Skip to main content

Evolutionary Developmental Biology: Philosophical Issues

  • Chapter
  • First Online:
Handbook of Evolutionary Thinking in the Sciences

Abstract

Evolutionary developmental biology (Evo-devo) is a loose conglomeration of research programs in the life sciences with two main axes: (a) the evolution of development, or inquiry into the pattern and processes of how ontogeny varies and changes over time; and, (b) the developmental basis of evolution, or inquiry into the causal impact of ontogenetic processes on evolutionary trajectories—both in terms of constraint and facilitation. Philosophical issues are found along both axes surrounding concepts such as evolvability, novelty, and modularity. The developmental basis of evolution has garnered much attention because it speaks to the possibility of revising a standard construal of evolutionary theory, but the evolution of development harbors its own conceptual questions. This article addresses the heterogeneity of Evo-devo’s conglomerate structure (including disagreements over its individuation), as well as the concepts and controversies of philosophical interest pertaining to the evolution of development and the developmental basis of evolution. Future research will benefit from a shift away from global theorizing toward the scientific practices of Evo-devo.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The difference between “diminish” and “complement” can be subtle. Developmental explanations do not necessarily expose adaptive explanations as false and sometimes reveal their incompleteness. But these interpretations turn on whether developmental and adaptive explanations are thought of as belonging to the same type (e.g., causal explanation), and whether they are understood to be explaining the same target phenomenon.

References

  • Alberch, P., & Alberch, J. (1981). Heterochronic mechanisms of morphological diversification and evolutionary change in the neotropical salamander, Bolitoglossa occidentalis (Amphibia: Plethodontidae). Journal of Morphology, 167, 249–264.

    Google Scholar 

  • Alberch, P., & Gale, E. A. (1985). A developmental analysis of an evolutionary trend: Digital reduction in amphibians. Evolution, 39, 8–23.

    Google Scholar 

  • Amundson, R. (1994). Two concepts of constraint: Adaptationism and the challenge from developmental biology. Philosophy of Science, 61, 556–578.

    Google Scholar 

  • Amundson, R. (1998). Typology reconsidered: Two doctrines on the history of evolutionary biology. Biology and Philosophy, 13, 153–177.

    Google Scholar 

  • Amundson, R. (2005). The changing role of the embryo in evolutionary thought: Roots of Evo-devo. New York: Cambridge University Press.

    Google Scholar 

  • Ankeny, R., & Leonelli, S. (2011). What’s so special about model organisms? Studies in History and Philosophy of Science, 42, 313–323.

    Google Scholar 

  • Arthur, W. (2002). The emerging conceptual framework of evolutionary developmental biology. Nature, 415, 757–764.

    CAS  PubMed  Google Scholar 

  • Arthur, W. (2011). Evolution: A developmental approach. Oxford: Wiley-Blackwell.

    Google Scholar 

  • Bever, G., Gauthier, J., & Wagner, G. (2011). Finding the frame shift: Digit loss, developmental variability, and the origin of the avian hand. Evolution & Development, 13, 269–279.

    Google Scholar 

  • Bolker, J. A. (1995). Model systems in developmental biology. BioEssays, 17, 451–455.

    CAS  PubMed  Google Scholar 

  • Brigandt, I. (2007). Typology now: Homology and developmental constraints explain evolvability. Biology and Philosophy, 22, 709–725.

    Google Scholar 

  • Brigandt, I. (2010). Beyond reduction and pluralism: Toward an epistemology of explanatory integration in biology. Erkenntnis, 73, 295–311.

    Google Scholar 

  • Brigandt, I., & Love, A. C. (2010). Evolutionary novelty and the Evo-devo synthesis: Field notes. Evolutionary Biology, 37, 93–99.

    Google Scholar 

  • Brigandt, I., & Love, A. C. (2012). Conceptualizing evolutionary novelty: Moving beyond definitional debates. Journal of Experimental Zoology (Mol Dev Evol), 318, 417–427.

