Skip to main content

Involvement of a Second Xanthophyll Cycle in Non-Photochemical Quenching of Chlorophyll Fluorescence: The Lutein Epoxide Story

  • Chapter
  • First Online:
Non-Photochemical Quenching and Energy Dissipation in Plants, Algae and Cyanobacteria

Part of the book series: Advances in Photosynthesis and Respiration ((AIPH,volume 40))

Summary

The lutein epoxide (Lx) cycle (Lx-L cycle), initially described in tomato fruits, remained unexplored during the following 25 years until it was re-discovered in the stems of the parasitic plant Cuscuta reflexa. Since then, 15 years of continuous research have revealed that the Lx-L cycle is present in a wide diversity of species, allowing us to make significant progress in our understanding of this carotenoid cycle. However, due to its absence in some traditional model plant species, much of its functional significance remains to be clarified. We have therefore provided an overview of the current knowledge of this cycle as well as an ecological perspective of the possible benefits derived from the possession of two xanthophyll cycles (all plants possess a xanthophyll cycle involving violaxanthin, antheraxanthin, and zeaxanthin, i.e., the VAZ cycle, whereas only some species possess the Lx-L cycle). In the Lx-L cycle, Lx is de-epoxidized upon illumination, by the action of violaxanthin de-epoxidase (VDE), and transformed into lutein (L). Correlative evidence supports a role for this newly formed L (ΔL) in the regulation of thermal energy dissipation as assessed from the non-photochemical quenching of chlorophyll fluorescence (NPQ). The reversibility of this reaction in darkness differentiates two modes of operation, one “completed” in which the initial Lx pool is restored and one “truncated” in which ΔL remains for a longer period. The first, described in sun and shade leaves of a few unrelated species, apparently provides fine-tuning for the adjustment of photoprotective energy dissipation complementary to that exerted by the VAZ cycle. On the other hand, the “truncated” cycle is widespread amongst woody plants, but is restricted to shaded environments where it may act as a rapid switch for the photosynthetic apparatus from a photosynthetically highly efficient state to a photoprotected one. The latter may be necessary for chloroplast acclimation after transition to high light, such as that which occurs following gap formation in forests or budbreak and subsequent leaf greening in trees.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

A  –  :

Antheraxanthin;

A-Lx  –  :

Accumulative Lx pool;

Chl –:

Chlorophyll;

C-Lx –:

Constitutive Lx pool;

D-Lx –:

Dynamic Lx pool;

DPS –:

De-epoxidation state of the xanthophyll cycle involving the carotenoids violaxanthin, antheraxanthin and zeaxanthin;

Fm –:

Maximal chlorophyll fluorescence emission in the dark-adapted state;

Fv –:

variable chlorophyll fluorescence emission in the dark-adapted state;

Fv/Fm –:

Intrinsic efficiency (or quantum yield) of photosystem II in the dark-adapted state;

L1 –:

Intra-protein site L1;

L2 –:

Intra-protein site L2;

LHC –:

Light-harvesting complex;

Lhcb5 –:

Chlorophyll a-b binding protein;

LHCII –:

Major light-harvesting complex of photosystem II;

Lx –:

Lutein epoxide;

Lx-L cycle –:

Lutein epoxide cycle involving the carotenoids lutein epoxide and lutein;

NPQ –:

Non-photochemical quenching of chlorophyll fluorescence;

PFDi –:

Incident photon flux density;

PS II –:

Photosystem II;

qE –:

ΔpH-dependent component of NPQ;

V –:

Violaxanthin;

V1 –:

Peripheral V1 site;

VAZ cycle –:

The xanthophyll cycle involving the carotenoids violaxanthin, antheraxanthin and zeaxanthin;

VDE –:

Violaxanthin de-epoxidase;

Z  –  :

Zeaxanthin;

ZEP  –  :

Zeaxanthin epoxidase;

α-C –:

α-carotene;

β-C –:

β-carotene;

ΔL –:

