Skip to main content

eIF4E Phosphorylation Downstream of MAPK Pathway

  • Chapter
  • First Online:
Translation and Its Regulation in Cancer Biology and Medicine

Abstract

Tumor cells are dependent on high protein synthesis rates to fuel their neoplastic growth. eIF4E is a 5′ mRNA cap-binding protein that recruits mRNA to the ribosome and exhibits oncogenic properties. Mitogens, nutrients and growth factors stimulate the MAPK and PI3K pathways that converge on eIF4E. eIF4E is phosphorylated by the MNKs at a single site (Ser209 in mammals), which stimulates translation of a subset of tumor-promoting mRNAs, thereby bolstering its oncogenic properties. In this chapter, we will discuss the molecular mechanisms underlying the role of eIF4E phosphorylation in neoplasia and its potential clinical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Adesso L, Calabretta S, Barbagallo F, Capurso G, Pilozzi E, Geremia R, Delle Fave G, Sette C (2013) Gemcitabine triggers a pro-survival response in pancreatic cancer cells through activation of the MNK2/eIF4E pathway. Oncogene 32:2848–2857

    Article  PubMed  CAS  Google Scholar 

  • Alain T, Morita M, Fonseca BD, Yanagiya A, Siddiqui N, Bhat M, Zammit D, Marcus V, Metrakos P, Voyer LA et al (2012) eIF4E/4E-BP ratio predicts the efficacy of mTOR targeted therapies. Cancer Res 72:6468–6476

    Article  PubMed  CAS  Google Scholar 

  • Altman JK, Szilard A, Konicek BW, Iversen PW, Kroczynska B, Glaser H, Sassano A, Vakana E, Graff JR, Platanias LC (2013) Inhibition of MNK kinase activity by cercosporamide and suppressive effects on acute myeloid leukemia precursors. Blood 121:3675–3681

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Avdulov S, Li S, Michalek V, Burrichter D, Peterson M, Perlman DM, Manivel JC, Sonenberg N, Yee D, Bitterman PB et al (2004) Activation of translation complex eIF4F is essential for the genesis and maintenance of the malignant phenotype in human mammary epithelial cells. Cancer Cell 5:553–563

    Article  PubMed  CAS  Google Scholar 

  • Bain J, Plater L, Elliott M, Shpiro N, Hastie CJ, McLauchlan H, Klevernic I, Arthur JS, Alessi DR, Cohen P (2007) The selectivity of protein kinase inhibitors: a further update. Biochem J 408:297–315

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Bazin MA, Bodero L, Tomasoni C, Rousseau B, Roussakis C, Marchand P (2013) Synthesis and antiproliferative activity of benzofuran-based analogs of cercosporamide against non-small cell lung cancer cell lines. Eur J Med Chem 69:823–832

    Article  PubMed  CAS  Google Scholar 

  • Buttgereit F, Brand MD (1995) A hierarchy of ATP-consuming processes in mammalian cells. Biochem J 312(Pt 1):163–167

    PubMed  CAS  PubMed Central  Google Scholar 

  • Buxade M, Parra-Palau JL, Proud CG (2008) The MNKs: MAP kinase-interacting kinases (MAP kinase signal-integrating kinases). Front Biosci 13:5359–5373 (a journal and virtual library)

    Article  PubMed  CAS  Google Scholar 

  • Castellano E, Downward J (2010) Role of RAS in the regulation of PI 3-kinase. Curr Top Microbiol Immunol 346:143–169

    PubMed  CAS  Google Scholar 

  • Choo AY, Yoon SO, Kim SG, Roux PP, Blenis J (2008) Rapamycin differentially inhibits S6Ks and 4E-BP1 to mediate cell-type-specific repression of mRNA translation. Proc Natl Acad Sci USA 105:17414–17419

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Chrestensen CA, Eschenroeder A, Ross WG, Ueda T, Watanabe-Fukunaga R, Fukunaga R, Sturgill TW (2007) Loss of MNK function sensitizes fibroblasts to serum-withdrawal induced apoptosis. Genes Cells 12:1133–1140 (devoted to molecular & cellular mechanisms)

