Skip to main content

Emerging Anti-cancer Targets in Mitochondria

  • Chapter
  • First Online:
Mitochondria: The Anti- cancer Target for the Third Millennium

Abstract

Metabolic cancer therapy should target the most aggressive and malignant tumour cells within solid tumours. Targeting of mitochondrial isocitrate dehydrogenase-2 (IDH2) by inhibitors or silencing elements would eliminate tumour cells surviving the harsh conditions of hypoxia and intermittent aglycemia as well as in progressive stages of malignancies with mutant IDH2 or IDH1, producing the oncometabolite D-2-hydroxyglutarate. Strategies for its withdrawal should also be exploited. Also, cancer-specific mitochondria-located enzymes participating in aerobic glycolysis are suitable targets of anti-cancer strategies, such as inhibition of hexokinase-2 by the small molecule 3-bromopyruvate or by post-transcriptional repression of hexokinase-2 by microRNA-143. Similarly, dichloroacetate (DCA) has been considered as a potential cancer therapeutic agent, being an efficient inhibitor of four isoforms of pyruvate dehydrogenase kinases (PDK), which by phosphorylating the E1 subunit inhibit pyruvate dehydrogenase and channel pyruvate to lactate. This, in turn, establishes the glycolytic phenotype of cancer cells. Other targets include for example the inhibitor protein of the mitochondrial ATP synthase and the facilitator of its degradation, the immediate-response factor 1 (IEX1), for which strategies dependent on the specific conditions should be exploited. However, there has been a limited number of clinical studies documenting the significance of mitochondrial targeting in cancer therapies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Albracht SPJ, Meijer AJ, Rydström J (2011) Mammalian NADH: ubiquinone oxidoreductase (Complex I) and nicotinamide nucleotide transhydrogenase (Nnt) together regulate the mitochondrial production of H2O2 – implications for their role in disease, especially cancer. J Bioenerg Biomembr 43:541–564

    CAS  PubMed  Google Scholar 

  • Amary MF, Bacsi K, Maggiani F, Damato S, Halai D, Berisha F, Pollock R, O’Donnell P, Grigoriadis A, Diss T, Eskandarpour M, Presneau N, Hogendoorn PC, Futreal A, Tirabosco R, Flanagan AM (2011) IDH1 and IDH2 mutations are frequent events in central chondrosarcoma and central and periosteal chondromas but not in other mesenchymal tumours. J Pathol 224:334–343

    CAS  PubMed  Google Scholar 

  • Anderson KM, Jajeh J, Guinan P, Rubenstein M (2009) In vitro effects of dichloroacetate and CO2 on hypoxic HeLa cells. Anticancer Res 29:4579–4588

    CAS  PubMed  Google Scholar 

  • Ando M, Uehara I, Kogure K, Asano Y, Nakajima W, Abe Y, Kawauchi K, Tanaka N (2010) Interleukin 6 enhances glycolysis through expression of the glycolytic enzymes hexokinase 2 and 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase-3. J Nippon Med Sch 77:97–105

    CAS  PubMed  Google Scholar 

  • Arlt A, Schäfer H (2011) Role of the immediate early response 3 (IER3) gene in cellular stress response, inflammation and tumorigenesis. Eur J Cell Biol 90:545–552

    CAS  PubMed  Google Scholar 

  • Arlt A, Grobe O, Sieke A, Kruse ML, Fölsch UR, Schmidt WE, Schäfer H (2001) Expression of the NF-kappa B target gene IEX-1 (p22/PRG1) does not prevent cell death but instead triggers apoptosis in Hela cells. Oncogene 20:69–76

    CAS  PubMed  Google Scholar 

  • Attia RR, Connnaughton S, Boone LR, Wang F, Elam MB, Ness GC, Cook GA, Park EA (2010) Regulation of pyruvate dehydrogenase kinase 4 (PDK4) by thyroid hormone: role of the peroxisome proliferator-activated receptor gamma coactivator (PGC-1 α). J Biol Chem 285:2375–2385

    CAS  PubMed Central  PubMed  Google Scholar 

  • Baker JC, Yan X, Peng T, Kasten S, Roche TE (2000) Marked differences between two isoforms of human pyruvate dehydrogenase kinase. J Biol Chem 275:15773–15781

    CAS  PubMed  Google Scholar 

  • Barbosa IA, Machado NG, Skildum AJ, Scott PM, Oliveira PJ (2012) Mitochondrial remodeling in cancer metabolism and survival: potential for new therapies. Biochim Biophys Acta 1826:238–254

    CAS  PubMed  Google Scholar 

  • Batarseh A, Papadopoulos V (2010) Regulation of translocator protein 18kDa (TSPO) expression in health and disease states. Mol Cell Endocrinol 327:1–12

    CAS  PubMed Central  PubMed  Google Scholar 

  • Baumunk D, Reichelt U, Hildebrandt J, Krause H, Ebbing J, Cash H, Miller K, Schostak M, Weikert S (2013) Expression parameters of the metabolic pathway genes pyruvate dehydrogenase kinase-1 (PDK-1) and DJ-1/PARK7 in renal cell carcinoma (RCC). World J Urol 31:1191–1196

    CAS  PubMed  Google Scholar 

  • Bellance N, Lestienne P, Rossignol R (2009) Mitochondria: from bioenergetics to the metabolic regulation of carcinogenesis. Front Biosci 14:4015–4034

    Google Scholar 

  • Berendzen K, Theriaque DW, Shuster J, Stacpoole PW (2006) Therapeutic potential of dichloroacetate for pyruvate dehydrogenase complex deficiency. Mitochondrion 6:126–135

    CAS  PubMed  Google Scholar 

  • Bhardwaj V, Rizvi N, Lai MB, Lai JC, Bhushan A (2010) Glycolytic enzyme inhibitors affect pancreatic cancer survival by modulating its signaling and energetics. Anticancer Res 30:743–749