Newly formed L from Lx de-epoxidation

References

  • Adams WW III, Demmig-Adams B (1994) Carotenoid composition and down regulation of photosystem II in three conifer species during the winter. Physiol Plant 92:451–458

    Article  CAS  Google Scholar 

  • Adams WW III, Demmig-Adams B, Logan BA, Barker DH, Osmond B (1999) Rapid changes in xanthophyll cycle-dependent energy dissipation and photosystem II efficiency in two vines, Stephania japonica and Smilax australis, growing in the understory of an open eucalyptus forest. Plant Cell Environ 22:125–136

    Article  CAS  Google Scholar 

  • Ahn TK, Avenson TJ, Ballottari M, Cheng Y-C, Niyogi KK, Bassi R, Fleming GR (2008) Architecture of a charge-transfer state regulating light harvesting in a plant antenna protein. Science 320:794–796

    Article  CAS  PubMed  Google Scholar 

  • Bungard RA, Ruban AV, Hibberd JM, Press MC, Horton P, Scholes JD (1999) Unusual carotenoid composition and a new type of xanthophyll cycle in plants. Proc Natl Acad Sci USA 96:1135–1139

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Caliandro R, Nagel KA, Kastenholz B, Bassi R, Li Z, Niyogi KK, Pogson BJ, Schurr U, Matsubara S (2013) Effects of altered α- and β-branch carotenoid biosynthesis on photoprotection and whole-plant acclimation of Arabidopsis to photo-oxidative stress. Plant Cell Environ 36:438–453

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Cardini F, Pucci S, Calamassi R (2006) Quantitative variations of individual carotenoids in relationship with the leaflet development of six species of the genus Ceratozamia (Cycads). J Plant Physiol 163:128–140

    Article  CAS  PubMed  Google Scholar 

  • Cazzonelli CI (2011) Carotenoids in nature: insights from plants and beyond. Funct Plant Biol 38:833–847

    Article  CAS  Google Scholar 

  • Close DC, Davidson NJ, Davies NW (2006) Seasonal fluctuations in pigment chemistry of co-occurring plant hemi-parasites of distinct form and function. Environ Exp Bot 58:41–46

    Article  CAS  Google Scholar 

  • DellaPenna D, Pogson BJ (2006) Vitamin synthesis in plants: tocopherols and carotenoids. Annu Rev Plant Biol 57:711–738

    Article  CAS  PubMed  Google Scholar 

  • Demmig-Adams B (1998) Survey of thermal energy dissipation and pigment composition in sun and shade leaves. Plant Cell Physiol 39:474–482

    Article  CAS  Google Scholar 

  • Demmig-Adams B, Adams WW III (1992) Carotenoid composition in sun and shade leaves of plants with different life forms. Plant Cell Environ 15:411–419

    Article  CAS  Google Scholar 

  • Demmig-Adams B, Adams WW III (1996a) Chlorophyll and carotenoid composition in leaves of Euonymus kiautschovicus acclimated to different degrees of light stress in the field. Aust J Plant Physiol 23:649–659

    Article  CAS  Google Scholar 

  • Demmig-Adams B, Adams WW III (1996b) The role of xanthophyll cycle carotenoids in the protection of photosynthesis. Trends Plant Sci 1:21–26

    Article  Google Scholar 

  • Demmig-Adams B, Adams WW III, Logan BA, Verhoeven AS (1995) Xanthophyll cycle-dependent energy dissipation and flexible photosystem II efficiency in plants acclimated to light stress. Aust J Plant Physiol 22:249–260

    Article  CAS  Google Scholar 

  • Edelenbos M, Christensen LP, Grevsen K (2001) HPLC determination of chlorophyll and carotenoid pigments in processed green pea cultivars (Pisum sativum L.). J Agric Food Chem 49:4768–4774

    Article  CAS  PubMed  Google Scholar 

  • Esteban R, Jiménez ET, Jiménez MS, Morales D, Hormaetxe K, Becerril JM, García-Plazaola JI (2007) Dynamics of violaxanthin and lutein epoxide xanthophyll cycles in Lauraceae tree species under field conditions. Tree Physiol 27:1407–1414