    Article  PubMed  CAS  Google Scholar 

  • Dagestad G, Kuipers SD, Messaoudi E, Bramham CR (2006) Chronic fluoxetine induces region-specific changes in translation factor eIF4E and eEF2 activity in the rat brain. Eur J Neurosci 23:2814–2818

    Article  PubMed  Google Scholar 

  • Fan S, Ramalingam SS, Kauh J, Xu Z, Khuri FR, Sun SY (2009) Phosphorylated eukaryotic translation initiation factor 4 (eIF4E) is elevated in human cancer tissues. Cancer Biol Ther 8:1463–1469

    Article  PubMed  PubMed Central  Google Scholar 

  • Ferrandiz-Pulido C, Masferrer E, Toll A, Hernandez-Losa J, Mojal S, Pujol RM, Ramon YCS, de Torres I, Garcia-Patos V (2013) mTOR Signaling Pathway in Penile Squamous Cell Carcinoma: pmTOR and peIF4E Over Expression Correlate with Aggressive Tumor Behavior. J Urol 190:2288–2295

    Article  PubMed  CAS  Google Scholar 

  • Flynn A, Proud CG (1995) Serine 209, not serine 53, is the major site of phosphorylation in initiation factor eIF-4E in serum-treated Chinese hamster ovary cells. J Biol Chem 270:21684–21688

    Article  PubMed  CAS  Google Scholar 

  • Frederick MJ, VanMeter AJ, Gadhikar MA, Henderson YC, Yao H, Pickering CC, Williams MD, El-Naggar AK, Sandulache V, Tarco E et al (2011) Phosphoproteomic analysis of signaling pathways in head and neck squamous cell carcinoma patient samples. Am J Pathol 178:548–571

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Frederickson RM, Sonenberg N (1992) Signal transduction and regulation of translation initiation. Semin Cell Biol 3:107–115

    Article  PubMed  CAS  Google Scholar 

  • Frederickson RM, Montine KS, Sonenberg N (1991) Phosphorylation of eukaryotic translation initiation factor 4E is increased in Src-transformed cell lines. Mol Cell Biol 11:2896–2900

    PubMed  CAS  PubMed Central  Google Scholar 

  • Frederickson RM, Mushynski WE, Sonenberg N (1992) Phosphorylation of translation initiation factor eIF-4E is induced in a ras-dependent manner during nerve growth factor-mediated PC12 cell differentiation. Mol Cell Biol 12:1239–1247

    PubMed  CAS  PubMed Central  Google Scholar 

  • Fukunaga R, Hunter T (1997) MNK1, a new MAP kinase-activated protein kinase, isolated by a novel expression screening method for identifying protein kinase substrates. EMBO J 16:1921–1933

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Furic L, Livingstone M, Dowling RJ, Sonenberg N (2009) Targeting mTOR-dependent tumours with specific inhibitors: a model for personalized medicine based on molecular diagnoses. Curr Oncol 16:59–61

    PubMed  CAS  PubMed Central  Google Scholar 

  • Furic L, Rong L, Larsson O, Koumakpayi IH, Yoshida K, Brueschke A, Petroulakis E, Robichaud N, Pollak M, Gaboury LA et al (2010) eIF4E phosphorylation promotes tumorigenesis and is associated with prostate cancer progression. Proc Natl Acad Sci U S A 107:14134–14139

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Gingras AC, Gygi SP, Raught B, Polakiewicz RD, Abraham RT, Hoekstra MF, Aebersold R, Sonenberg N (1999) Regulation of 4E-BP1 phosphorylation: a novel two-step mechanism. Genes Dev 13:1422–1437

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Gingras AC, Raught B, Sonenberg N (2001) Regulation of translation initiation by FRAP/mTOR. Genes Dev 15:807–826

    Article  PubMed  CAS  Google Scholar 

  • Graff JR, Konicek BW, Lynch RL, Dumstorf CA, Dowless MS, McNulty AM, Parsons SH, Brail LH, Colligan BM, Koop JW et al (2009) eIF4E activation is commonly elevated in advanced human prostate cancers and significantly related to reduced patient survival. Cancer Res 69:3866–3873