    CAS  PubMed  Google Scholar 

  • Bonnet S, Archer SL, Allalunis-Turner J, Haromy A, Beaulieu C, Thompson R, Lee CT, Lopaschuk GD, Puttagunta L, Bonnet S, Harry G, Hashimoto K, Porter CJ, Andrade MA, Thebaud B, Michelakis ED (2007) A mitochondria-K + channel axis is suppressed in cancer and its normalization promotes apoptosis and inhibits cancer growth. Cancer Cell 11:37–51

    CAS  PubMed  Google Scholar 

  • Brandsma D, Dorlo TP, Haanen JH, Beijnen JH, Boogerd W (2010) Severe encephalopathy and polyneuropathy induced by dichloroacetate. J Neurol 257:2099–2100

    PubMed  Google Scholar 

  • Bull RJ, Sanchez IM, Nelson MA, Larson JL, Lansing AJ (1990) Liver tumor induction in B6C3F1 mice by dichloroacetate and trichloroacetate. Toxicology 63:341–359

    CAS  PubMed  Google Scholar 

  • Cairns RA, Papandreou I, Sutphin PD, Denko NC (2007) Metabolic targeting of hypoxia and HIF1 in solid tumors can enhance cytotoxic chemotherapy. Proc Natl Acad Sci U S A 104:9445–9450

    CAS  PubMed Central  PubMed  Google Scholar 

  • Cairns RA, Iqbal J, Lemonnier F, Kucuk C, de Leval L, Jais JP, Parrens M, Martin A, Xerri L, Brousset P, Chan LC, Chan WC, Gaulard P, Mak TW (2012) IDH2 mutations are frequent in angioimmunoblastic T-cell lymphoma. Blood 119:1901–1903

    CAS  PubMed Central  PubMed  Google Scholar 

  • Cao W, Yacoub S, Shiverick KT, Namiki K, Sakai Y, Porvasnik S, Urbanek C, Rosser CJ (2008a) Dichloroacetate (DCA) sensitizes both wild-type and over expressing Bcl-2 prostate cancer cells in vitro to radiation. Prostate 68:1223–1231

    CAS  PubMed  Google Scholar 

  • Cao X, Jia G, Zhang T, Yang M, Wang B, Wassenaar PA, Cheng H, Knopp MV, Sun D (2008b) Non-invasive MRI tumor imaging and synergistic anticancer effect of HSP90 inhibitor and glycolysis inhibitor in RIP1-Tag2 transgenic pancreatic tumor model. Cancer Chemother Pharmacol 62:985–994

    CAS  PubMed  Google Scholar 

  • Capper D, Simon M, Langhans CD, Okun JG, Tonn JC, Weller M, Deimling AV, Hartmann C (2011) 2-Hydroxyglutarate concentration in serum from patients with gliomas does not correlate with IDH1/2 mutation status or tumor size. Int J Cancer 131:766–768

    PubMed  Google Scholar 

  • Cardaci S, Desideri E, Ciriolo MR (2012) Targeting aerobic glycolysis: 3-bromopyruvate as a promising anticancer drug. J Bioenerg Biomembr 44:17–29

    CAS  PubMed  Google Scholar 

  • Chang JM, Chung JW, Jae HJ, Eh H, Son KR, Lee KC, Park JH (2007) Local toxicity of hepatic arterial infusion of hexokinase II inhibitor, 3-bromopyruvate: in vivo investigation in normal rabbit model. Acad Radiol 14:85–92

    PubMed  Google Scholar 

  • Cheung EC, Ludwig RL, Vousden KH (2012) Mitochondrial localization of TIGAR under hypoxia stimulates HK2 and lowers ROS and cell death. Proc Natl Acad Sci U S A 109:20491–20496

    CAS  PubMed Central  PubMed  Google Scholar 

  • Choi C, Ganji SK, DeBerardinis RJ, Hatanpaa KJ, Rakheja D, Kovacs Z, Yang XL, Mashimo T, Raisanen JM, Marin-Valencia I, Pascual JM, Madden CJ, Mickey BE, Malloy CR, Bachoo RM, Maher EA (2012) 2-hydroxyglutarate detection by magnetic resonance spectroscopy in IDH-mutated patients with gliomas. Nat Med 18:624–629

    CAS  PubMed Central  PubMed  Google Scholar 

  • Chou AP, Chowdhury R, Li S, Chen W, Kim AJ, Piccioni DE, Selfridge JM, Mody RR, Chang S, Lalezari S, Lin J, Sanchez DE, Wilson RW, Garrett MC, Harry B, Mottahedeh J, Nghiemphu PL, Kornblum HI, Mischel PS, Prins RM, Yong WH, Cloughesy T, Nelson SF, Liau LM, Lai A (2012) Identification of retinol binding protein 1 promoter hypermethylation in isocitrate dehydrogenase 1 and 2 mutant gliomas. J Natl Cancer Inst 104:1458–1469

    CAS  PubMed Central  PubMed  Google Scholar 

  • Comte B, Vincent G, Bouchard B, Benderdour M, Des Rosiers C (2002) Reverse flux through cardiac NADP(+)-isocitrate dehydrogenase under normoxia and ischemia. Am J Physiol 283:H1505–H1514

    CAS  Google Scholar 

  • Contractor T, Harris CR (2012) p53 negatively regulates transcription of the pyruvate dehydrogenase kinase Pdk2. Cancer Res 72:560–567

    CAS  PubMed  Google Scholar 

  • Dang L, White DW, Gross S, Bennett BD, Bittinger MA, Driggers EM, Fantin VR, Jang HG, Jin S, Keenan MC, Marks KM, Prins RM, Ward PS, Yen KE, Liau LM, Rabinowitz JD, Cantley LC, Thompson CB, Vander Heiden MG, Su SM (2009) Cancer-associated IDH1 mutations produce 2-hydroxyglutarate. Nature 462:739–744