    Article  CAS  PubMed  Google Scholar 

  • Esteban R, Jiménez MS, Morales D, Jiménez ET, Hormaetxe K, Becerril JM, Osmond CB, García-Plazaola JI (2008) Short- and long-term modulation of the lutein epoxide and violaxanthin cycles in two species of the Lauraceae: sweet bay laurel (Laurus nobilis L.) and avocado (Persea Americana Mill.). Plant Biol 10:288–297

    Article  CAS  PubMed  Google Scholar 

  • Esteban R, Becerril JM, García-Plazaola JI (2009a) Lutein epoxide cycle, more than just a forest tale. Plant Signal Behav 4:342–344

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Esteban R, Olano JM, Castresana J, Fernández-Marín B, Hernández A, Becerril JM, García-Plazaola JI (2009b) Distribution and evolutionary trends of photoprotective isoprenoids (xanthophylls and tocopherols) within the plant kingdom. Physiol Plant 135:379–389

    Article  CAS  PubMed  Google Scholar 

  • Esteban R, Matsubara S, Jiménez MS, Morales D, Brito P, Lozenzo R, Fernández-Marín B, Becerril JM, García-Plazaola JI (2010a) Operation and regulation of the lutein epoxide cycle in seedlings of Ocotea foetens. Funct Plant Biol 37:859–869

    Article  CAS  Google Scholar 

  • Esteban R, Olascoaga B, Becerril JM, García-Plazaola JI (2010b) Insights into carotenoid dynamics in non-foliar photosynthetic tissues of avocado. Physiol Plant 140:69–78

    Article  CAS  PubMed  Google Scholar 

  • Förster B, Osmond CB, Pogson BJ (2009) De novo synthesis and degradation of Lx and V cycle pigments during shade and sun acclimation in avocado leaves. Plant Physiol 149:1179–1195

    Article  PubMed Central  PubMed  Google Scholar 

  • Förster B, Pogson BJ, Osmond CB (2011) Lutein from deepoxidation of lutein epoxide replaces zeaxanthin to sustain an enhanced capacity for nonphotochemical chlorophyll fluorescence quenching in avocado shade leaves in the dark. Plant Physiol 156:393–403

    Article  PubMed Central  PubMed  Google Scholar 

  • Gandul-Rojas B, Cepero MR-L, Mínguez-Mosquera MI (1999) Chlorophyll and carotenoid patterns in olive fruits, Olea europaea cv. Arbequina. J Agric Food Chem 47:2207–2212

    Article  CAS  PubMed  Google Scholar 

  • García-Plazaola JI, Artetxe U, Duñabeitia MK, Becerril JM (1999) Role of photoprotective systems of holm-oak (Quercus ilex) in the adaptation to winter conditions. J Plant Physiol 155:625–630

    Article  Google Scholar 

  • García-Plazaola JI, Hernandez A, Becerril JM (2000) Photoprotective responses to winter stress in evergreen Mediterranean ecosystems. Plant Biol 2:530–535

    Article  Google Scholar 

  • García-Plazaola JI, Errasti E, Hernández A, Becerril JM (2002) Occurrence and operation of the lutein epoxide cycle in Quercus species. Funct Plant Biol 29:1075–1080

    Article  Google Scholar 

  • García-Plazaola JI, Hernández A, Olano JM, Becerril JM (2003) The operation of the lutein epoxide cycle correlates with energy dissipation. Funct Plant Biol 30:319–324

    Article  Google Scholar 

  • García-Plazaola JI, Hormaetxe K, Hernández A, Olano JM, Becerril JM (2004) The lutein epoxide cycle in vegetative buds of woody plants. Funct Plant Biol 31:815–823

    Article  Google Scholar 

  • García-Plazaola JI, Matsubara S, Osmond CB (2007) The lutein epoxide cycle in higher plants: its relationships to other xanthophyll cycles and possible functions. Funct Plant Biol 34:759–773