    Article  PubMed  CAS  Google Scholar 

  • Graff JR, Konicek BW, Vincent TM, Lynch RL, Monteith D, Weir SN, Schwier P, Capen A, Goode RL, Dowless MS et al (2007) Therapeutic suppression of translation initiation factor eIF4E expression reduces tumor growth without toxicity. J Clin Invest 117:2638–2648

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Grzmil M, Morin P Jr, Lino MM, Merlo A, Frank S, Wang Y, Moncayo G, Hemmings BA (2011) MAP kinase-interacting kinase 1 regulates SMAD2-dependent TGF-beta signaling pathway in human glioblastoma. Cancer Res 71:2392–2402

    Article  PubMed  CAS  Google Scholar 

  • Harrington LS, Findlay GM, Lamb RF (2005) Restraining PI3K: mTOR signalling goes back to the membrane. Trends Biochem Sci 30:35–42

    Article  PubMed  CAS  Google Scholar 

  • Hong DS, Kurzrock R, Oh Y, Wheler J, Naing A, Brail L, Callies S, Andre V, Kadam SK, Nasir A et al (2011) A phase 1 dose escalation, pharmacokinetic, and pharmacodynamic evaluation of eIF-4E antisense oligonucleotide LY2275796 in patients with advanced cancer. Clin Cancer Res 17:6582–6591

    Article  PubMed  CAS  Google Scholar 

  • Hou J, Lam F, Proud C, Wang S (2012) Targeting Mnks for cancer therapy. Oncotarget 3:118–131

    PubMed  PubMed Central  Google Scholar 

  • Jackson RJ, Hellen CU, Pestova TV (2010) The mechanism of eukaryotic translation initiation and principles of its regulation. Nat Rev Mol Cell Biol 11:113–127

    Article  PubMed  CAS  Google Scholar 

  • Jacobson BA, Thumma SC, Jay-Dixon J, Patel MR, Dubear Kroening K, Kratzke MG, Etchison RG, Konicek BW, Graff JR, Kratzke RA (2013) Targeting Eukaryotic Translation in Mesothelioma Cells with an eIF4E-Specific Antisense Oligonucleotide. PloS ONE 8:e81669

    Article  PubMed  PubMed Central  Google Scholar 

  • Joshi B, Cai AL, Keiper BD, Minich WB, Mendez R, Beach CM, Stepinski J, Stolarski R, Darzynkiewicz E, Rhoads RE (1995) Phosphorylation of eukaryotic protein synthesis initiation factor 4E at Ser-209. J Biol Chem 270:14597–14603

    Article  PubMed  CAS  Google Scholar 

  • Kanhema T, Dagestad G, Panja D, Tiron A, Messaoudi E, Havik B, Ying SW, Nairn AC, Sonenberg N, Bramham CR (2006) Dual regulation of translation initiation and peptide chain elongation during BDNF-induced LTP in vivo: evidence for compartment-specific translation control. J Neurochem 99:1328–1337

    Article  PubMed  CAS  Google Scholar 

  • Karni R, de Stanchina E, Lowe SW, Sinha R, Mu D, Krainer AR (2007) The gene encoding the splicing factor SF2/ASF is a proto-oncogene. Nat Struct Mol Biol 14:185–193

    Article  PubMed  CAS  Google Scholar 

  • Kinkade CW, Castillo-Martin M, Puzio-Kuter A, Yan J, Foster TH, Gao H, Sun Y, Ouyang X, Gerald WL, Cordon-Cardo C et al (2008) Targeting AKT/mTOR and ERK MAPK signaling inhibits hormone-refractory prostate cancer in a preclinical mouse model. J Clin Invest 118:3051–3064

    PubMed  CAS  PubMed Central  Google Scholar 

  • Konicek BW, Stephens JR, McNulty AM, Robichaud N, Peery RB, Dumstorf CA, Dowless MS, Iversen PW, Parsons S, Ellis KE et al (2011) Therapeutic inhibition of MAP kinase interacting kinase blocks eukaryotic initiation factor 4E phosphorylation and suppresses outgrowth of experimental lung metastases. Cancer Res 71:1849–1857