    CAS  PubMed Central  PubMed  Google Scholar 

  • Dang L, Jin S, Su SM (2010) IDH mutations in glioma and acute myeloid leukemia. Trends Mol Med 16:387–397

    CAS  PubMed  Google Scholar 

  • DeBerardinis RJ, Lum JJ, Hatzivassiliou G, Thompson CB (2008) The biology of cancer: metabolic reprogramming fuels cell growth and proliferation. Cell Metab 7:11–20

    CAS  PubMed  Google Scholar 

  • Denko NC (2008) Hypoxia, HIF1 and glucose metabolism in the solid tumour. Nat Rev Cancer 8:705–713

    CAS  PubMed  Google Scholar 

  • Des Rosiers C, Fernandez CA, David F, Brunengraber H (1994) Reversibility of the mitochondrial isocitrate dehydrogenase reaction in the perfused rat liver. Evidence from isotopomer analysis of citric acid cycle intermediate. J Biol Chem 269:27179–27182

    CAS  PubMed  Google Scholar 

  • Don AS, Kisker O, Dilda P, Donoghue N, Zhao X, Decollogne S, Creighton B, Flynn E, Folkman J, Hogg PJ (2003) A peptide trivalent arsenical inhibits tumor angiogenesis by perturbing mitochondrial function in angiogenic endothelial cells. Cancer Cell 3:497–509

    CAS  PubMed  Google Scholar 

  • Dong LF, Low P, Dyason JC, Wang XF, Prochazka L, Witting PK, Freeman R, Swettenham E, Valis K, Liu J, Zobalova R, Turanek R, Spitz DR, Domann FE, Scheffler IE, Ralph SJ, Neuzil J (2008) α-Tocopheryl succinate induces apoptosis by targeting ubiquinone-binding sites in mitochondrial respiratory complex II. Oncogene 27:4324–4335

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ducray F, Marie Y, Sanson M (2009) IDH1 and IDH2 mutations in gliomas. New Engl J Med 360:2248–2249

    CAS  PubMed  Google Scholar 

  • Duncan CG, Barwick BG, Jin G, Rago C, Kapoor-Vazirani P, Powell DR, Chi JT, Bigner DD, Vertino PM, Yan H (2012) A heterozygous IDH1R132H/WT mutation induces genome-wide alterations in DNA methylation. Genome Res 22:2339–2355

    CAS  PubMed Central  PubMed  Google Scholar 

  • El Sayed SM, El-Magd RM, Shishido Y, Chung SP, Diem TH, Sakai T, Watanabe H, Kagami S, Fukui K (2012a) 3-Bromopyruvate antagonizes effects of lactate and pyruvate, synergizes with citrate and exerts novel anti-glioma effects. J Bioenerg Biomembr 44:61–79

    CAS  PubMed  Google Scholar 

  • El Sayed SM, El-Magd RM, Shishido Y, Yorita K, Chung SP, Tran DH, Sakai T, Watanabe H, Kagami S, Fukui K (2012b) D-amino acid oxidase-induced oxidative stress, 3-bromopyruvate and citrate inhibit angiogenesis, exhibiting potent anticancer effects. J Bioenerg Biomembr 44:513–523

    CAS  PubMed  Google Scholar 

  • Elliott MA, Ford SJ, Prasad E, Dick LJ, Farmer H, Hogg PJ, Halbert GW (2012) Pharmaceutical development of the novel arsenical based cancer therapeutic GSAO for Phase I clinical trial. Int J Pharm 426:67–75

    CAS  PubMed  Google Scholar 

  • Fang R, Xiao T, Fang Z, Sun Y, Li F, Gao Y, Feng Y, Li L, Wang Y, Liu X, Chen H, Liu XY, Ji H (2012) MicroRNA-143 (miR-143) regulates cancer glycolysis via targeting hexokinase 2 gene. J Biol Chem 287:23227–23235

    CAS  PubMed Central  PubMed  Google Scholar 

  • Fathi AT, Sadrzadeh H, Borger DR, Ballen KK, Amrein PC, Attar EC, Foster J, Burke M, Lopez HU, Matulis CR, Edmonds KM, Iafrate AJ, Straley KS, Yen KE, Agresta S, Schenkein DP, Hill C, Emadi A, Neuberg DS, Stone RM, Chen YB (2012) Prospective serial evaluation of 2-hydroxyglutarate, during treatment of newly diagnosed acute myeloid leukemia, to assess disease activity and therapeutic response. Blood 120:4649–4652

    CAS  PubMed  Google Scholar 

  • Feldmann KA, Pittelkow MR, Roche PC, Kumar R, Grande JP (2001) Expression of an immediate early gene, IEX-1, in human tissues. Histochem Cell Biol 115:489–497

    CAS  PubMed  Google Scholar 

  • Formentini L, Sánchez-Aragó M, Sánchez-Cenizo L, Cuezva JM (2012) The mitochondrial ATPase inhibitory factor 1 triggers a ROS-mediated retrograde pro-survival and proliferative response. Mol Cell 45:731–742

    CAS  PubMed  Google Scholar 

  • Fu Y, Zheng S, Zheng Y, Huang R, An N, Liang A, Hu C (2012) Glioma derived isocitrate dehydrogenase-2 mutations induced up-regulation of HIF-1α and β-catenin signaling: possible impact on glioma cell metastasis and chemo-resistance. Int J Biochem Cell Biol 44:770–775

    CAS  PubMed  Google Scholar 

  • Fujikawa M, Imamura H, Nakamura J, Yoshida M (2012) Assessing actual contribution of IF1, inhibitor of mitochondrial FoF1, to ATP homeostasis, cell growth, mitochondrial morphology, and cell viability. J Biol Chem 287:18781–18787