    Article  Google Scholar 

  • Goss R (2003) Substrate specificity of the violaxanthin de-epoxidase of the primitive green alga Mantoniella squamata (Prasinophyceae). Planta 217:613–621

    Article  Google Scholar 

  • Han Q, Shinohara K, Kakubari Y, Mukai Y (2003) Photoprotective role of rhodoxanthin during cold acclimation in Cryptomeria japonica. Plant Cell Environ 26:715–723

    Article  CAS  Google Scholar 

  • Hirschberg J (2001) Carotenoid biosynthesis in flowering plants. Curr Op Plant Biol 4:210–218

    Article  CAS  Google Scholar 

  • Hormaetxe K, Hernández A, Becerril JM, García-Plazaola JI (2004) Role of red carotenoids in photoprotection during winter acclimation in Buxus sempervirens leaves. Plant Biol 6:325–332

    Article  CAS  PubMed  Google Scholar 

  • Hughes NM, Morley CB, Smith WK (2007) Coordination of anthocyanin decline and photosynthetic maturation in juvenile leaves of three deciduous tree species. New Phytol 175:675–685

    Article  CAS  PubMed  Google Scholar 

  • Jahns P, Wehener A, Paulsen H, Hobe S (2001) De-epoxidation of violaxanthin after reconstitution into different carotenoid binding sites of light-harvesting complex II. J Biol Chem 276:22154–22159

    Article  CAS  PubMed  Google Scholar 

  • Jeschke WD, Baumel P, Rath N, Czygan FC, Proksch P (1994) Modeling of the flows and partitioning of carbon and nitrogen in the holoparasitic Cuscuta reflexa Roxb. And its host Lupinus albus L. 2. Flows between host and parasite and within the parasitized host. J Exp Bot 45:901–812

    Google Scholar 

  • Jia H, Förster B, Chow WS, Pogson BJ, Osmond CB (2013) Decreased photochemical efficiency of photosystem II following sunlight exposure of shade-grown leaves of avocado: because of, or in spite of, two kinetically distinct xanthophyll cycles? Plant Physiol 161:836–852

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Johnson MP, Pérez-Bueno M, Zia A, Horton P, Ruban AV (2009) The zeaxanthin-independent and zeaxanthin-dependent qE components of nonphotochemical quenching involve common conformational changes within the photosystem II antenna in Arabidopsis. Plant Physiol 149:1061–1075

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kitajima M, Butler WL (1975) Quenching of chlorophyll fluorescence and primary photochemistry in chloroplasts by dibromothymoquinone. Biochim Biophys Acta 376:105–115

    Article  CAS  PubMed  Google Scholar 

  • Li Z, Ahn TK, Avenson TJ, Ballottari M, Cruz JA, Kramer DM, Bassi R, Fleming GR, Keasling JD, Niyogi KK (2009) Lutein accumulation in the absence of zeaxanthin restores nonphotochemical quenching in the Arabidopsis thaliana npq1 mutant. Plant Cell 21:1798–1812

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Llorens L, Aranda X, Abadía A, Fleck I (2002) Variations in Quercus ilex chloroplast pigment content during summer stress: involvement in photoprotection according to principal component analysis. Funct Plant Biol 29:81–88

    Article  CAS  Google Scholar 

  • Logan BA, Barker DH, Demmig-Adams B, Adams WW III (1996) Acclimation of leaf carotenoid composition and ascorbate levels to gradients in the light environment within an Australian rainforest. Plant Cell Environ 19:1083–1090

    Article  CAS  Google Scholar 

  • Matsubara S, Gilmore AM, Osmond CB (2001) Diurnal and acclimatory responses of violaxanthin and lutein epoxide in the Australian mistletoe Amyema miquelii. Aust J Plant Physiol 28:793–800

    CAS  Google Scholar 

  • Matsubara S, Gilmore AM, Ball MC, Anderson JM, Osmond CB (2002) Sustained downregulation of photosystem II in mistletoes during winter depression of photosynthesis. Funct Plant Biol 29:1157–1169

