Skip to main content

Abstract

One ultimate goal for synthetic biology is the complete computer-aided design of novel gene circuits. Here, we show how concepts and algorithms from electrical engineering can be exploited to set up a framework for the computational, automatic design of gene Boolean gates and devices. As in electrical engineering, the modular design of digital synthetic gene circuits can be automated via the Karnaugh map algorithm. However, differently from electronics, the circuit scheme corresponding to a Boolean formula is not unique since the wiring between gates can be established by transcription factors or small RNAs. In particular, we discuss a new, simplified version of our previous algorithm that is better tailored to wet-lab circuit implementation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Andrianantoandro E, Basu S, Karig DK, Weiss R (2006) Synthetic biology: new engineering rules for an emerging discipline. Mol Syst Biol 2:2006.0028. doi:10.1038/msb4100073. http://dx.doi.org/10.1038/msb4100073

  2. Hans-Michael K, Stelling J (2012) Modular analysis of biological networks. Adv Exp Med Biol 736:3–17

    Google Scholar 

  3. Marchisio MA, Stelling J (2011) Automatic design of digital synthetic gene circuits. PLoS Comput Biol 7(2):e1001083. doi:10.1371/journal.pcbi.1001083. http://dx.doi.org/10.1371/journal.pcbi.1001083

  4. Endy D (2005) Foundations for engineering biology. Nature 438(7067):449–453. doi:10.1038/nature04342. http://dx.doi.org/10.1038/nature04342

  5. Marchisio MA, Stelling J (2008) Computational design of synthetic gene circuits with composable parts. Bioinformatics, 24(17):1903–1910. doi:10.1093/bioinformatics/btn330. http://dx.doi.org/10.1093/bioinformatics/btn330

  6. Marchisio MA, Stelling J (2009) Synthetic gene network computational design. In: Proceedings of IEEE international symposium on circuits and systems, ISCAS 2009, pp 309–312

    Google Scholar 

  7. Ginkel M, Kremling A, Nutsch T, Rehner R, Gilles ED (2003) Modular modeling of cellular systems with ProMoT/Diva. Bioinformatics 19(9):1169–1176

    Google Scholar 

  8. Mirschel S, Steinmetz K, Rempel M, Ginkel M, Gilles ED (2009) PROMOT: modular modeling for systems biology. Bioinformatics 25(5):687–689. doi:10.1093/bioinformatics/btp029. http://dx.doi.org/10.1093/bioinformatics/btp029

  9. Alon U (2007) Network motifs: theory and experimental approaches. Nat Rev Genet 8(6):450–461. doi:10.1038/nrg2102. http://dx.doi.org/10.1038/nrg2102

  10. Dasika MS, Maranas CD (2008) OptCircuit: an optimization based method for computational design of genetic circuits. BMC Syst Biol 2:24. doi:10.1186/1752-0509-2-24. http://dx.doi.org/10.1186/1752-0509-2-24

  11. François P, Hakim V (2004) Design of genetic networks with specified functions by evolution in silico. Proc Natl Acad Sci U S A 101(2):580–585. doi:10.1073/pnas.0304532101. http://dx.doi.org/10.1073/pnas.0304532101

  12. Paladugu SR, Chickarmane V, Deckard A, Frumkin JP, McCormack M, Sauro HM (2006) In silico evolution of functional modules in biochemical networks. Syst Biol (Stevenage) 153(4):223–235

    Google Scholar 

  13. Rodrigo G, Carrera J, Jaramillo A (2007) Genetdes: automatic design of transcriptional networks. Bioinformatics 23(14):1857–1858. doi:10.1093/bioinformatics/btm237. http://dx.doi.org/10.1093/bioinformatics/btm237

  14. Maurice K (1953) The map method for synthesis of combinational logic circuits. Trans Am Inst Electr Eng 72(9):593–599

    Google Scholar 

  15. Regot S, Macia J, Conde N, Furukawa K, Kjelln J, Peeters T, Hohmann S, de Nadal EL, Posas F, Sol R (2011) Distributed biological computation with multicellular engineered networks. Nature 469(7329):207–211. doi:10.1038/nature09679. http://dx.doi.org/10.1038/nature09679