    CAS  PubMed Central  PubMed  Google Scholar 

  • Furtado CM, Marcondes MC, Sola-Penna M, de Souza ML, Zancan P (2012) Clotrimazole preferentially inhibits human breast cancer cell proliferation, viability and glycolysis. PLoS One 7:e30462

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ganapathy-Kanniappan S, Kunjithapatham R, Geschwind JF (2013) Anticancer efficacy of the metabolic blocker 3-bromopyruvate: specific molecular targeting. Anticancer Res 33:13–20

    CAS  PubMed  Google Scholar 

  • Ghiam AF, Cairns RA, Thoms J, Dal Pra A, Ahmed O, Meng A, Mak TW, Bristow RG (2012) IDH mutation status in prostate cancer. Oncogene 31:3826

    CAS  PubMed  Google Scholar 

  • Gong L, Cui Z, Chen P, Han H, Peng J, Leng X (2012) Reduced survival of patients with hepatocellular carcinoma expressing hexokinase II. Med Oncol 29:909–914

    CAS  PubMed  Google Scholar 

  • Gregersen LH, Jacobsen A, Frankel LB, Wen J, Krogh A, Lund AH (2012) MicroRNA-143 down-regulates hexokinase 2 in colon cancer cells. BMC Cancer 12:232

    CAS  PubMed  Google Scholar 

  • Gross S, Cairns RA, Minden MD, Driggers EM, Bittinger MA, Jang HG, Sasaki M, Jin S, Schenkein DP, Su SM, Dang L, Fantin VR, Mak TW (2010) Cancer-associated metabolite 2-hydroxyglutarate accumulates in acute myelogenous leukemia with isocitrate dehydrogenase 1 and 2 mutations. J Exp Med 207:339–344

    CAS  PubMed Central  PubMed  Google Scholar 

  • Guo CC, Pirozzi CJ, Lopez GY, Yan H (2011) Isocitrate dehydrogenase mutations in gliomas: mechanisms, biomarkers and therapeutic target. Curr Opin Neurol 24:648–652

    PubMed Central  PubMed  Google Scholar 

  • Hitosugi T, Fan J, Chung TW, Lythgoe K, Wang X, Xie J, Ge Q, Gu TL, Polakiewicz RD, Roesel JL, Chen GZ, Boggon TJ, Lonial S, Fu H, Khuri FR, Kang S, Chen J (2011) Tyrosine phosphorylation of mitochondrial pyruvate dehydrogenase kinase 1 is important for cancer metabolism. Mol Cell 44:864–877

    CAS  PubMed Central  PubMed  Google Scholar 

  • Holness MJ, Kraus A, Harris RA, Sugden MC (2000) Targeted upregulation of pyruvate dehydrogenase kinase (PDK)-4 in slow-twitch skeletal muscle underlies the stable modification of the regulatory characteristics of PDK induced by high-fat feeding. Diabetes 49:775–781

    CAS  PubMed  Google Scholar 

  • Horbinski C, Kelly L, Nikiforov YE, Durso MB, Nikiforova MN (2010) Detection of IDH1 and IDH2 mutations by fluorescence melting curve analysis as a diagnostic tool for brain biopsies. J Mol Diagn 12:487–492

    CAS  PubMed Central  PubMed  Google Scholar 

  • Huang YH, Wu JY, Zhang Y, Wu MX (2002) Synergistic and opposing regulation of the stress-responsive gene IEX-1 by p53, c-Myc, and multiple NF-κB/rel complexes. Oncogene 21:6819–6828

    CAS  PubMed  Google Scholar 

  • Hur H, Xuan Y, Kim YB, Lee G, Shim W, Yun J, Ham IH, Han SU (2013) Expression of pyruvate dehydrogenase kinase-1 in gastric cancer as a potential therapeutic target. Int J Oncol 42:44–54

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ichimura K (2012) Molecular pathogenesis of IDH mutations in gliomas. Brain Tumor Pathol 29:131–139

    CAS  PubMed  Google Scholar 

  • Ihrlund LS, Hernlund E, Khan O, Shoshan MC (2008) 3-Bromopyruvate as inhibitor of tumour cell energy metabolism and chemopotentiator of platinum drugs. Mol Oncol 2:94–101

    PubMed  Google Scholar 

  • Irace C, Esposito G, Maffettone C, Rossi A, Festa M, Iuvone T, Santamaria R, Sautebin L, Carnuccio R, Colonna A (2007) Oxalomalate affects the inducible nitric oxide synthase expression and activity. Life Sci 80:1282–1291

    CAS  PubMed  Google Scholar 

  • Ishiguro T, Ishiguro M, Ishiguro R, Iwai S (2012a) Cotreatment with dichloroacetate and omeprazole exhibits a synergistic antiproliferative effect on malignant tumors. Oncol Lett 3:726–728

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ishiguro T, Ishiguro R, Ishiguro M, Iwai S (2012b) Co-treatment of dichloroacetate, omeprazole and tamoxifen exhibited synergistically antiproliferative effect on malignant tumors: in vivo experiments and a case report. Hepatogastroenterol 59:994–996

    CAS  Google Scholar 

  • Jemal A, Siegel R, Ward E, Murray T, Xu J, Thun MJ (2007) Cancer statistics. CA Cancer J Clin 57:43–66

    PubMed  Google Scholar 

  • Jenkins RB, Xiao Y, Sicotte H, Decker PA, Kollmeyer TM, Hansen HM, Kosel ML, Zheng S, Walsh KM, Rice T, Bracci P, McCoy LS, Smirnov I, Patoka JS, Hsuang G, Wiemels JL, Tihan T, Pico AR, Prados MD, Chang SM, Berger MS, Caron AA, Fink SR, Halder C, Rynearson AL, Fridley BL, Buckner JC, O’Neill BP, Giannini C, Lachance DH, Wiencke JK, Eckel-Passow JE, Wrensch MR (2012) A low-frequency variant at 8q24.21 is strongly associated with risk of oligodendroglial tumors and astrocytomas with IDH1 or IDH2 mutation. Nat Genet 44:1122–1125