    Google Scholar 

  • Calcott, B. (2009). Lineage explanations: Explaining how biological mechanisms change. British Journal for Philosophy of Science, 60, 51–78.

    Google Scholar 

  • Carroll, S. B. (2005). Evolution at two levels: On genes and form. PLoS Biology, 3, e245.

    PubMed Central  PubMed  Google Scholar 

  • Carroll, S. B. (2008). Evo-devo and an expanding evolutionary synthesis: A genetic theory of morphological evolution. Cell, 134, 25–36.

    CAS  PubMed  Google Scholar 

  • Davidson, E. H. (2001). Genomic regulatory systems: Development and evolution. San Diego: Academic.

    Google Scholar 

  • Davidson, E. H. (2006). The regulatory genome: Gene regulatory networks in development and evolution. San Diego: Academic.

    Google Scholar 

  • De Robertis, E. M. (2008). Evo-devo: Variations on ancestral themes. Cell, 132, 185–195.

    PubMed Central  PubMed  Google Scholar 

  • DiTeresi, C. A. (2010). Taming variation: Typological thinking and scientific practice in developmental biology. PhD dissertation, University of Chicago, Chicago.

    Google Scholar 

  • Duboule, D. (2010). The Evo-devo comet. EMBO Reports, 11, 489.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Erwin, D. H. (2011). Evolutionary uniformitarianism. Developmental Biology, 357, 27–34.

    CAS  PubMed  Google Scholar 

  • Gerhart, J., & Kirschner, M. (2007). The theory of facilitated variation. Proceedings of the National Academy of Sciences U S A, 104, 8582–8589.

    CAS  Google Scholar 

  • Gilbert, S. F., & Epel, D. (2009). Ecological developmental biology: Integrating epigenetics, medicine, and evolution. Sunderland: Sinauer.

    Google Scholar 

  • Gompel, N., Prud’homme, B., Wittkopp, P. J., Kassner, V. A., & Carroll, S. B. (2005). Chance caught on the wing: cis-regulatory evolution and the origin of pigment patterns in Drosophila. Nature, 433, 481–487.

    CAS  PubMed  Google Scholar 

  • Gordon, K., & Ruvinsky, I. (2012). Tempo and mode in evolution of transcriptional regulation. PLoS Genetics, 8, e1002432.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Griesemer, J. (2011). Heuristic reductionism and the relative significance of epigenetic inheritance in evolution. In B. Hallgrímmson & B. K. Hall (Eds.), Epigenetics: Linking genotype and phenotype in development and evolution (pp. 14–40). Berkeley: University of California Press.

    Google Scholar 

  • Hall, B. K. (1997). Phylotypic stage or phantom: Is there a highly conserved embryonic stage in vertebrates? Trends in Ecology and Evolution, 12, 461–463.

    CAS  PubMed  Google Scholar 

  • Hall, B. K. (1999). Evolutionary developmental biology (2nd ed.). Dordrecht: Kluwer Academic Publishers.

    Google Scholar 

  • Hall, B. K. (2002). Palaeontology and evolutionary developmental biology: A science of the nineteenth and twenty-first centuries. Palaeontology, 45, 647–669.

    Google Scholar 

  • Hallgrímmson, B., & Hall, B. K. (Eds.). (2011). Epigenetics: Linking genotype and phenotype in development and evolution. Berkeley: University of California Press.

    Google Scholar 

  • Hendrikse, J. L., Parsons, T. E., & Hallgrímmson, B. (2007). Evolvability as the proper focus of evolutionary developmental biology. Evolution & Development, 9, 393–401.

    Google Scholar 

  • Hinman, V. F., Yankura, K. A., & McCauley, B. S. (2009). Evolution of gene regulatory network architectures: Examples of subcircuit conservation and plasticity between classes of echinoderms. Biochimica et Biophysica Acta, 1789, 326–332.

    CAS  PubMed  Google Scholar 

  • Hoekstra, H. E., & Coyne, J. A. (2007). The locus of evolution: Evo-devo and the genetics of adaptation. Evolution, 61, 995–1016.

