Skip to main content

Systems Biology and Evolutionary Biology

  • Chapter
  • First Online:
Handbook of Evolutionary Thinking in the Sciences
  • 3289 Accesses

Abstract

In this chapter, I examine the recent development of systems biology in the light of its relations with evolutionary biology. Although a large part of systems biology is not basically interested in evolutionary issues, I show that it cannot ignore these. I focus particularly on the search of design principles, which are general principles of regulation and organization thought to be similar in engineering and biological systems. These design principles are seen as the result of convergent evolution at the molecular level, but those scientists trying to uncover such principles follow mainly approaches inspired by engineering and have rarely integrated genuine evolutionary methods. Several arguments for and against the study of biological systems based on analogies with artificial systems are discussed, but in the end I show that systems biology cannot move forward on these issues without stronger and deeper integration with evolutionary approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Ernst Mayr famously defended the autonomy of evolutionary biology, but one can find similar examples in physiology or other traditional fields.

  2. 2.

    This is now changing, with the emergence of variety of evolutionary systems biology research. See for example (Koonin and Wolf 2006; Knight and Pinney 2009; Rodrigues and Wagner 2009; Papp et al. 2011; Soyer 2012). For a general historical and philosophical analysis of the field, see (O’Malley 2012).

  3. 3.

    For introductory textbooks, see for example (Alberghina and Westerhoff 2007; Alon 2007; Bringmann et al. 2006; Palsson 2006). For an early review, see (Kitano 2002). A collection of philosophical discussions on systems biology can be found in Boogerd et al. (2007b).

  4. 4.

    Alex Rosenberg (1994) has argued that natural selection selects for functions and is blind to structures when they are functionally equivalent. This argument is based on the concept of multiple realizability, which states that a function can be produced by many different structures.

  5. 5.

    This idea is close to Dennett’s “forced moves” or “good tricks” in the design space (Dennett 1995).

  6. 6.

    Ideas coming from engineering are of course not new in molecular biology, but only recently has a general and rigorous analysis started to be conducted.

  7. 7.

    See Beatty 1995.

  8. 8.

    The most complete discussion on the issue of robustness, which is central in systems biology, is Wagner (2005).

  9. 9.

    But the idea that motifs can be analysed relatively independently from the larger context is problematic (Mazurie et al. 2005; Valverde and Sole 2005).

  10. 10.

    One can find many studies illustrating how computational and experimental approaches are complementary. See for example (Gardner et al. 2000; Elowitz and Leibler 2000, or more recently Stricker et al. 2008).

  11. 11.

    But see (Wouters 2007).

  12. 12.

    Such events are probably frequent in evolution (Zhang 2003).

  13. 13.

    For another criticism of Alon’s hypothesis, see (Konagurthu and Lesk 2008; Knabe et al. 2008; Sole and Valverde 2008).

  14. 14.

    See also Sole and Valverde (2006)

References

  • Alberghina, L., & Westerhoff, H. (Eds.). (2007). Systems biology, definitions and perspectives. Berlin: Springer.

    Google Scholar 

  • Alon, U. (2007). An introduction to systems biology: Design principles of biological circuits. Boca Raton: Chapman & Hall.

    Google Scholar 

  • Beatty, J. (1995). The evolutionary contingency thesis. In G. Wolters & J. G. Lennox (Eds.), Concepts, theories, and rationality in the biological sciences, the second Pittsburgh-Konstanz colloquium in the philosophy of science. Pittsburgh: University of Pittsburgh Press.

    Google Scholar 

  • Boogerd, F. C., et al. (2007a). Towards philosophical foundations of systems biology: Introduction. In F. Boogerd, F. J. Bruggeman, J. H. F. Hofmeyr, & H. V. Westerhoff (Eds.), Systems biology: philosophical foundations. Amsterdam: Elsevier.

    Google Scholar 

  • Boogerd, F. C., et al. (2007b). Systems biology: Philosophical foundations. Amsterdam: Elsevier.

    Google Scholar 

  • Braillard, P. A. (2010). Systems biology and the mechanistic framework. History and Philosophy of the Life Sciences, 32, 43–62.

    PubMed  Google Scholar 

  • Bringmann, P., et al. (2006). Systems biology: Applications and perspectives. Berlin: Springer.

    Google Scholar 

  • Ciliberti, S., et al. (2007). Robustness can evolve gradually in complex regulatory gene networks with varying topology. PLoS Computational Biology, 3, e15.

    Article  PubMed Central  PubMed  Google Scholar 

  • Conant, G. C., & Wagner, A. (2003). Convergent evolution in gene circuits. Nature Genetics, 34, 264–266.