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ježek P, Plecitá-Hlavatá L, Smolková K, Rossignol R (2010) Distinctions and similarities of cell bioenergetics and role of mitochondria in hypoxia, cancer, and embryonic development. Int J Biochem Cell Biol 42:604–622

    PubMed  Google Scholar 

  • Jiang S, Zhang LF, Zhang HW, Hu S, Lu MH, Liang S, Li B, Li Y, Li D, Wang ED, Liu MF (2012) A novel miR-155/miR-143 cascade controls glycolysis by regulating hexokinase 2 in breast cancer cells. EMBO J 31:1985–1998

    CAS  PubMed Central  PubMed  Google Scholar 

  • Jin G, Reitman ZJ, Spasojevic I, Batinic-Haberle I, Yang J, Schmidt-Kittler O, Bigner DD, Yan H (2011) 2-hydroxyglutarate production, but not dominant negative function, is conferred by glioma-derived NADP-dependent isocitrate dehydrogenase mutations. PLoS One 6:e16812

    CAS  PubMed Central  PubMed  Google Scholar 

  • Juratli TA, Kirsch M, Robel K, Soucek S, Geiger K, von Kummer R, Schackert G, Krex D (2012) IDH mutations as an early and consistent marker in low-grade astrocytomas WHO grade II and their consecutive secondary high-grade gliomas. J Neurooncol 108:403–410

    CAS  PubMed  Google Scholar 

  • Kapoor S (2012) Emerging role of IEX-1 in tumor pathogenesis and prognosis. Ultrastruct Pathol 36:285

    PubMed  Google Scholar 

  • Kaufmann P, Engelstad K, Wei Y, Jhung S, Sano MC, Shungu DC, Millar WS, Hong X, Gooch CL, Mao X, Pascual JM, Hirano M, Stacpoole PW, DiMauro S, De Vivo DC (2006) Dichloroacetate causes toxic neuropathy in MELAS: a randomized, controlled clinical trial. Neurology 66:324–330

    CAS  PubMed  Google Scholar 

  • Kim JW, Tchernyshyov I, Semenza GL, Dang CV (2006) HIF-1-mediated expression of pyruvate dehydrogenase kinase: a metabolic switch required for cellular adaptation to hypoxia. Cell Metab 3:177–185

    PubMed  Google Scholar 

  • Kim JW, Gao P, Liu YC, Semenza GL, Dang CV (2007a) Hypoxia-inducible factor I and dysregulated c-myc cooperatively induce vascular endothelial growth factor and metabolic switches hexokinase 2 and pyruvate dehydrogenase kinase 1. Mol Cell Biol 27:7381–7393

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kim W, Yoon JH, Jeong JM, Cheon GJ, Lee TS, Yang JI, Park SC, Lee HS (2007b) Apoptosis-inducing antitumor efficacy of hexokinase II inhibitor in hepatocellular carcinoma. Mol Cancer Ther 6:2554–2562

    CAS  PubMed  Google Scholar 

  • Kim JS, Ahn KJ, Kim JA, Kim HM, Lee JD, Lee JM, Kim SJ, Park JH (2008) Role of reactive oxygen species-mediated mitochondrial dysregulation in 3-bromopyruvate induced cell death in hepatoma cells: ROS-mediated cell death by 3-BrPA. J Bioenerg Biomembr 40:607–618

    CAS  PubMed  Google Scholar 

  • Kim JE, Ahn BC, Hwang MH, Jeon YH, Jeong SY, Lee SW, Lee J (2011) Combined RNA interference of hexokinase II and (131)I-sodium iodide symporter gene therapy for anaplastic thyroid carcinoma. J Nucl Med 52:1756–1763

    CAS  PubMed  Google Scholar 

  • Kluckova K, Bezawork-Geleta A, Rohlena J, Dong L, Neuzil J (2013) Mitochondrial complex II, a novel target for anticancer agents. Biochim Biophys Acta 1827:552–564

    CAS  PubMed  Google Scholar 

  • Kluza J, Corazao-Rozas P, Touil Y, Jendoubi M, Maire C, Guerreschi P, Jonneaux A, Ballot C, Balayssac S, Valable S, Corroyer-Dulmont A, Bernaudin M, Malet-Martino M, de Lassalle EM, Maboudou P, Formstecher P, Polakowska R, Mortier L, Marchetti P (2012) Inactivation of the HIF-1α/PDK3 signaling axis drives melanoma toward mitochondrial oxidative metabolism and potentiates the therapeutic activity of pro-oxidants. Cancer Res 72:5035–5047

    CAS  PubMed  Google Scholar 

  • Ko YH, Smith BL, Wang Y, Pomper MG, Rini DA, Torbenson MS, Hullihen J, Pedersen PL (2004) Advanced cancers: eradication in all cases using 3-bromopyruvate therapy to deplete ATP. Biochem Biophys Res Commun 324:269–275

    CAS  PubMed  Google Scholar 

  • Ko YH, Verhoeven HA, Lee MJ, Corbin DJ, Vogl TJ, Pedersen PL (2012) A translational study “case report” on the small molecule “energy blocker” 3-bromopyruvate (3BP) as a potent anticancer agent: from bench side to bedside. J Bioenerg Biomembr 44:163–170

    CAS  PubMed  Google Scholar 

  • Koivunen P, Lee S, Duncan CG, Lopez G, Lu G, Ramkissoon S, Losman JA, Joensuu P, Bergmann U, Gross S, Travins J, Weiss S, Looper R, Ligon KL, Verhaak RG, Yan H, Kaelin WG Jr (2012) Transformation by the (R)-enantiomer of 2-hydroxyglutarate linked to EGLN activation. Nature 483:484–488