    PubMed  Google Scholar 

  • Hopwood, N. (2007). A history of normal plates, tables and stages in vertebrate embryology. International Journal of Developmental Biology, 51, 1–26.

    PubMed Central  PubMed  Google Scholar 

  • Jablonka, E., & Lamb, M. J. (2005). Evolution in four dimensions: Genetic, epigenetic, behavioral, and symbolic variation in the history of life. Cambridge, MA: MIT Press.

    Google Scholar 

  • Jablonski, D. (2005). Evolutionary innovations in the fossil record: The intersection of ecology, development, and macroevolution. Journal of Experimental Zoology (Mol Dev Evol), 304, 504–519.

    Google Scholar 

  • Jenner, R. A. (2006). Unburdening Evo-devo: Ancestral attractions, model organisms, and basal baloney. Development Genes and Evolution, 216, 385–394.

    PubMed  Google Scholar 

  • Jenner, R. A., & Wills, M. A. (2007). The choice of model organisms in Evo-devo. Nature Reviews Genetics, 8, 311–319.

    CAS  PubMed  Google Scholar 

  • Kellert, S. H., Longino, H. E., & Waters, C. K. (2006). Scientific pluralism (Minnesota studies in philosophy of science, Vol. 19). Minneapolis: University of Minnesota Press.

    Google Scholar 

  • Kimmel, C. B., Ballard, W. W., Kimmel, S. R., Ullmann, B., & Schilling, T. F. (1995). Stages of embryonic development of the zebrafish. Developmental Dynamics, 203, 253–310.

    CAS  PubMed  Google Scholar 

  • Kirschner, M., & Gerhart, J. (1998). Evolvability. Proceedings of the National Academy of Sciences U S A, 95, 8420–8427.

    CAS  Google Scholar 

  • Kuratani, S. (2009). Modularity, comparative embryology and Evo-devo: Developmental dissection of evolving body plans. Developmental Biology, 332, 61–69.

    CAS  PubMed  Google Scholar 

  • Laubichler, M. D. (2009). Form and function in Evo Devo: Historical and conceptual reflections. In M. D. Laubichler & J. Maienschein (Eds.), Form and function in developmental evolution (pp. 10–46). New York: Cambridge University Press.

    Google Scholar 

  • Laubichler, M. (2010). Evolutionary developmental biology offers a significant challenge to the neo-Darwinian paradigm. In F. J. Ayala & R. Arp (Eds.), Contemporary debates in philosophy of biology (pp. 199–212). Malden: Wiley-Blackwell.

    Google Scholar 

  • Laubichler, M. D., & Maienschein, J. (Eds.). (2007). From embryology to Evo-devo: A history of developmental evolution. Cambridge, MA: MIT Press.

    Google Scholar 

  • Lewens, T. (2009). What is wrong with typolological thinking? Philosophy of Science, 76, 355–371.

    Google Scholar 

  • Liem, K. F. (1990). Key evolutionary innovations, differential diversity, and symecomorphosis. In M. H. Nitecki (Ed.), Evolutionary innovations (pp. 147–170). Chicago: University of Chicago Press.

    Google Scholar 

  • Love, A. C. (2003a). Evolutionary morphology, innovation, and the synthesis of evolutionary and developmental biology. Biology and Philosophy, 18, 309–345.

    Google Scholar 

  • Love, A. C. (2003b). Evolvability, dispositions, and intrinsicality. Philosophy of Science, 70, 1015–1027.

    Google Scholar 

  • Love, A. C. (2006). Evolutionary morphology and Evo-devo: Hierarchy and novelty. Theory in Biosciences, 124, 317–333.

    PubMed  Google Scholar 

  • Love, A. C. (2007a). Functional homology and homology of function: Biological concepts and philosophical consequences. Biology and Philosophy, 22, 691–708.

    Google Scholar 

  • Love, A. C. (2007b). Morphological and paleontological perspectives for a history of Evo-devo. In M. D. Laubichler & J. Maienschein (Eds.), From embryology to Evo-devo: A history of developmental evolution (pp. 267–307). Cambridge, MA: MIT Press.