    Article  CAS  Google Scholar 

  • Matsubara S, Morosinotto T, Bassi R, Christian AL, Fischer-Schliebs E, Lüttge U, Orthen B, Franco AC, Scarano FR, Förster B, Pogson BJ, Osmond CB (2003) Occurrence of the lutein-epoxide cycle in mistletoes of the Loranthaceae and Viscaceae. Planta 217:868–879

    Article  CAS  PubMed  Google Scholar 

  • Matsubara S, Naumann M, Martin R, Nichol C, Rascher U, Morosinotto T, Bassi R, Osmond CB (2005) Slowly reversible de-epoxidation of lutein-epoxide in deep shade leaves of a tropical tree legume may “lock in” lutein-based photoprotection during acclimation to strong light. J Exp Bot 56:461–468

    Article  CAS  PubMed  Google Scholar 

  • Matsubara S, Morosinotto T, Krause H, Seltmann M, Winter K, Osmond CB, Jahns P, Bassi R (2007) Achieving better light harvesting in the shade: accumulation of lutein epoxide increases light-harvesting efficiency in shade leaves of Inga species. Plant Physiol 144:926–941

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Matsubara S, Krause GH, Seltmann M, Virgo A, Kursar TA, Jahns P, Winter K (2008) Lutein epoxide cycle, light harvesting and photoprotection in species of the tropical tree genus Inga. Plant Cell Environ 31:548–561

    Article  CAS  PubMed  Google Scholar 

  • Matsubara S, Krause GH, Aranda J, Virgo A, Beisel KG, Jahns P, Winter K (2009) Sun-shade patterns of leaf carotenoid composition in 86 species of neotropical forest plants. Funct Plant Biol 36:20–36

    Article  CAS  Google Scholar 

  • Matsubara S, Chen YC, Caliandro R, Govindjee, Clegg RM (2011) Photosystem II fluorescence lifetime imaging in avocado leaves: contributions of the lutein epoxide and violaxanthin cycles to fluorescence quenching. J Photochem Photobiol B 104:271–284

    Article  CAS  PubMed  Google Scholar 

  • Matsubara S, Förster B, Waterman M, Robinson SA, Pogson BJ, Gunning B, Osmond CB (2013) From ecophysiology to phenomics: some implications of photoprotection and shade-sun acclimation in situ for dynamics of thylakoids in vitro. Phil Trans R Soc B 367:3503–3514

    Article  Google Scholar 

  • Mélendez-Martínez AJ, Britton G, Vicario IM, Heredia FJ (2006) HPLC analysis of geometrical isomers of lutein epoxide isolated from dandelion (Taraxacum officinale F. Weber ex Wiggers). Photochem 67:771–777

    Article  Google Scholar 

  • Miller R, Watling JR, Robinson SA (2009) Functional transition in the floral receptacle of the sacred lotus (Nelumbo nucifera): from thermogenesis to photosynthesis. Funct Plant Biol 36:471–480

    Article  Google Scholar 

  • Nichol CJ, Pieruschka R, Takayama K, Förster B, Kolber Z, Rascher U, Grace J, Robinson SA, Pogson B, Osmond CB (2012) Canopy conundrums: building on the Biosphere 2 experience to scale measurements of inner and outer canopy photoprotection from the leaf to the landscape. Funct Plant Biol 39:1–24

    Article  Google Scholar 

  • Niinemets Ü, Bilger W, Kull O, Tenhunen JD (1998) Acclimation to high irradiance in temperate deciduous trees in the field: changes in xanthophyll cycle pool size and in photosynthetic capacity along a canopy light gradient. Plant Cell Environ 21:1205–1218

    Article  CAS  Google Scholar 

  • Niinemets Ü, Bilger W, Kull O, Tenhunen JD (1999) Responses of foliar photosynthetic electron transport, pigment stoichiometry, and stomatal conductance to interacting environmental factors in mixed species forest canopy. Tree Physiol 19:839–852

    Article  PubMed  Google Scholar 

  • Niinemets Ü, Kollist H, García-Plazaola JI, Hernández A, Becerril JM (2003) Do the capacity and kinetics for modification of xanthophyll cycle pool size depend on growth irradiance in temperate tress? Plant Cell Environ 26:1787–1801