    Article  PubMed  CAS  Google Scholar 

  • Lazaris-Karatzas A, Montine KS, Sonenberg N (1990) Malignant transformation by a eukaryotic initiation factor subunit that binds to mRNA 5′ cap. Nature 345:544–547

    Article  PubMed  CAS  Google Scholar 

  • Li X, An WL, Alafuzoff I, Soininen H, Winblad B, Pei JJ (2004) Phosphorylated eukaryotic translation factor 4E is elevated in Alzheimer brain. Neuroreport 15:2237–2240

    Article  PubMed  CAS  Google Scholar 

  • Li Y, Yue P, Deng X, Ueda T, Fukunaga R, Khuri FR, Sun SY (2010) Protein phosphatase 2A negatively regulates eukaryotic initiation factor 4E phosphorylation and eIF4F assembly through direct dephosphorylation of Mnk and eIF4E. Neoplasia 12:848–855

    PubMed  CAS  PubMed Central  Google Scholar 

  • Liang S, Guo R, Zhang Z, Liu D, Xu H, Xu Z, Wang X, Yang L (2013) Upregulation of the eIF4E signaling pathway contributes to the progression of gastric cancer, and targeting eIF4E by perifosine inhibits cell growth. Oncol Rep 29:2422–2430

    PubMed  CAS  Google Scholar 

  • Lim S, Saw TY, Zhang M, Janes MR, Nacro K, Hill J, Lim AQ, Chang CT, Fruman DA, Rizzieri DA et al (2013) Targeting of the MNK-eIF4E axis in blast crisis chronic myeloid leukemia inhibits leukemia stem cell function. Proc Natl Acad Sci U S A 110:E2298–E2307

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • LoRusso PM, Krishnamurthi SS, Rinehart JJ, Nabell LM, Malburg L, Chapman PB, DePrimo SE, Bentivegna S, Wilner KD, Tan W et al (2010) Phase I pharmacokinetic and pharmacodynamic study of the oral MAPK/ERK kinase inhibitor PD-0325901 in patients with advanced cancers. Clin Cancer Res 16:1924–1937

    Article  PubMed  CAS  Google Scholar 

  • Makkinje A, Xiong H, Li M, Damuni Z (1995) Phosphorylation of eukaryotic protein synthesis initiation factor 4E by insulin-stimulated protamine kinase. J Biol Chem 270:14824–14828

    Article  PubMed  CAS  Google Scholar 

  • Marcotrigiano J, Gingras AC, Sonenberg N, Burley SK (1997a) Cocrystal structure of the messenger RNA 5′ cap-binding protein (eIF4E) bound to 7-methyl-GDP. Cell 89:951–961

    Article  CAS  Google Scholar 

  • Marcotrigiano J, Gingra AC, Sonenberg N, Burley SK (1997b) X-ray studies of the messenger RNA 5′ cap-binding protein (eIF4E) bound to 7-methyl-GDP. Nucleic Acids Symp Ser 1997:8–11

    Google Scholar 

  • McKay MM, Morrison DK (2007) Integrating signals from RTKs to ERK/MAPK. Oncogene 26:3113–3121

    Article  PubMed  CAS  Google Scholar 

  • McKendrick L, Morley SJ, Pain VM, Jagus R, Joshi B (2001) Phosphorylation of eukaryotic initiation factor 4E (eIF4E) at Ser209 is not required for protein synthesis in vitro and in vivo. Eur J Biochem (FEBS) 268:5375–5385

    Article  CAS  Google Scholar 

  • Morley SJ, Naegele S (2002) Phosphorylation of eukaryotic initiation factor (eIF) 4E is not required for de novo protein synthesis following recovery from hypertonic stress in human kidney cells. J Biol Chem 277:32855–32859

    Article  PubMed  CAS  Google Scholar 

  • Morley SJ, Rau M, Kay JE, Pain VM (1993a) Increased phosphorylation of eukaryotic initiation factor 4 alpha during activation of T lymphocytes correlates with increased eIF-4F complex formation. Biochem Soc Trans 21:397S

    CAS  Google Scholar 

  • Morley SJ, Rau M, Kay JE, Pain VM (1993b) Increased phosphorylation of eukaryotic initiation factor 4 alpha during early activation of T lymphocytes correlates with increased initiation factor 4F complex formation. Eur J Biochem (FEBS) 218:39–48