    Google Scholar 

  • Love, A. C. (2008). Explaining evolutionary innovation and novelty: Criteria of explanatory adequacy and epistemological prerequisites. Philosophy of Science, 75, 874–886.

    Google Scholar 

  • Love, A. C. (2009a). Marine invertebrates, model organisms, and the modern synthesis: Epistemic values, Evo-devo, and exclusion. Theory in Biosciences, 128, 19–42.

    PubMed  Google Scholar 

  • Love, A. C. (2009b). Typology reconfigured: From the metaphysics of essentialism to the epistemology of representation. Acta Biotheoretica, 57, 51–75.

    PubMed  Google Scholar 

  • Love, A. C. (2010a). Idealization in evolutionary developmental investigation: A tension between phenotypic plasticity and normal stages. Philosophical Transactions of the Royal Society, B: Biological Sciences, 365, 679–690.

    PubMed Central  Google Scholar 

  • Love, A. C. (2010b). Rethinking the structure of evolutionary theory for an extended synthesis. In M. Pigliucci & G. B. Müller (Eds.), Evolution—The extended synthesis (pp. 403–441). Cambridge, MA: MIT Press.

    Google Scholar 

  • Love, A. C. (2011). Darwin’s functional reasoning and homology. In M. Wheeler (Ed.), 150 years of evolution: Darwin’s impact on contemporary thought & culture (pp. 49–67). San Diego: SDSU Press.

    Google Scholar 

  • Love, A. C., & Raff, R. A. (2003). Knowing your ancestors: Themes in the history of Evo-devo. Evolution & Development, 5, 327–330.

    Google Scholar 

  • Lynch, M. (2007). The frailty of adaptive hypotheses for the origins of organismal complexity. Proceedings of the National Academy of Sciences U S A, 104, 8597–8604.

    CAS  Google Scholar 

  • Lynch, V. J., & Wagner, G. P. (2008). Resurrecting the role of transcription factor change in developmental evolution. Evolution, 62, 2131–2154.

    CAS  PubMed  Google Scholar 

  • Lynch, V. J., May, G., & Wagner, G. P. (2011). Regulatory evolution through divergence of a phosphoswitch in the transcription factor CEBPB. Nature, 480, 383–386.

    CAS  PubMed  Google Scholar 

  • Maynard Smith, J., Burian, R., Kauffman, S., Alberch, P., Campbell, J., Goodwin, B., Lande, R., Raup, D., & Wolpert, L. (1985). Developmental constraints and evolution. Quarterly Review of Biology, 60, 265–287.

    Google Scholar 

  • Mayr, E. (1960). The emergence of evolutionary novelties. In S. Tax (Ed.), Evolution after Darwin. Vol. 1: The evolution of life, its origin, history and future (pp. 349–380). Chicago: University of Chicago Press.

    Google Scholar 

  • Mikó, I., Friedrich, F., Yoder, M., Hines, H., Deitz, L., Bertone, M., Seltmann, K., Wallace, M., & Deans, A. (2012). On dorsal prothoracic appendages in treehoppers (Hemiptera: Membracidae) and the nature of morphological evidence. PLoS ONE, 7, e30137.

    PubMed Central  PubMed  Google Scholar 

  • Minelli, A. (2003). The development of animal form: Ontogeny, morphology, and evolution. Cambridge: Cambridge University Press.

    Google Scholar 

  • Minelli, A. (2010). Evolutionary developmental biology does not offer a significant challenge to the neo-Darwinian paradigm. In F. J. Ayala & R. Arp (Eds.), Contemporary debates in philosophy of biology (pp. 213–226). Malden: Wiley-Blackwell.

    Google Scholar 

  • Minelli, A., Brena, C., Deflorian, G., Maruzzo, D., & Fusco, G. (2006). From embryo to adult-beyond the conventional periodization of arthropod development. Development Genes and Evolution, 216, 373–383.

    PubMed  Google Scholar 

  • Müller, G. B. (2007). Evo-devo: Extending the evolutionary synthesis. Nature Reviews Genetics, 8, 943–949.