    CAS  PubMed Central  PubMed  Google Scholar 

  • Korotchkina LG, Patel MS (2001) Site specificity of four pyruvate dehydrogenase kinase isoenzymes toward the three phosphorylation sites of human pyruvate dehydrogenase. J Biol Chem 276:37223–37229

    CAS  PubMed  Google Scholar 

  • Krell D, Assoku M, Galloway M, Mulholland P, Tomlinson I, Bardella C (2011) Screen for IDH1, IDH2, IDH3, D2HGDH and L2HGDH mutations in glioblastoma. PLoS One 6:e19868

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kumar A, Kant S, Singh SM (2012) Novel molecular mechanisms of antitumor action of dichloroacetate against T cell lymphoma: implication of altered glucose metabolism, pH homeostasis and cell survival regulation. Chem Biol Interact 199:29–37

    CAS  PubMed  Google Scholar 

  • Kwee SA, Hernandez B, Chan O, Wong L (2012) Choline kinase α and hexokinase-2 protein expression in hepatocellular carcinoma: association with survival. PLoS One 7:e46591

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lau E, Kluger H, Varsano T, Lee K, Scheffler I, Rimm DL, Ideker T, Ronai ZA (2012) PKCε promotes oncogenic functions of ATF2 in the nucleus while blocking its apoptotic function at mitochondria. Cell 148:543–555

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lemons JM, Lemons S, Feng XJ, Bennett BD, Legesse-Miller A, Johnson EL, Raitman I, Pollina EA, Rabitz HA, Rabinowitz JD, Coller HA (2010) Quiescent fibroblasts exhibit high metabolic activity. PLoS Biol 8:e1000514

    PubMed Central  PubMed  Google Scholar 

  • Leonardi R, Subramanian C, Jackowski S, Rock CO (2012) Cancer-associated isocitrate dehydrogenase mutations inactivate NADPH-dependent reductive carboxylation. J Biol Chem 287:14615–14620

    CAS  PubMed Central  PubMed  Google Scholar 

  • Letourneux C, Rocher G, Porteu F (2006) B56-containing PP2A dephosphorylate ERK and their activity is controlled by the early gene IEX-1 and ERK. EMBO J 25:727–738

    CAS  PubMed Central  PubMed  Google Scholar 

  • Li J, Kato M, Chuang DT (2009) Pivotal role of the C-terminal DW-motif in mediating inhibition of pyruvate dehydrogenase kinase 2 by dichloroacetate. J Biol Chem 284:34458–34467

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lian CG, Xu Y, Ceol C, Wu F, Larson A, Dresser K, Xu W, Tan L, Hu Y, Zhan Q, Lee CW, Hu D, Lian BQ, Kleffel S, Yang Y, Neiswender J, Khorasani AJ, Fang R, Lezcano C, Duncan LM, Scolyer RA, Thompson JF, Kakavand H, Houvras Y, Zon LI, Mihm MC Jr, Kaiser UB, Schatton T, Woda BA, Murphy GF, Shi YG (2012) Loss of 5-hydroxymethylcytosine is an epigenetic hallmark of melanoma. Cell 150:1135–1146

    CAS  PubMed Central  PubMed  Google Scholar 

  • Liu XH, Zheng XF, Wang YL (2009) Inhibitive effect of 3-bromopyruvic acid on human breast cancer MCF-7 cells involves cell cycle arrest and apoptotic induction. Chin Med J 122:1681–1685

    CAS  PubMed  Google Scholar 

  • Liu L, Gong L, Zhang Y, Li N (2013) Glycolysis in Panc-1 human pancreatic cancer cells is inhibited by everolimus. Exp Ther Med 5:338–342

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lu CW, Lin SC, Chen KF, Lai YY, Tsai SJ (2008) Induction of pyruvate dehydrogenase kinase-3 by hypoxia-inducible factor-1 promotes metabolic switch and drug resistance. J Biol Chem 283:28106–28114

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lu CW, Lin SC, Chien CW, Lin SC, Lee CT, Lin BW, Lee JC, Tsai SJ (2011) Overexpression of pyruvate dehydrogenase kinase 3 increases drug resistance and early recurrence in colon cancer. Am J Pathol 179:1405–1414

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lu C, Ward PS, Kapoor GS, Rohle D, Turcan S, Abdel-Wahab O, Edwards CR, Khanin R, Figueroa ME, Melnick A, Wellen KE, O’Rourke DM, Berger SL, Chan TA, Levine RL, Mellinghoff IK, Thompson CB (2012) IDH mutation impairs histone demethylation and results in a block to cell differentiation. Nature 483:474–478

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lv Q, Xing S, Li Z, Li J, Gong P, Xu X, Chang L, Jin X, Gao F, Li W, Zhang G, Yang J, Zhang X (2012) Altered expression levels of IDH2 are involved in the development of colon cancer. Exp Ther Med 45:801–806

    Google Scholar 

  • Madhok BM, Yeluri S, Perry SL, Hughes TA, Jayne DG (2010) Dichloroacetate induces apoptosis and cell-cycle arrest in colorectal cancer cells. Br J Cancer 102:1746–1752

    CAS  PubMed Central  PubMed  Google Scholar 

  • Mathupala SP, Ko YH, Pedersen PL (2010) The pivotal roles of mitochondria in cancer: Warburg and beyond and encouraging prospects for effective therapies. Biochim Biophys Acta 1797:1225–1230

    CAS  PubMed Central  PubMed  Google Scholar 

  • McFate T, Mohyeldin A, Lu H, Thakar J, Henriques J, Halim ND, Wu H, Schell MJ, Tsang TM, Teahan O, Zhou S, Califano JA, Jeoung NH, Harris RA, Verma A (2008) Pyruvate dehydrogenase complex activity controls metabolic and malignant phenotype in cancer cells. J Biol Chem 283:22700–22708