    Article  CAS  Google Scholar 

  • Müller D, Lasfargues C, El Khawand S, Alard A, Schneider RJ, Bousquet C, Pyronnet S, Martineau Y (2013) 4E-BP restrains eIF4E phosphorylation. Translation 1:e25819

    Article  Google Scholar 

  • Noske A, Lindenberg JL, Darb-Esfahani S, Weichert W, Buckendahl AC, Roske A, Sehouli J, Dietel M, Denkert C (2008) Activation of mTOR in a subgroup of ovarian carcinomas: correlation with p-eIF-4E and prognosis. Oncol Rep 20:1409–1417

    PubMed  CAS  Google Scholar 

  • O’Loghlen A, Gonzalez VM, Pineiro D, Perez-Morgado MI, Salinas M, Martin ME (2004) Identification and molecular characterization of Mnk1b, a splice variant of human MAP kinase-interacting kinase Mnk1. Exp Cell Res 299:343–355

    Article  PubMed  Google Scholar 

  • Oyarzabal J, Zarich N, Albarran MI, Palacios I, Urbano-Cuadrado M, Mateos G, Reymundo I, Rabal O, Salgado A, Corrionero A et al (2010) Discovery of mitogen-activated protein kinase-interacting kinase 1 inhibitors by a comprehensive fragment-oriented virtual screening approach. J Med Chem 53:6618–6628

    Article  PubMed  CAS  Google Scholar 

  • Parra JL, Buxade M, Proud CG (2005) Features of the catalytic domains and C termini of the MAPK signal-integrating kinases Mnk1 and Mnk2 determine their differing activities and regulatory properties. J Biol Chem 280:37623–37633

    Article  PubMed  CAS  Google Scholar 

  • Pause A, Belsham GJ, Gingras AC, Donze O, Lin TA, Lawrence JC Jr, Sonenberg N (1994) Insulin-dependent stimulation of protein synthesis by phosphorylation of a regulator of 5′-cap function. Nature 371:762–767

    Article  PubMed  CAS  Google Scholar 

  • Pons B, Peg V, Vazquez-Sanchez MA, Lopez-Vicente L, Argelaguet E, Coch L, Martinez A, Hernandez-Losa J, Armengol G, Ramon YCS (2011) The effect of p-4E-BP1 and p-eIF4E on cell proliferation in a breast cancer model. Int J Oncol 39:1337–1345

    PubMed  CAS  Google Scholar 

  • Rao GN, Griendling KK, Frederickson RM, Sonenberg N, Alexander RW (1994) Angiotensin II induces phosphorylation of eukaryotic protein synthesis initiation factor 4E in vascular smooth muscle cells. J Biol Chem 269:7180–7184

    PubMed  CAS  Google Scholar 

  • Rolfe DF, Brown GC (1997) Cellular energy utilization and molecular origin of standard metabolic rate in mammals. Physiol Rev 77:731–758

    PubMed  CAS  Google Scholar 

  • Roux PP, Topisirovic I (2012) Regulation of mRNA translation by signaling pathways. Cold Spring Harb Perspect Biol; 4:a012252

    Google Scholar 

  • Ruggero D, Montanaro L, Ma L, Xu W, Londei P, Cordon-Cardo C, Pandolfi PP (2004) The translation factor eIF-4E promotes tumor formation and cooperates with c-Myc in lymphomagenesis. Nat Med 10:484–486

    Article  PubMed  CAS  Google Scholar 

  • Rychlik W, Gardner PR, Vanaman TC, Rhoads RE (1986) Structural analysis of the messenger RNA cap-binding protein. Presence of phosphate, sulfhydryl, and disulfide groups. J Biol Chem 261:71–75

    PubMed  CAS  Google Scholar 

  • Rychlik W, Russ MA, Rhoads RE (1987) Phosphorylation site of eukaryotic initiation factor 4E. J Biol Chem 262:10434–10437