    Article  CAS  Google Scholar 

  • Peng CL, Lin ZF, Su YZ, Lin GZ, Dou HY, Zhao CX (2006) The antioxidative functions of lutein: electron spin resonance studies and chemical detection. Funct Plant Biol 33:839–846

    Article  CAS  Google Scholar 

  • Phillip D, Young AJ (1995) Occurrence of the carotenoid lactucaxanthin in higher plant LHC II. Photosynth Res 43:273–282

    Article  CAS  PubMed  Google Scholar 

  • Pogson BJ, Rissler HM (2000) Genetic manipulation of carotenoid biosynthesis and photoproteciton. Phil Trans R Soc B 355:1395–1403

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Rabinowitch HD, Budowski P, Kedar N (1975) Carotenoids and epoxide cycles in mature-green tomatoes. Planta 122:91–97

    Article  CAS  PubMed  Google Scholar 

  • Razungles AJ, Babic I, Sapisd JC, Bayonove CL (1996) Particular behaviour of epoxy xanthophylls during veraison and maturation of grape. J Agric Food Chem 44:3821–3825

    Article  CAS  Google Scholar 

  • Snyder AM, Clark BM, Bungard RA (2005) Light-dependent conversion of carotenoids in the parasitic angiosperm Cuscuta reflexa L. Plant Cell Environ 28:1326–1333

    Article  CAS  Google Scholar 

  • Tai CY, Chen BH (2000) Analysis and stability of carotenoids in the daylily (Hemerocallis disticha) as affected by various treatments. J Agric Food Chem 58:5962–5964

    Article  Google Scholar 

  • Thayer SS, Björkman O (1990) Leaf xanthophyll content and composition in sun and shade determined by HPLC. Photosynth Res 23:331–343

    Article  CAS  PubMed  Google Scholar 

  • Verhoeven AS, Adams WW III, Demmig-Adams B, Croce R, Bassi R (1999) Xanthophyll cycle pigment localization and dynamics during exposure to low temperatures and light stress in Vinca major. Plant Physiol 120:727–738

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Watson TL, Close DC, Davidson NJ, Davies NW (2004) Pigment dynamics during cold-induced photoinhibition of Acacia melanoxylon. Funct Plant Biol 31:481–489

    Article  CAS  Google Scholar 

  • Young AJ, Phillip D, Savill J (1997) Carotenoids in higher plant photosynthesis. In: Pessaraki M (ed) Handbook of Photosynthesis. Taylor & Francis, New York, pp 575–596

    Google Scholar 

Download references

Acknowledgments

The authors acknowledge the support of research grants BFU 2010-15021, UPV/EHU-GV IT-299-07, and a Fellowship from the Basque Government, the doctor specialization grant from the UPV/EHU, and the JAE-Doc fellow from the Spanish National Research Council (CSIC) received by RE. We also thank Brian Webster for language editing. We are greatly indebted to all the researchers involved in the Lx-L cycle for advancing knowledge in this field, and especially to our friends and colleagues Barry Osmond and Shizue Matsubara for their helpful comments and continuous advice in the endeavor to understand what is behind the Lx-L cycle. We also thank Marisol Jimenez, Domingo Morales, Patricia Brito, Eduardo Jimenez and Beatriz Fernandez-Marín for their constant help and support during field studies in Tenerife. Finally, we thank the useful comments of the reviewers and the editor.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raquel Esteban .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Esteban, R., García-Plazaola, J.I. (2014). Involvement of a Second Xanthophyll Cycle in Non-Photochemical Quenching of Chlorophyll Fluorescence: The Lutein Epoxide Story. In: Demmig-Adams, B., Garab, G., Adams III, W., Govindjee, . (eds) Non-Photochemical Quenching and Energy Dissipation in Plants, Algae and Cyanobacteria. Advances in Photosynthesis and Respiration, vol 40. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-9032-1_12

Download citation

Publish with us

Policies and ethics