    PubMed  Google Scholar 

  • Müller, G. B., & Newman, S. A. (2005). The innovation triad: An EvoDevo agenda. Journal of Experimental Zoology (Mol Dev Evol), 304, 487–503.

    Google Scholar 

  • Newman, S. A. (1994). Generic physical mechanisms of tissue morphogenesis: A common basis for development and evolution. Journal of Evolutionary Biology, 7, 467–488.

    Google Scholar 

  • Newman, S. A., & Müller, G. B. (2005). Origination and innovation in the vertebrate limb skeleton: An epigenetic perspective. Journal of Experimental Zoology (Mol Dev Evol), 304, 593–609.

    Google Scholar 

  • Newman, S. A., Forgacs, G., & Müller, G. B. (2006). Before programs: The physical origination of multicellular forms. International Journal of Developmental Biology, 50, 289–299.

    CAS  PubMed  Google Scholar 

  • Niklas, K. J. (2009). Deducing plant function from organic form: Challenges and pitfalls. In M. D. Laubichler & J. Maienschein (Eds.), Form and function in developmental evolution (pp. 47–82). New York: Cambridge University Press.

    Google Scholar 

  • Palmer, A. R. (2012). Developmental plasticity and the origin of novel forms: Unveiling cryptic genetic variation via “use and disuse”. Journal of Experimental Zoology (Mol Dev Evol), 318, 466–479.

    Google Scholar 

  • Pavlicev, M., Norgard, E., Fawcett, G., & Cheverud, J. (2011). Evolution of pleiotropy: Epistatic interaction pattern supports a mechanistic model underlying variation in genotype-phenotype map. Journal of Experimental Zoology (Mol Dev Evol), 316, 371–385.

    Google Scholar 

  • Pigliucci, M. (2007). Do we need an extended evolutionary synthesis? Evolution, 61, 2743–2749.

    PubMed  Google Scholar 

  • Pigliucci, M., & Müller, G. B. (Eds.). (2010). Evolution—The extended synthesis. Cambridge, MA: MIT Press.

    Google Scholar 

  • Posnien, N., Koniszewski, N., Hein, H., & Bucher, G. (2011). Candidate gene screen in the red flour beetle Tribolium reveals Six3 as ancient regulator of anterior median head and central complex development. PLoS Genetics, 7, e1002416.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Prud’homme, B., Minervino, C., Hocine, M., Cande, J. D., Aouane, A., Dufour, H. D., Kassner, V. A., & Gompel, N. (2011). Body plan innovation in treehoppers through the evolution of an extra wing-like appendage. Nature, 473, 83–86.

    PubMed  Google Scholar 

  • Raff, R. A. (2000). Evo-Devo: The evolution of a new discipline. Nature Reviews Genetics, 1, 74–79.

    CAS  PubMed  Google Scholar 

  • Raff, R. A. (2007). Written in stone: Fossils, genes, and evo-devo. Nature Reviews Genetics, 8, 911–920.

    CAS  PubMed  Google Scholar 

  • Raff, R. A. (2008). Origins of the other metazoan body plans: The evolution of larval forms. Philosophical Transactions of the Royal Society, B: Biological Sciences, 363, 1473–1479.

    PubMed Central  Google Scholar 

  • Raff, E. C., Popodi, E. M., Kauffman, J. S., Sly, B. J., Turner, F. R., Morris, V. B., & Raff, R. A. (2003). Regulatory punctuated equilibrium and convergence in the evolution of developmental pathways in direct-developing sea urchins. Evolution & Development, 5, 478–493.

    Google Scholar 

  • Rosenberg, A., & Neander, K. (2009). Are homologies (selected effect or causal role) function free? Philosophy of Science, 76, 307–334.

    Google Scholar 

  • Salazar-Ciudad, I. (2006). Developmental constraints vs. variational properties: How pattern formation can help to understand evolution and development. Journal of Experimental Zoology (Mol Dev Evol), 306, 107–125.