    PubMed  CAS  Google Scholar 

  • Sathornsumetee S, Desjardins A, Vredenburgh JJ, McLendon RE, Marcello J, Herndon JE, Mathe A, Hamilton M, Rich JN, Norfleet JA et al (2010) Phase II trial of bevacizumab and erlotinib in patients with recurrent malignant glioma. Neuro Oncol 12:1300–1310

    PubMed  CAS  PubMed Central  Google Scholar 

  • Scheper GC, Morrice NA, Kleijn M, Proud CG (2001) The mitogen-activated protein kinase signal-integrating kinase Mnk2 is a eukaryotic initiation factor 4E kinase with high levels of basal activity in mammalian cells. Mol Cell Biol 21:743–754

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Scheper GC, Parra JL, Wilson M, Van Kollenburg B, Vertegaal AC, Han ZG, Proud CG (2003) The N and C termini of the splice variants of the human mitogen-activated protein kinase-interacting kinase Mnk2 determine activity and localization. Mol Cell Biol 23:5692–5705

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Scheper GC, van Kollenburg B, Hu J, Luo Y, Goss DJ, Proud CG (2002) Phosphorylation of eukaryotic initiation factor 4E markedly reduces its affinity for capped mRNA. J Biol Chem 277:3303–3309

    Article  PubMed  CAS  Google Scholar 

  • She QB, Halilovic E, Ye Q, Zhen W, Shirasawa S, Sasazuki T, Solit DB, Rosen N (2010) 4E-BP1 is a key effector of the oncogenic activation of the AKT and ERK signaling pathways that integrates their function in tumors. Cancer Cell 18:39–51

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Shi Y, Frost P, Hoang B, Yang Y, Fukunaga R, Gera J, Lichtenstein A (2013) MNK kinases facilitate c-myc IRES activity in rapamycin-treated multiple myeloma cells. Oncogene 32:190–197

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Shibata S, Morino S, Tomoo K, In Y, Ishida T (1998) Effect of mRNA cap structure on eIF-4E phosphorylation and cap binding analyses using Ser209-mutated eIF-4Es. Biochem Biophys Res Commun 247:213–216

    Article  PubMed  CAS  Google Scholar 

  • Silvera D, Formenti SC, Schneider RJ (2010) Translational control in cancer. Nat Rev Cancer 10:254–266

    Article  PubMed  CAS  Google Scholar 

  • Slentz-Kesler K, Moore JT, Lombard M, Zhang J, Hollingsworth R, Weiner MP (2000) Identification of the human Mnk2 gene (MKNK2) through protein interaction with estrogen receptor beta. Genomics 69:63–71

    Article  PubMed  CAS  Google Scholar 

  • Stead RL, Proud CG (2013) Rapamycin enhances eIF4E phosphorylation by activating MAP kinase-interacting kinase 2a (Mnk2a). FEBS Lett 587:2623–2628

    Article  PubMed  CAS  Google Scholar 

  • Sun SY, Rosenberg LM, Wang X, Zhou Z, Yue P, Fu H, Khuri FR (2005) Activation of Akt and eIF4E survival pathways by rapamycin-mediated mammalian target of rapamycin inhibition. Cancer Res 65:7052–7058

    Article  PubMed  CAS  Google Scholar 

  • Sussman A, Huss K, Chio LC, Heidler S, Shaw M, Ma D, Zhu G, Campbell RM, Park TS, Kulanthaivel P et al (2004) Discovery of cercosporamide, a known antifungal natural product, as a selective Pkc1 kinase inhibitor through high-throughput screening. Eukaryot Cell 3:932–943

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Tejada S, Lobo MV, Garcia-Villanueva M, Sacristan S, Perez-Morgado MI, Salinas M, Martin ME (2009) Eukaryotic initiation factors (eIF) 2alpha and 4E expression, localization, and phosphorylation in brain tumors. J Histochem Cytochem 57:503–512

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Topisirovic I, Sonenberg N (2011) mRNA translation and energy metabolism in cancer: the role of the MAPK and mTORC1 pathways. Cold Spring Harb Perspect Biol 76:355–367

    Article  CAS  Google Scholar 

  • Topisirovic I, Ruiz-Gutierrez M, Borden KL (2004) Phosphorylation of the eukaryotic translation initiation factor eIF4E contributes to its transformation and mRNA transport activities. Cancer Res 64:8639–8642