    Article  CAS  PubMed  Google Scholar 

  • Cordero, O., & Hogeweg, P. (2006). Feed-forward loop circuits as a side effect of genome evolution. Molecular Biology and Evolution, 23, 1931–1936.

    Article  CAS  PubMed  Google Scholar 

  • Cork, J. M., et al. (2004). The evolution of molecular genetic pathways and networks. BioEssays, 26, 479–484.

    Article  CAS  PubMed  Google Scholar 

  • Crick, F. H. C. (1968). The origin of the genetic code. Journal of Molecular Biology, 38, 367–379.

    Article  CAS  PubMed  Google Scholar 

  • Dennett, D. (1995). Darwin dangerous idea. London: Penguin.

    Google Scholar 

  • Elowitz, M., & Leibler, S. (2000). A synthetic oscillatory network of transcriptional regulators. Nature, 403, 335–338.

    Article  CAS  PubMed  Google Scholar 

  • Endy, D. (2005). Foundations for engineering biology. Nature, 438, 449–453.

    Article  CAS  PubMed  Google Scholar 

  • Francois, P., & Hakim, V. (2004). Design of genetic networks with specified functions by evolution in silico. Proceedings of the National Academy of Sciences, 101, 580–585.

    Article  CAS  Google Scholar 

  • Fujimoto, K., et al. (2008). Network evolution of body plans. PLoS One, 3, e2772.

    Article  PubMed Central  PubMed  Google Scholar 

  • Gardner, T. S., et al. (2000). Construction of a genetic toggle switch in Escherichia coli. Nature, 403, 339–342.

    Article  CAS  PubMed  Google Scholar 

  • Gould, S. J., & Lewontin, R. (1979). The spandrels of San Marco and the Panglossian paradigm: A critique of the adaptationist programme. Proceedings of the Royal Society of London B, 205, 581–598.

    Article  CAS  Google Scholar 

  • Hartwell, L. H., et al. (1999). From molecular to modular cell biology. Nature, 402, C47–C52.

    Article  CAS  PubMed  Google Scholar 

  • Hieter, P., & Boguski, M. (1997). Functional genomics: It’s all how you read it. Science, 278, 601–602.

    Article  CAS  PubMed  Google Scholar 

  • Jacob, F. (1977). Evolution and tinkering. Science, 196, 1161–1166.

    Article  CAS  PubMed  Google Scholar 

  • Kitano, H. (2002). Looking beyond the details: A rise in system-oriented approaches in genetics and molecular biology. Current Genetics, 41, 1–10.

    Article  CAS  PubMed  Google Scholar 

  • Knabe, J. F., et al. (2008). Do motifs reflect evolved function?—No convergent evolution of genetic regulatory network subgraph topologies. Bio Systems, 94, 68–74.

    Article  PubMed  Google Scholar 

  • Knight, C. G., & Pinney, J. W. (2009). Making the right connections: Biological networks in the light of evolution. BioEssays, 31, 1080–1090.

    Article  PubMed Central  PubMed  Google Scholar 

  • Konagurthu, A. S., & Lesk, A. M. (2008). On the origin of distribution patterns of motifs in biological networks. BMC Systems Biology, 2, 73.

    Article  PubMed Central  PubMed  Google Scholar 

  • Koonin, E. V., & Wolf, Y. (2006). Evolutionary systems biology: Links between gene evolution and function. Current Opinion in Biotechnology, 17, 481–487.

    Article  CAS  PubMed  Google Scholar 

  • Lee, T. I., et al. (2002). Transcriptional regulatory networks in Saccharomyces cerevisiae. Science, 298, 799–804.

    Article  CAS  PubMed  Google Scholar 

  • Lewens, T. (2004). Organisms and artifacts, design in nature and elsewhere. Cambridge, MA: The MIT Press.

    Google Scholar 

  • Lynch, M. (2007). The evolution of genetic networks by non-adaptive processes. Nature Reviews Genetics, 8, 803–813.

    Article  CAS  PubMed  Google Scholar 

  • Ma, W., et al. (2006). Robustness and modular design of the Drosophila segment polarity network. Molecular Systems Biology, 2, 70.

    Article  PubMed Central  PubMed  Google Scholar 

  • Mangan, S., et al. (2003). The coherent feed-forward loop serves as a sign-sensitive delay element in transcription networks. Journal of Molecular Biology, 334, 197–204.

    Article  CAS  PubMed  Google Scholar 

  • Mazurie, A., et al. (2005). An evolutionary and functional assessment of regulatory network motifs. Genome Biology, 6, R35.

    Article  PubMed Central  PubMed  Google Scholar 

  • Medina, M. (2005). Genomes, phylogeny and evolutionary systems biology. Proceedings of the National Academy of Sciences of the United States of America, 102, 6630–6635.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Milo, R., et al. (2002). Network motifs: Simple building blocks of complex networks. Science, 298, 824–827.