    Google Scholar 

  • Salazar-Ciudad, I., Newman, S. A., & Solé, R. V. (2001a). Phenotypic and dynamical transitions in model genetic networks I. Emergence of patterns and genotype-phenotype relationships. Evolution & Development, 3, 84–94.

    CAS  Google Scholar 

  • Salazar-Ciudad, I., Solé, R. V., & Newman, S. A. (2001b). Phenotypic and dynamical transitions in model genetic networks II. Application to the evolution of segmentation mechanisms. Evolution & Development, 3, 95–103.

    CAS  Google Scholar 

  • Salinas-Saavedra, M., & Vargas, A. O. (2011). Cortical cytasters: A highly conserved developmental trait of Bilateria with similarities to Ctenophora. EvoDevo, 2, 23.

    PubMed Central  PubMed  Google Scholar 

  • Salthe, S. N. (1985). Evolving hierarchical systems: Their structure and representation. New York: Columbia University Press.

    Google Scholar 

  • Schwenk, K., & Wagner, G. P. (2003). Constraint. In B. K. Hall & W. M. Olson (Eds.), Keywords and concepts in evolutionary developmental biology (pp. 52–61). Cambridge, MA: Harvard University Press.

    Google Scholar 

  • Shubin, N., Tabin, C., & Carroll, S. (2009). Deep homology and the origins of evolutionary novelty. Nature, 457, 818–823.

    CAS  PubMed  Google Scholar 

  • Slack, J. M. W. (2006). Essential developmental biology (2nd ed.). Malden: Blackwell Publishing.

    Google Scholar 

  • Sommer, R. J. (2009). The future of evo-devo: Model systems and evolutionary theory. Nature Reviews Genetics, 10, 416–422.

    CAS  PubMed  Google Scholar 

  • Stearns, S. C. (1992). The evolution of life histories. New York: Oxford University Press.

    Google Scholar 

  • Sterelny, K. (2000). Development, evolution, and adaptation. Philosophy of Science, 67, S369–S387.

    Google Scholar 

  • Sterelny, K. (2007). What is evolvability? In M. Matthen & C. Stephens (Eds.), Philosophy of biology (Handbook of philosophy of science, pp. 163–178). Amsterdam: North-Holland/Elsevier.

    Google Scholar 

  • Stern, D. L. (2011). Evolution, development, and the predictable genome. Greenwood Village: Roberts and Company Publishers.

    Google Scholar 

  • Telford, M. J., & Budd, G. E. (2003). The place of phylogeny and cladistics in Evo-devo research. International Journal of Developmental Biology, 47, 479–490.

    PubMed  Google Scholar 

  • Wagner, G. P. (2000). What is the promise of developmental evolution? Part I: Why is developmental biology necessary to explain evolutionary innovations? Journal of Experimental Zoology (Molecular and Developmental Evolution), 288, 95–98.

    CAS  PubMed  Google Scholar 

  • Wagner, G. P. (2001). What is the promise of developmental evolution? Part II: A causal explanation of evolutionary innovations may be impossible. Journal of Experimental Zoology (Molecular and Developmental Evolution), 291, 305–309.

    CAS  Google Scholar 

  • Wagner, A. (2005). Robustness and evolvability in living systems. Princeton: Princeton University Press.

    Google Scholar 

  • Wagner, G. P. (2005). The developmental evolution of avian digit homology: An update. Theory in Biosciences, 124, 165–183.

    PubMed  Google Scholar 

  • Wagner, G. P. (2007). The developmental genetics of homology. Nature Reviews Genetics, 8, 473–479.

    CAS  PubMed  Google Scholar 

  • Wagner, A. (2011). The origins of evolutionary innovations: A theory of transformative change in living systems. New York: Oxford University Press.

    Google Scholar 

  • Wagner, G. P., & Lynch, V. J. (2010). Evolutionary novelties. Current Biology, 20, R48–R52.

    CAS  PubMed  Google Scholar 

  • Wagner, G. P., & Mezey, J. G. (2004). The role of genetic architecture constraints in the origin of variational modularity. In G. Schlosser & G. P. Wagner (Eds.), Modularity in development and evolution (pp. 338–358). Chicago: University of Chicago Press.