    CAS  PubMed Central  PubMed  Google Scholar 

  • Mellai M, Piazzi A, Caldera V, Monzeglio O, Cassoni P, Valente G, Schiffer D (2011) IDH1 and IDH2 mutations, immunohistochemistry and associations in a series of brain tumors. J Neuro-Oncol 105:345–357

    CAS  Google Scholar 

  • Metallo CM, Gameiro PA, Bell EL, Mattaini KR, Yang J, Hiller K, Jewell CM, Johnson ZR, Irvine DJ, Guarente L, Kelleher JK, Vander Heiden MG, Iliopoulos O, Stephanopoulos G (2011) Reductive glutamine metabolism by IDH1 mediates lipogenesis under hypoxia. Nature 481:380–384

    PubMed Central  PubMed  Google Scholar 

  • Michelakis ED, Webster L, Mackey JR (2008) Dichloroacetate as a potential metabolic-targeting therapy for cancer. Br J Cancer 99:989–994

    CAS  PubMed Central  PubMed  Google Scholar 

  • Michelakis ED, Sutendra G, Dromparis P, Webster L, Haromy A, Niven E, Maguire C, Gammer TL, Mackey JR, Fulton D, Abdulkarim B, McMurtry MS, Petruk KC (2010) Metabolic modulation of glioblastoma with dichloroacetate. Sci Transl Med 2:31–34

    Google Scholar 

  • Morfouace M, Lalier L, Bahut M, Bonnamain V, Naveilhan P, Guette C, Oliver L, Gueguen N, Reynier P, Vallette FM (2012) Comparison of spheroids formed by rat glioma stem cells and neural stem cells reveals differences in glucose metabolism and promising therapeutic applications. J Biol Chem 287:33664–33674

    CAS  PubMed Central  PubMed  Google Scholar 

  • Mukherjee S, Das SK (2012) Translocator protein (TSPO) in breast cancer. Curr Mol Med 12:443–457

    CAS  PubMed  Google Scholar 

  • Mullen AR, Wheaton WW, Jin ES, Chen PH, Sullivan LB, Cheng T, Yang Y, Linehan WM, Chandel NS, Deberardinis RJ (2011) Reductive carboxylation supports growth in tumour cells with defective mitochondria. Nature 48:385–388

    Google Scholar 

  • Nakano A, Miki H, Nakamura S, Harada T, Oda A, Amou H, Fujii S, Kagawa K, Takeuchi K, Ozaki S, Matsumoto T, Abe M (2012) Up-regulation of hexokinase II in myeloma cells: targeting myeloma cells with 3-bromopyruvate. J Bioenerg Biomembr 44:31–38

    CAS  PubMed  Google Scholar 

  • Nelson MA, Sanchez IM, Bull RJ, Sylvester SR (1990) Increased expression of c-myc and c-Ha-ras in dichloroacetate and trichloroacetate-induced liver tumors in B6C3F1 mice. Toxicology 64:47–57

    CAS  PubMed  Google Scholar 

  • Neuzil J, Weber T, Schröder A, Lu M, Ostermann G, Gellert N, Olejnicka B, Nègre-Salvayre A, Stícha M, Coffey RJ, Weber C (2001) Induction of cancer cell apoptosis by α-tocopheryl succinate: molecular pathways and structural requirements. FASEB J 15:403–415

    CAS  PubMed  Google Scholar 

  • Olszewski U, Poulsen TT, Ulsperger E, Poulsen HS, Geissler K, Hamilton G (2010) In vitro cytotoxicity of combinations of dichloroacetate with anticancer platinum compounds. Clin Pharmacol 2:177–183

    CAS  PubMed Central  PubMed  Google Scholar 

  • Palmieri D, Fitzgerald D, Shreeve SM, Hua E, Bronder JL, Weil RJ, Davis S, Stark AM, Merino MJ, Kurek R, Mehdorn HM, Davis G, Steinberg SM, Meltzer PS, Aldape K, Steeg PS (2009) Analyses of resected human brain metastases of breast cancer reveal the association between up-regulation of hexokinase 2 and poor prognosis. Mol Cancer Res 7:1438–1445

    CAS  PubMed Central  PubMed  Google Scholar 

  • Papandreou I, Cairns RA, Fontana L, Lim AL, Denko NC (2006) HIF-1 mediates adaptation to hypoxia by actively downregulating mitochondrial oxygen consumption. Cell Metab 3:187–197

    CAS  PubMed  Google Scholar 

  • Park D, Chiu J, Perrone GG, Dilda PJ, Hogg PJ (2012) The tumour metabolism inhibitors GSAO and PENAO react with cysteines 57 and 257 of mitochondrial adenine nucleotide translocase. Cancer Cell Int 12:11

    CAS  PubMed Central  PubMed  Google Scholar 

  • Pastorino JG, Hoek JB (2008) Regulation of hexokinase binding to VDAC. J Bioenerg Biomembr 40:171–182

    CAS  PubMed Central  PubMed  Google Scholar 

  • Patel MS, Korotchkina LG (2003) The biochemistry of the pyruvate dehydrogenase complex. Biochem Mol Biol Edu 31:5–15

    CAS  Google Scholar 

  • Patel MS, Korotchkina LG (2006) Regulation of the pyruvate dehydrogenase complex. Biochem Soc Trans 34:217–222

    CAS  PubMed  Google Scholar 

  • Pedersen PL (2007) Warburg, me and Hexokinase 2: multiple discoveries of key molecular events underlying one of cancers’ most common phenotypes, the “Warburg Effect”, i.e., elevated glycolysis in the presence of oxygen. J Bioenerg Biomembr 39:211–222

    CAS  PubMed  Google Scholar 

  • Pedersen A, Karlsson GB, Rydström J (2008) Proton-translocating transhydrogenase: an update of unsolved and controversial tissues. J Bioenerg Biomembr 40:463–473

