Skip to main content
  • 3249 Accesses

Abstract

From the eighteenth to the twentieth century, most theories in life sciences are characterized by particular conceptions of life. In this paper, we discuss them by analyzing how they have been mobilized by some authors in the studies of specific topics in life science. From Buffon to the theories on the origins of life of the second half of the twentieth century, examining closely the approaches of J.-B. Lamarck, L. Pasteur, C. Darwin and C. Bernard, we will observe how the problems of the nature of the living matter, of spontaneous generation, of molecular dissymmetry, of stop of metabolism and of the origin of life constitute the context of important thoughts on the nature of life.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Available online on www.buffon.cnrs.fr/ (edited by Pietro Corsi and Thierry Hoquet).

  2. 2.

    About the current work to “reconstruct” life in the laboratory, see Heams on synthetic biology, Chap. 20, this volume. (ed. note).

  3. 3.

    They are uncontainable because “no known body would know how to retain them” (Lamarck 1802: 107).

  4. 4.

    “These other fluids, which are water charged with dissolved gas, or with other tenuous substances, the atmospheric air, which contains water, etc.” (Lamarck 1802: 107).

  5. 5.

    According to the panspermia theory, after its cooling, the Earth was seeded with seeds of life from outer space.

  6. 6.

    See Heams (“Heredity”), Chap. 3, this volume. (ed. note).

  7. 7.

    On the nomological and historical sciences, see Lecointre Chap. 19, this volume. (ed. note).

  8. 8.

    Noncoding parts of the DNA present in the sequence of a gene.

  9. 9.

    Or “transposable elements”. Sequences of DNA which change position in the DNA molecule.

  10. 10.

    In addition to Sect. 3, we will refer to Sect. 1.1 of Heams’s chapter on synthetic biology, Chap. 20, this volume. (ed. note).

References

  • Arrhenius, S. (1910). L’évolution des mondes. Paris: Ch. Béranger.

    Google Scholar 

  • Bernal, J. D. (1951). The physical basis of life. London: Routledge and Kegan Paul.

    Google Scholar 

  • Bernard, C. (1966). Leçons sur les phénomènes de la vie communs aux animaux et aux végétaux [1878], avec une préface de Georges Canguilhem. Paris: Vrin.

    Google Scholar 

  • Bernard, C. (1984). Introduction à l’étude la médecine expérimentale [1865]. Paris: Flammarion.

    Google Scholar 

  • Buffon (1749). Histoire naturelle générale et particulière. Paris: Imprimerie Royale, t2.

    Google Scholar 

  • Buffon (1753). Histoire naturelle générale et particulière. Paris: Imprimerie royale, t4.

    Google Scholar 

  • Buffon (1779). Les époques de la nature, édition critique réalisée par Jacques Roger. Mémoires du Muséum National d’Histoire Naturelle, Sciences de la Terre, t. 10, 1962, réimp. 1988.

    Google Scholar 

  • Burgenberg de Jong, H. G. (1932). Die Koacervation und ihre Bedeutung für die Biologie. Protoplasma, 15, 110–176.

    Article  Google Scholar 

  • Cairns-Smith, G. A. (1966). The origin of life and the nature of the primitive gene. Journal of Theoretical Biology, 10, 53–88.

    Article  CAS  PubMed  Google Scholar 

  • Calvin, M. (1969). Chemical evolution : Molecules evolution towards the origin of living systems on the earth and elsewhere. Oxford: Clarendon.

    Google Scholar 

  • Canguilhem, G. (1995). Vie (Vol. 23, pp. 546–553). Paris: Encyclopaedia Universalis.

    Google Scholar 

  • Canguilhem, G. (2000). Idéologie et rationalité dans l’histoire des sciences e la vie [1988]. Paris: Vrin.

    Google Scholar 

  • Darwin, C. (1969). Letter to Hooker, 1er février 1871. In M. Calvin (Ed.), Chemical evolution molecular evolution towards the origin of living systems on the earth and elsewhere (pp. 4–5). Oxford: Clarendon Press.

    Google Scholar 

  • Darwin, C. (1985). The origin of species (1859). London: Penguin Classics.

    Google Scholar 

  • Dauvillier, A. & Desguins, É. (1942). La genèse de la vie, Phase de l’évolution chimique. Actualité scientifique et industrielle, Biologie générale, n917: 73.

    Google Scholar 

  • Diderot, D. (1994). Éléments de physiologie. In OEuvres, Tome 1, Philosophie (pp. 1253–1317), Paris: Robert Laffont.

    Google Scholar 

  • Eigen, M. (1992). Steps towards life. Oxford: Oxford University Press.

    Google Scholar 

  • Fox, S. W., & Harada, K. (1958). Thermal copolymerisation of amino acids to a product resembling protein. Science, 128, 1214.

    Article  CAS  PubMed  Google Scholar 

  • Gánti, T. (2003). The principles of life. Oxford: Oxford University Press.