    Google Scholar 

  • Wagner, G. P., & Misof, B. Y. (1993). How can a character be developmentally constrained despite variation in developmental pathways? Journal of Evolutionary Biology, 6, 449–455.

    Google Scholar 

  • Wagner, G., & Zhang, J. (2011). The pleiotropic structure of the genotype-phenotype map: The evolvability of complex organisms. Nature Reviews Genetics, 12, 204–213.

    CAS  PubMed  Google Scholar 

  • Wagner, G. P., Chiu, C.-H., & Laubichler, M. (2000). Developmental evolution as a mechanistic science: The inference from developmental mechanisms to evolutionary processes. American Zoologist, 40, 819–831.

    Google Scholar 

  • Wake, D. B. (1991). Homoplasy: The result of natural selection, or evidence of design limitations? American Naturalist, 138, 543–567.

    Google Scholar 

  • Wake, D. B. (2009). What salamanders have taught us about evolution. Annual Review of Ecology, Evolution, and Systematics, 40, 333–352.

    Google Scholar 

  • Walsh, D. M. (2007). Development: Three grades of ontogenetic involvement. In M. Matthen & C. Stephens (Eds.), Philosophy of biology (Handbook of philosophy of science, pp. 179–199). Amsterdam: North Holland/Elsevier.

    Google Scholar 

  • Wang, Z., Young, R., Xue, H., & Wagner, G. (2011). Transcriptomic analysis of avian digits reveals conserved and derived digit identities in birds. Nature, 477, 583–586.

    CAS  PubMed  Google Scholar 

  • Weisberg, M. (2007). Three kinds of idealization. Journal of Philosophy, 104, 639–659.

    Google Scholar 

  • West-Eberhard, M. J. (2003). Developmental plasticity and evolution. New York: Oxford University Press.

    Google Scholar 

  • Wimsatt, W. C. (1986). Developmental constraints, generative entrenchment and the innate-aquired distinction. In W. Bechtel (Ed.), Integrating scientific disciplines (pp. 185–208). Dordrecht: Martinus Nijhoff.

    Google Scholar 

  • Wimsatt, W. C., & Schank, J. C. (2004). Generative entrenchment, modularity, and evolvability: When genic selection meets the whole organism. In G. Schlosser & G. P. Wagner (Eds.), Modularity in evolution and development (pp. 359–394). Chicago: University of Chicago Press.

    Google Scholar 

  • Winther, R. G. (2001). Varieties of modules: Kinds, levels, origins, and behaviors. Journal of Experimental Zoology (Mol Dev Evol), 291, 116–129.

    CAS  Google Scholar 

  • Wittkopp, P. J., & Kalay, G. (2012). Cis-regulatory elements: Molecular mechanisms and evolutionary processes underlying divergence. Nature Reviews Genetics, 13, 59–69.

    CAS  Google Scholar 

  • Xu, X., Clark, J. M., Mo, J., Choiniere, J., Forster, C. A., Erickson, G. M., Hone, D. W. E., et al. (2009). A Jurassic ceratosaur from China helps clarify avian digital homologies. Nature, 459, 940–944.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Thanks to all of the participants in the graduate seminar on Evolutionary Developmental Biology (University of Minnesota, Fall 2011), where many of these issues were discussed in detail and particular formulations of the philosophical issues were aired (and criticized). Philippe Huneman, Patrick Laine, Molly Paxton, and Jack Powers provided useful feedback on an earlier draft of this essay. This work was supported in part by a grant from the John Templeton Foundation (“Complexity, emergence and reductionism”; ID 24426).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alan C. Love .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Love, A.C. (2015). Evolutionary Developmental Biology: Philosophical Issues. In: Heams, T., Huneman, P., Lecointre, G., Silberstein, M. (eds) Handbook of Evolutionary Thinking in the Sciences. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-9014-7_13

Download citation

Publish with us

Policies and ethics