cortex: Evidence from the effects of contextual constraint in a sentence completion task. Neuroimage, 16, 1094–1102.

    Article  PubMed  Google Scholar 

  • Nichols, T., Brett, M., Andersson, J., Wager, T., & Poline, J. -B. (2005). Valid conjunction inference with the minimum statistic. Neuroimage, 25, 653–660.

    Google Scholar 

  • Ohbayashl, M., Ohki, K., & Miyashita, Y. (2003). Conversion of working memory to motor sequence in the monkey premotor cortex. Science, 301, 233–236.

    Article  Google Scholar 

  • Oldfield, R. C. (1971). The assessment and analysis of handedness: The Edinburgh inventory. Neuropsychologia, 9, 97–113.

    Article  PubMed  Google Scholar 

  • Palmer, K. (2001). Ornamentation according to C. P. B. Bach and J. J. Quantz. Bloomington, IN: Authorhouse.

    Google Scholar 

  • Parsons, L. M., Sergent, J., Hodges, D. Α., & Fox, Ρ. T. (2005). The brain basis of piano performance. Neuropsychologia, 43, 199–215.

    Google Scholar 

  • Patterson, R. D., Uppenkamp, S., Johnsrude, I. S., & Griffiths, T. D. (2002). The processing of temporal pitch and melody information in auditory cortex. Neuron, 36, 767–776.

    Google Scholar 

  • Petersen, S, E., Fox, P. T., Posner, M. I., Nintus, M., & Raichle, M. E. (1988). Positron emission tomographic studies of the cortical anatomy of single word processing. Nature, 331, 585–589.

    Google Scholar 

  • Petrides, M. (1995). Impairments on nonspatial self-ordered and externally ordered working memory tasks after lesions of the mid-dorsal part of the lateral frontal cortex in the monkey. Journal of Neuroscience, 15, 359–375.

    PubMed  Google Scholar 

  • Picard, Ν., & Strick, P. I. (2001). Imaging the premotor areas. Current Opinion on Neurobiology, 11, 663–672

    Google Scholar 

  • Playford, E. D., Jenkins, I. H., Passingham, R. E., Nutt, J., Frackowiak, R. S., & Brooks, D. J. (1992). Impaired mesial frontal and putamen activation in Parkinson’s disease: A positron emission tomography study. Annals of Neurology, 32, 151–161.

    Article  PubMed  Google Scholar 

  • Pressing, J. (1988). Improvisation: Methods and models. In J. Α. Sloboda (Ed.), Generative processes in music (pp. 129–178). New York: Oxford University Press.

    Google Scholar 

  • Rowe, J. B., Stephan, Κ. Ε., Friston, Κ., Frackowlak, R. S., & Passingham, R. Ε. (2005). The prefrontal cortex shows context-specific changes in effective connectivity to motor or visual cortex during the selection of action or colour. Cerebral Cortex, 15, 85–95.

    Article  PubMed  Google Scholar 

  • Schmahmann, J. D., Doyon, J., Toga, A. W., Petrides, M., & Evans, A. C. (2000). MRI atlas of the human cerebellum. San Diego: Academic Press.

    Google Scholar 

  • Schubotz, R. I., & von Cramon, D. Y. (2001). Interval and ordinal properties of sequences are associated with distinct premotor areas. Cerebral Cortex, 11, 210–222.

    Article  PubMed  Google Scholar 

  • Seger, C. Α., Desmond, J. E., Glover, G, H., & Gabrieli, J. D. (2000). Functional magnetic resonance Imaging evidence for right-hemisphere Involvement in processing unusual semantic relationships. Neuropsychology, 14, 361–369.

    Google Scholar 

  • Simonton, D. K. (1999). Origins of genius. Darwinian perspectives on creativity. New York: Oxford University Press.

    Google Scholar 

  • Sternberg, R. J. (1999). Handbook of creativity. Cambridge: Cambridge University Press.

    Google Scholar 

  • Talairach, J., & Tournoux, P. (1988). Co-planar stereotaxic atlas of the human brain. Stuttgart: Thleme.

    Google Scholar 

  • Wise, S. P., Boussaoud, D., Johnson, P. B., & Caminiti, R. (1997). Premotor and parietal cortex: Corticocortical connectivity and combinatorial computations. Annual Review of Neuroscience, 20, 25–42.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Lea Foreman, Hans Forssberg, Guy Madison, and Jeanne Nakamura for comments on the manuscript. This work was funded by the Swedish Research Council; the Freemasons in Stockholm Foundation for Children’s Welfare, Sweden the Medici II symposia on positive psychology; the Templeton Foundation; and Linnea och Josef Carlssons Stiftelse, Sweden. The present address of S. L. B. is Wellcome Department of Imaging Neuroscience, Institute of Neurology, London, UK.

Reprint requests should be sent to Dr. Fredrik Ullén, Stockholm Brain Institute, Neuropediatric Research Unit Q2; 07, Department of Women and Child Health, Karolinska Institutet, SE-171 76 Stockholm, Sweden, or via e-mail: Fredrik.Ullen@kl.se.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mihaly Csikszentmihalyi .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Bengtsson, S.L., Csikszentmihalyi, M., Ullén, F. (2014). Cortical Regions Involved in the Generation of Musical Structures During Improvisation in Pianists. In: The Systems Model of Creativity. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-9085-7_16

Download citation

Publish with us

Policies and ethics