Skip to main content

Abstract

There has been a huge debate over the definition of the species concept. In this paper, we take part in this debate and propose a definition that we claim is based on the theory of evolution as it is used today. We consider the set of all past, present and future organisms on Earth and call “species” the diverging branches (between two branching events or a branching event and an extinction) as species. Most of them are very difficult to discover. However, we claim that this definition provides biologists with a sound conceptual ground.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    This citation has often been interpreted as indicating Darwin’s nominalism vis-à-vis species. However, Beatty (1985) and Stamos (2007) have shown that this is a reductive interpretation. Darwin’s dynamic conception of the history of life leads him to refuse his predecessors’ and contemporaries’ static definitions, but this does not mean that he rejects the existence of relatively stable species, at least within a certain time period, linked together as they are by the fundamental relationship of “common descent”.

  2. 2.

    For an idea of these discussions, there are articles by Cracraft (1987), O’Hara (1993), Frost and Kluge (1994), Mayden (1997), or Lherminier and Solignac’s (2005) book.

  3. 3.

    See for example Hey (2006), Gamble et al. (2008), Stockman and Bond (2007).

  4. 4.

    Published only in 1973, but the manuscript dates to 1960.

  5. 5.

    The probabilist approaches have also begun to be developed in other areas of biology, See for example Kupiec (2008) and Heams (2009).

  6. 6.

    http://myxo.css.msu.edu/ecoli/.

  7. 7.

    A formalization of this summary formulation is proposed in Barberousse and Samadi, Chap. 11, in this volume.

  8. 8.

    See also Barriel, Chap. 7, in this volume.

  9. 9.

    This is phenotypic plasticity. See for example, in plants, Kaplan (2002).

  10. 10.

    Another spectacular case involves three families of deep-water Teleosteans (Johnson et al. 2009): the Cetominidae described in 1895 by Goode & Bean, today divided into 9 genera et 20 species; Mirapinnidae described in 1956 by Bertelsen & Marshall, divided into 3 genera and 5 species; Megalomycteridae described by Myers & Freihoferen in 1966 divided among 4 monotypic genera (i.e. only comprising on species). Among the some 600 specimens examined for Cetominidae, all collected at depths greater than 1,000 m, all those that were sexually mature were female. The larch jaws of these specimens allowed them to ingest large prey in a deep environment that offered little food. The 120 known specimens of Mirapinnidae have always been collected at depths less than 200 m and are all sexually immature. They feed on copepods (small crustaceans) that are abundant in the nutrient-rich water near the surface. Finally, the 65 specimens attributed to Megalomycteridae have all been harvested at depths greater than 1,000 m and are all male. These males do not have an esophagus or a stomach and seem to live only on reserves stockpiled in a large liver. New catches have allowed for the observation of juveniles’ transformation into adults and suggests a new interpretation of this diversity: the three families are in fact a single one! Molecular data support this interpretation. However, the data remain too fragmentary to coherently re-sort the males, females and juveniles and thus to propose a new way of dividing up the species within this unified family.

  11. 11.

    For more details on the causes of phenotypic diversity within a species, See for example Rueffler et al. (2006).

  12. 12.

    Contrary to a commonly spread idea, using “types” does not correspond to a typological approach but rather to a material means to name taxonomic hypotheses.

  13. 13.

    http://barcoding.si.edu/.

References

  • Beatty, J. (1985). Speaking of species: Darwin’s strategy. In D. Kohn (Ed.), The Darwinian heritage. Princeton: Princeton University Press.

    Google Scholar 

  • Cracraft, J. (1987). Species concepts and the ontology of evolution. Biology and Philosophy, 2, 329–346.

    Article  Google Scholar 

  • Cuvier, G. (1830). Discours sur les révolutions de la surface du globe (6th ed.). Paris: Edmond d’Ocagne.

    Google Scholar 

  • Darwin, C. (1859). The origins of species by means of natural selection, or the preservation of favored races in the struggle for life. New York: Modern Library.

    Google Scholar 

  • De Candolle, A. P. (1844). Théorie élémentaire de la botanique (3rd ed.). Paris: Roret.

    Google Scholar 

  • De Queiroz, K. (1998). The general lineage concept of species, species criteria, and the process of speciation: a conceptual unification and terminological recommendations. In D. J. Howard & S. H. Berlocher (Eds.), Endless forms. Species and speciation (pp. 57–75). Oxford: Oxford University Press.

    Google Scholar 

  • Desarthe, A. (2002). Petit Prince Pouf. L’École des loisirs.

    Google Scholar 

  • Foale, S. (1999). Que lire dans un nom? La taxonomie des poissons du Nggela occidental (Îles Salomon). Ressources marines et traditions, Bulletin de la CPS, 9, 3–20.

    Google Scholar 

  • Frost, D. R., & Kluge, A. G. (1994). A consideration of epistemology in systematic biology, with special reference to species. Cladistics, 10, 259–294.

    Article  Google Scholar 

  • Gamble, T., Berendzen, P. B., Shaffer, H. B., Starkey, D. E., & Simons, A. M. (2008). Species limits and phylogeography of North American cricket frogs (Acris : Hylidae). Molecular Phylogenetics and Evolution, 48, 112–125.

    Article  CAS  PubMed  Google Scholar 

  • Grant, P. R., & Grant, B. R. (1997). Genetics and the origin of bird species. Proceedings of the National Academy of Sciences of the United States of America, 94, 7768–7775.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Guinand, Y., & Lemessa, D. (2000). Wild-food plants in southern Ethiopia: Reflections on the role of ‘famine-foods’ at a time of drought. UN-Emergencies Unit for Ethiopia, UNDP Emergencies Unit for Ethiopia.