    Article  PubMed  CAS  Google Scholar 

  • Topisirovic I, Svitkin YV, Sonenberg N, Shatkin AJ (2011) Cap and cap-binding proteins in the control of gene expression. Wiley Interdiscip Rev RNA 2:277–298

    Article  PubMed  CAS  Google Scholar 

  • Ueda T, Sasaki M, Elia AJ, Chio II, Hamada K, Fukunaga R, Mak TW (2010) Combined deficiency for MAP kinase-interacting kinase 1 and 2 (Mnk1 and Mnk2) delays tumor development. Proc Natl Acad Sci U S A 107:13984–13990

    Google Scholar 

  • van Riggelen J, Yetil A, Felsher DW (2010) MYC as a regulator of ribosome biogenesis and protein synthesis. Nat Rev Cancer 10:301–309

    Article  PubMed  CAS  Google Scholar 

  • Wang X, Yue P, Chan CB, Ye K, Ueda T, Watanabe-Fukunaga R, Fukunaga R, Fu H, Khuri FR, Sun SY (2007) Inhibition of mammalian target of rapamycin induces phosphatidylinositol 3-kinase-dependent and Mnk-mediated eukaryotic translation initiation factor 4E phosphorylation. Mol Cell Biol 27:7405–7413

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Waskiewicz AJ, Flynn A, Proud CG, Cooper JA (1997) Mitogen-activated protein kinases activate the serine/threonine kinases Mnk1 and Mnk2. EMBO J 16:1909–1920

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Wendel HG, Silva RL, Malina A, Mills JR, Zhu H, Ueda T, Watanabe-Fukunaga R, Fukunaga R, Teruya-Feldstein J, Pelletier J et al (2007) Dissecting eIF4E action in tumorigenesis. Genes Dev 21:3232–3237

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Whalen SG, Gingras AC, Amankwa L, Mader S, Branton PE, Aebersold R, Sonenberg N (1996) Phosphorylation of eIF-4E on serine 209 by protein kinase C is inhibited by the translational repressors, 4E-binding proteins. J Biol Chem 271:11831–11837

    Article  PubMed  CAS  Google Scholar 

  • Wheater MJ, Johnson PW, Blaydes JP (2010) The role of MNK proteins and eIF4E phosphorylation in breast cancer cell proliferation and survival. Cancer Biol Ther 10:728–735

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Yoshizawa A, Fukuoka J, Shimizu S, Shilo K, Franks TJ, Hewitt SM, Fujii T, Cordon-Cardo C, Jen J, Travis WD (2010) Overexpression of phospho-eIF4E is associated with survival through AKT pathway in non-small cell lung cancer. Clin Cancer Res 16:240–248

    Article  PubMed  CAS  Google Scholar 

  • Zuberek J, Wyslouch-Cieszynska A, Niedzwiecka A, Dadlez M, Stepinski J, Augustyniak W, Gingras AC, Zhang Z, Burley SK, Sonenberg N et al (2003) Phosphorylation of eIF4E attenuates its interaction with mRNA 5′ cap analogs by electrostatic repulsion: intein-mediated protein ligation strategy to obtain phosphorylated protein. RNA 9:52–61

    Article  PubMed  CAS  PubMed Central  Google Scholar 

Download references

Acknowledgments

LF is supported by Prostate Cancer Foundation of Australia grants (#YI-0310, #CG1511) and Australian Research Council grant (#DE120100434). EB is supported by a philanthropic grant from the EJ Whitten Foundation. IT is supported by grants from the Canadian Institutes of Health Research (MOP-115195), Terry Fox Research Institute team grant (TFF-116128), The Canada foundation for innovation Leaders Opportunity Fund (CFI-LOF), Fonds de la Recherche en Santé du Québec (FRSQ) and is a recipient of a CIHR New Investigator Salary Award.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luc Furic .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Furic, L., Beardsley, E., Topisirovic, I. (2014). eIF4E Phosphorylation Downstream of MAPK Pathway. In: Parsyan, A. (eds) Translation and Its Regulation in Cancer Biology and Medicine. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-9078-9_17

Download citation

Publish with us

Policies and ethics