    Article  CAS  PubMed  Google Scholar 

  • O’Malley, M. A. (2012). Evolutionary systems biology: Historical and philosophical perspectives on an emerging synthesis. In O. S. S. Soyer (Ed.), Evolutionary systems biology. New York: Springer.

    Google Scholar 

  • O’Malley, M. A., & Soyer, O. S. (2012). The roles of integration in molecular systems biology. Studies in History and Philosophy of Biological and Biomedical Sciences, 43(1), 58–68.

    Article  PubMed  Google Scholar 

  • Paladugu, S. R. (2006). In silico evolution of functional modules in biochemical networks. IEE Proceedings – Systems Biology, 153, 223–235.

    Article  CAS  PubMed  Google Scholar 

  • Palsson, B. O. (2006). Systems biology: Properties of reconstructed networks. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Papp, B., et al. (2011). Systems-biology approaches for predicting genome evolution. Nature Reviews Genetics, 12, 591–602.

    Article  CAS  PubMed  Google Scholar 

  • Quayle, A. P., & Bullock, S. (2006). Modelling the evolution of genetic regulatory networks. Journal of Theoretical Biology, 238, 737–753.

    Article  CAS  PubMed  Google Scholar 

  • Rodrigues, J. F. M., & Wagner, A. (2009). Evolutionary plasticity and innovations in complex metabolic reaction networks. PLoS Computational Biology, 5(12), e1000613.

    Article  Google Scholar 

  • Rosenberg, A. (1994). Instrumental biology or the disunity of science. Chicago: University of Chicago Press.

    Google Scholar 

  • Shen-Orr, S. S., et al. (2002). Network motifs in the transcriptional regulation network of Escherichia coli. Nature Genetics, 31, 64–68.

    Article  CAS  PubMed  Google Scholar 

  • Sole, R. V., & Valverde, S. (2006). Are network motifs the spandrels of cellular complexity? Trends in Ecology & Evolution, 21(8), 419–422.

    Article  Google Scholar 

  • Sole, R. V., & Valverde, S. (2008). Spontaneous emergence of modularity in cellular networks. Journal of the Royal Society Interface, 5, 129–133.

    Article  PubMed Central  Google Scholar 

  • Soyer, O. S. S. (Ed.). (2012). Evolutionary systems biology. New York: Springer.

    Google Scholar 

  • Stone, J. R., & Wray, G. A. (2001). Rapid evolution of cis-regulatory sequences via local point mutations. Molecular Biology and Evolution, 18, 1764–1770.

    Article  CAS  PubMed  Google Scholar 

  • Stricker, J., et al. (2008). A fast, robust and tunable synthetic gene oscillator. Nature, 456, 516–519.

    Article  CAS  PubMed  Google Scholar 

  • Swiers, G., et al. (2006). Genetic regulatory networks programming hematopoietic stem cells and erythroid lineage specification. Developmental Biology, 294, 525–540.

    Article  CAS  PubMed  Google Scholar 

  • Tyson, J. J., et al. (2008). Biological switches and clocks. Journal of the Royal Society Interface, 5, S1–S8.

    Article  PubMed Central  Google Scholar 

  • Valverde, S., & Sole, R. V. (2005). Network motifs in computational graphs: A case study in software architecture. Physical Review E, 72, 26107.

    Article  Google Scholar 

  • von Dassow, G., & Meir, E. (2004). Exploring modularity with dynamical models of gene networks. In G. Schlosser & G. P. Wagner (Eds.), Modularity in development and evolution. Chicago: University of Chicago Press.

    Google Scholar 

  • Wagner, A. (2003). Does selection mold molecular networks? Science, 202, 41–43.

    Google Scholar 

  • Wagner, A. (2005). Robustness and evolvability in living systems. Princeton: Princeton University Press.

    Google Scholar 

  • Wolf, D., & Arkin, A. (2003). Motifs, modules, and games. Current Opinion in Microbiology, 6, 125–134.

    Article  CAS  PubMed  Google Scholar 

  • Wouters, A. (2007). Design explanation: Determining the constraints on what can be alive. Erkenntnis, 67, 65–80.

    Article  Google Scholar 

  • Zhang, J. (2003). Evolution by gene duplication: An update. Trends in Ecology & Evolution, 18, 292–298.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pierre-Alain Braillard .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Braillard, PA. (2015). Systems Biology and Evolutionary Biology. In: Heams, T., Huneman, P., Lecointre, G., Silberstein, M. (eds) Handbook of Evolutionary Thinking in the Sciences. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-9014-7_16

Download citation

Publish with us

Policies and ethics