    Google Scholar 

  • Heams, T. (2009). Expression stochastique des gènes et différenciation cellulaire. In J.-J. Kupiec, O. Gandrillon, M. Morange, & M. Silberstein (dir.), Le hasard au cœur de la cellule. Probabilités, déterminisme, génétique. Paris: Syllepse.

    Google Scholar 

  • Hebert, P. D., Cywinska, A., Ball, S. L., & deWaard, J. R. (2003). Biological identifications through DNA barcodes. Proceedings of the Royal Society of London B: Biological Sciences, 270, 313–321.

    Article  CAS  Google Scholar 

  • Hennig, W. (1966). Phylogenetic systematics. Urbana: University of Illinois Press.

    Google Scholar 

  • Hey, J. (2006). On the failure of modern species concepts. Trends in Ecology & Evolution, 21, 447–450.

    Article  Google Scholar 

  • Johnson, G. D., Paxton, J. R., Sutton, T. T., Satoh, T. P., Sado, T., Nishida, M., & Miya, M. (2009). Deep-sea mystery solved: Astonishing larval transformations and extreme sexual dimorphism unite three fish families. Biology Letters, 5, 235–239.

    Google Scholar 

  • Kaplan, Z. (2002). Phenotypic plasticity in Potamogeton (Potamogetonaceae). Folia Geobotanica, 37, 141–170.

    Article  Google Scholar 

  • Kimura, M. (1983). The neutral theory of molecular evolution. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Kupiec, J.-J. (2008). L’origine des individus. Paris: Fayard.

    Google Scholar 

  • Leclerc de Buffon, G.-L. (1835–1837). Œuvres complètes (Vol. 9). Paris: Duménil.

    Google Scholar 

  • Lessios, H. A. (2008). The great American schism: Divergence of marine organisms after the rise of the Central American Isthmus. Annual Review of Ecology, Evolution, and Systematics, 39, 63–91.

    Article  Google Scholar 

  • Lewontin, R. C. (1970). The units of selection. Annual Review of Ecology and Systematics, 1, 1–18.

    Article  Google Scholar 

  • Lherminier, P., & Solignac, M. (2005). De l’espèce. Paris: Syllepse.

    Google Scholar 

  • Mallet, J. (1995). A species definition for the modern synthesis. Trends in Ecology & Evolution, 10, 294–299.

    Article  CAS  Google Scholar 

  • Mayden, R. L. (1997). A hierarchy of species concepts: The denouement in the saga of the species problem. Systematics Association, 54, 381–424.

    Google Scholar 

  • Mayr, E. (1942). Systematics and the origin of species. New York: Columbia University Press.

    Google Scholar 

  • O’Hara, R. J. (1993). Systematic generalization, historical fate, and the species problem. Systematic Biology, 42, 231–246.

    Article  Google Scholar 

  • Rueffler, C., Van Dooren, T. J. M., Leimar, O., & Abrams, P. A. (2006). Disruptive selection and then what? Trends in Ecology & Evolution, 21, 238–245.

    Article  Google Scholar 

  • Samadi, S., & Barberousse, A. (2005). L’arbre, le réseau et les espèces. Une définition du concept d’espèce ancrée dans la théorie de l’évolution. Biosystema, 24, 53–62.

    Google Scholar 

  • Samadi, S., & Barberousse, A. (2006). The tree, the network, and the species. Biological Journal of the Linnean Society, 89, 509–521.

    Article  Google Scholar 

  • Samadi, S., & Barberousse, A. (2009). Towards new, well-grounded practices. A response to Velasco. Biological Journal of the Linnaean Society, 97, 217–222.

    Article  Google Scholar 

  • Seideman, T. (1992). Barcodes Sweep the World. In C. J. Amato (Ed.), Inside out: Wonders of modern technology. New York: Smithmark. www.barcoding.com/information/barcode_history.shtml

  • Simpson, G. G. (1951). The species concept. Evolution, 5, 285–298.

    Article  Google Scholar 

  • Stamos, D. N. (2007). Darwin and the nature of species (273 pp.). Albany: SUNY Press.

    Google Scholar 

  • Stockman, A. K., & Bond, J. E. (2007). Delimiting cohesion species: Extreme population structuring and the role of ecological interchangeability. Molecular Ecology, 16, 3374–3392.

    Article  CAS  PubMed  Google Scholar 

  • Taylor, J. W., Jacobson, D. J., Kroken, S., Kasuga, T., Geiser, D. M., Hibbett, D. S., & Fisher, M. C. (2000). Phylogenetic species recognition and species concepts in fungi”. Fungal Genetics and Biology, 31, 21–32.

    Article  CAS  PubMed  Google Scholar 

  • Turelli, M., Barton, N. H., & Coyne, J. A. (2001). Theory and speciation. Trends in Ecology & Evolution, 16, 330–343.

    Article  Google Scholar 

  • Vortsepneva, E., Tzetlin, A., Purschke, G., Mugue, N., Hass-Cordes, E., & Zhadan, A. (2008). The parasitic polychaete known as Asetocalamyzas laonicola (Calamyzidae) is in fact the dwarf male of the spionid Scolelepis laonicola (comb. nov.). Invertebrate Biology, 127, 403–416.

    Article  Google Scholar 

  • Wiley, E. O. (1981). Phylogenetics: The theory and practice of phylogenetic systematics. New York: Wiley.

    Google Scholar 

  • Williams, M. (1973). The logical basis of natural selection and other evolutionary controversies. In M. Bunge (Ed.), The methodological unity of science. Dordrecht/Boston: Reidel.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sarah Samadi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Samadi, S., Barberousse, A. (2015). Species. In: Heams, T., Huneman, P., Lecointre, G., Silberstein, M. (eds) Handbook of Evolutionary Thinking in the Sciences. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-9014-7_8

Download citation

Publish with us

Policies and ethics