  16. Kuphaldt TR (2007) Lessons in electric circuits ,Vol 4(Digital). http://www.ibiblio.org/obp/electricCircuits

  17. Terzer M, Jovanovic M, Choutko A, Nikolayeva O, Korn A, Brockhoff D, Zurcher F, Friedmann M, Schutz R, Zitzler E, Stelling J, Panke S (2007) Design of a biological half adder. IET Synth Biol 1(1–2):53–58

    Google Scholar 

  18. Bintu L, Buchler NE, Garcia HG, Gerland U, Hwa T, Kondev J, Kuhlman T, Phillips R (2005) Transcriptional regulation by the numbers: applications. Curr Opin Genet Dev 15(2):125–135. doi:10.1016/j.gde.2005.02.006. http://dx.doi.org/10.1016/j.gde.2005.02.006

  19. Silva-Rocha R, de Lorenzo V (2008) Mining logic gates in prokaryotic transcriptional regulation networks. FEBS Lett 582(8):1237–1244. doi:10.1016/j.febslet.2008.01.060. http://dx.doi.org/10.1016/j.febslet.2008.01.060

  20. Win MN, Smolke CD (2008) Higher-order cellular information processing with synthetic RNA devices. Science 322(5900):456–460. doi:10.1126/science.1160311. http://dx.doi.org/10.1126/science.1160311

  21. Lucks JB, Qi L, Mutalik VK, Wang D, Arkin AP (2011) Versatile RNA-sensing transcriptional regulators for engineering genetic networks. Proc Natl Acad Sci U S A 108(21):8617–8622. doi:10.1073/pnas.1015741108. http://dx.doi.org/10.1073/pnas.1015741108

  22. Rinaudo K, Bleris L, Maddamsetti R, Subramanian S, Weiss R, Benenson Y (2007) A universal RNAi-based logic evaluator that operates in mammalian cells. Nat Biotechnol 25(7):795–801. doi:10.1038/nbt1307. http://dx.doi.org/10.1038/nbt1307

  23. Lewin B (2000) Genes VII. Oxford University Press, New York

    Google Scholar 

  24. Isaacs FJ, Dwyer DJ, Collins JJ (2006) RNA synthetic biology. Nat Biotechnol 24(5):545–554. doi:10.1038/nbt1208. http://dx.doi.org/10.1038/nbt1208

  25. Purnick PEM, Weiss R (2009) The second wave of synthetic biology: from modules to systems. Nat Rev Mol Cell Biol 10(6):410–422. doi:10.1038/nrm2698. http://dx.doi.org/10.1038/nrm2698

  26. Lohmueller JJ, Armel TZ, Silver PA (2012) A tunable zinc finger-based framework for Boolean logic computation in mammalian cells. Nucleic Acids Res. doi:10.1093/nar/gks142. http://dx.doi.org/10.1093/nar/gks142

  27. Bogdanove AJ, Voytas DF (2011) TAL effectors: customizable proteins for DNA targeting. Science 333(6051):1843–1846. doi:10.1126/science.1204094. http://dx.doi.org/10.1126/science.1204094

  28. Hucka M et al (Mar 2003) The systems biology markup language (SBML): a medium for representation and exchange of biochemical network models. Bioinformatics 19(4):524–531

    Google Scholar 

  29. Benenson Y (2012) Biomolecular computing systems: principles, progress and potential. Nat Rev Genet 13(7):455–468. doi:10.1038/nrg3197. http://dx.doi.org/10.1038/nrg3197

  30. Marchisio MA, Rudolf F (2011) Synthetic biosensing systems. Int J Biochem Cell Biol 43(3):310–319. doi:10.1016/j.biocel.2010.11.012. http://dx.doi.org/10.1016/j.biocel.2010.11.012

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mario Andrea Marchisio .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Marchisio, M.A., Stelling, J. (2014). Simplified Computational Design of Digital Synthetic Gene Circuits. In: Kulkarni, V., Stan, GB., Raman, K. (eds) A Systems Theoretic Approach to Systems and Synthetic Biology II: Analysis and Design of Cellular Systems. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-9047-5_11

Download citation

Publish with us

Policies and ethics