    Book  Google Scholar 

  • Gayon, J. (1993). La biologie entre loi et histoire. Philosophie, 38, 30–57.

    Google Scholar 

  • Gilbert, W. (1986). The RNA world. Nature, 319, 618.

    Article  Google Scholar 

  • Haeckel, E. (1897). Le monisme, lien entre la religion et la science. Profession de foi d’un naturaliste [1892]. Paris: Schleicher frères.

    Google Scholar 

  • Haldane, J. B. S. (1991). The origin of life. Rationnalist Annual (1929), repris in On being the right size and other essays. Oxford: Oxford University Press.

    Google Scholar 

  • Hooke, R. (1665). Micrographia: Or some physiological descriptions of minute bodies made by magnifying glasses with observations and inquiries thereupon. London: Jo. Martyn & Allestry, Printers of the Royal Society.

    Google Scholar 

  • Joyce, G. (1991). The rise and fall of the RNA world. Nature, 3, 399–407.

    CAS  Google Scholar 

  • Lamarck, J.-B. (1802). Recherches sur l’organisation des corps vivants…. Paris: Maillard.

    Google Scholar 

  • Miller, S. L. (1953). A production of amino acids under possible primitive earth conditions. Science, 117, 528–529.

    Article  CAS  PubMed  Google Scholar 

  • Monod, J. (1970). Le hasard et la nécessité. Essai sur la philosophie naturelle de la biologie moderne. Paris: Le Seuil.

    Google Scholar 

  • Morange, M. (1994). Histoire de la biologie moléculaire. Paris: La Découverte.

    Google Scholar 

  • Morange, M. (2003). La vie expliquée? 50 ans après la double hélice. Paris: Odile Jacob.

    Google Scholar 

  • Oparin, A. I. (1924). The origin of life, trad. Ann Synge. In J. D. Bernal (Ed.), The origin of life. London: Weidenfeld and Nicholson, 1967.

    Google Scholar 

  • Oparin, A. I. (1938). The origin of life. New York: The Macmillan Company.

    Google Scholar 

  • Pasteur, L. (1994). La dissymétrie moléculaire. In Écrits scientifiques et médicaux. Paris: Garnier-Flammarion.

    Google Scholar 

  • Reisse, J. (2007). Introduction: Est-il nécessaire de définir la vie?. In H. Bersini & J. Reisse (dir.), Comment définir la vie? Les réponses de l’intelligence artificielle et de la philosophie des sciences. Paris: Vuibert.

    Google Scholar 

  • Schoffeniels, E. (1973). L’anti-hasard. Paris: Gautier-Villars.

    Google Scholar 

  • Spallanzani, L. (1769). Nouvelles recherches sur les découvertes microscopiques et la génération des corps organisés. Ouvrage publié en français, traduction de l’abbé Regley, texte initial de Spallanzani, notes et commentaires de Needham. Paris: Lacombe.

    Google Scholar 

  • Szathmáry, E. (2007). In H. Bersini & J. Reisse (dir.), Comment définir la vie? Les réponses de l’intelligence artificielle et de la philosophie des sciences (pp. 107–114). Paris: Vuibert.

    Google Scholar 

  • Tirard, S. (2002). Les origines de la vie, un problème historique. In F. Raulin-Cerceau & S. Tirard (dir.), Exobiologie, aspects historiques et épistémologiques, Cahiers François Viète, n4 (pp. 35–48).

    Google Scholar 

  • Tirard, S. (2005). L’histoire du commencement de la vie à la fin du xixe siècle. In G. Gohau & S. Tirard (dir.), Les sciences historiques, actes des journées sur l’histoire et l’épistémologie des sciences historiques, Cahiers François Viète, n9 (pp. 105–118). Repris légèrement modifié sous le titre “La pré-histoire de la vie”, Hors-série Sciences et avenir: L’univers est-il sans histoire?, 146, mars-avril 2006: 30–34.

    Google Scholar 

  • Tirard, S. (2006). Génération spontanée. In P. Corsi, J. Gayon, G. Gohau, & S. Tirard (Eds.), Lamarck: philosophe de la nature (pp. 65–104). Paris: PUF.

    Google Scholar 

  • Urey, H. (1952). On the early chemical history of the earth and the origin of life. Proceedings of the National Academy of Sciences U S A, 38, 351–363.

    Article  CAS  Google Scholar 

  • Varela, F. J. (1989). Autonomie et connaissance, essai sur le vivant. Paris: Le Seuil.

    Google Scholar 

  • Wächtershäuser, G. (1988). Before enzymes and templates: Theory of surface metabolism. Microbiological Review, 52, 452–484.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stéphane Tirard .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Tirard, S. (2015). Life. In: Heams, T., Huneman, P., Lecointre, G., Silberstein, M. (eds) Handbook of Evolutionary Thinking in the Sciences. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-9014-7_10

Download citation

Publish with us

Policies and ethics