    CAS  PubMed  Google Scholar 

  • Peschiaroli A, Giacobbe A, Formosa A, Markert EK, Bongiorno-Borbone L, Levine AJ, Candi E, D’Alessandro A, Zolla L, Finazzi Agrò A, Melino G (2013) miR-143 regulates hexokinase 2 expression in cancer cells. Oncogene 32:797–802

    CAS  PubMed  Google Scholar 

  • Qin JZ, Xin H, Nickoloff BJ (2010a) Targeting glutamine metabolism sensitizes melanoma cells to TRAIL-induced death. Biochem Biophys Res Commun 398:146–152

    CAS  PubMed  Google Scholar 

  • Qin JZ, Xin H, Nickoloff BJ (2010b) 3-Bromopyruvate induces necrotic cell death in sensitive melanoma cell lines. Biochem Biophys Res Commun 396:495–500

    CAS  PubMed  Google Scholar 

  • Ramsay EE, Hogg PJ, Dilda PJ (2011) Mitochondrial metabolism inhibitors for cancer therapy. Pharm Res 28:2731–2744

    CAS  PubMed  Google Scholar 

  • Reitman ZJ, Jin G, Karoly ED, Spasojevic I, Yang J, Kinzler KW, He Y, Bigner DD, Vogelstein B, Yan H (2011) Profiling the effects of isocitrate dehydrogenase 1 and 2 mutations on the cellular metabolome. Proc Natl Acad Sci U S A 108:3270–3275

    CAS  PubMed Central  PubMed  Google Scholar 

  • Roche TE, Hiromasa Y (2007) Pyruvate dehydrogenase kinase regulatory mechanisms and inhibition in treating diabetes, heart ischemia, and cancer. Cell Mol Life Sci 64:830–849

    CAS  PubMed  Google Scholar 

  • Saed GM, Fletcher NM, Jiang ZL, Abu-Soud HM, Diamond MP (2011) Dichloroacetate induces apoptosis of epithelial ovarian cancer cells through a mechanism involving modulation of oxidative stress. Reprod Sci 18:1253–1261

    CAS  PubMed  Google Scholar 

  • Sánchez-Aragó M, Formentini L, Cuezva JM (2012a) Mitochondria-mediated energy adaption in cancer: the H(+)-ATP synthase-geared switch of metabolism in human tumors. Antioxid Redox Signal 19(3):285–298

    PubMed  Google Scholar 

  • Sánchez-Aragó M, Formentini L, García-Bermúdez J, Cuezva JM (2012b) IF1 reprograms energy metabolism and signals the oncogenic phenotype in cancer. Cell Cycle 11:2963–2964

    PubMed Central  PubMed  Google Scholar 

  • Sasaki M, Knobbe CB, Munger JC, Lind EF, Brenner D, Brüstle A, Harris IS, Holmes R, Wakeham A, Haight J, You-Ten A, Li WY, Schalm S, Su SM, Virtanen C, Reifenberger G, Ohashi PS, Barber DL, Figueroa ME, Melnick A, Zúñiga-Pflücker JC, Mak TW (2012) IDH1(R132H) mutation increases murine haematopoietic progenitors and alters epigenetics. Nature 488:656–659

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sazanov LA, Jackson JB (1994) Proton-translocating transhydrogenase and NAD- and NADP-linked isocitrate dehydrogenases operate in a substrate cycle which contributes to fine regulation of the tricarboxylic acid cycle activity in mitochondria. FEBS Lett 344:109–116

    CAS  PubMed  Google Scholar 

  • Schaefer NG, Geschwind JF, Engles J, Buchanan JW, Wahl RL (2012) Systemic administration of 3-bromopyruvate in treating disseminated aggressive lymphoma. Transl Res 159:51–57

    CAS  PubMed  Google Scholar 

  • Shaw RJ (2006) Glucose metabolism and cancer. Curr Opin Cell Biol 18:598–608

    CAS  PubMed  Google Scholar 

  • Shen L, Guo J, Santos-Berrios C, Wu MX (2006) Distinct domains for anti- and pro-apoptotic activities of IEX-1. J Biol Chem 281:15304–15311

    CAS  PubMed  Google Scholar 

  • Shen L, Zhi L, Hu W, Wu MX (2009) IEX-1 targets mitochondrial F1F0-ATPase inhibitor for degradation. Cell Death Differ 16:603–612

    CAS  PubMed Central  PubMed  Google Scholar 

  • Shen YC, Ou DL, Hsu C, Lin KL, Chang CY, Lin CY, Liu SH, Cheng AL (2013) Activating oxidative phosphorylation by a pyruvate dehydrogenase kinase inhibitor overcomes sorafenib resistance of hepatocellular carcinoma. Br J Cancer 108:72–81

    CAS  PubMed Central  PubMed  Google Scholar 

  • Shih AH, Abdel-Wahab O, Patel JP, Levine RL (2012) The role of mutations in epigenetic regulators in myeloid malignancies. Nat Rev Cancer 12:599–612

    CAS  PubMed  Google Scholar 

  • Shoshan MC (2012) 3-Bromopyruvate: targets and outcomes. J Bioenerg Biomembr 44:7–15

    CAS  PubMed  Google Scholar 

  • Shulga N, Wilson-Smith R, Pastorino JG (2010) Sirtuin-3 deacetylation of cyclophilin D induces dissociation of hexokinase II from the mitochondria. J Cell Sci 123:894–902

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sjoblom T, Jones S, Wood LD, Parsons DW, Lin J, Barber TD, Mandelker D, Leary RJ, Ptak J, Silliman N, Szabo S, Buckhaults P, Farrell C, Meeh P, Markowitz SD, Willis J, Dawson D, Willson JK, Gazdar AF, Hartigan J, Wu L, Liu C, Parmigiani G, Park BH, Bachman KE, Papadopoulos N, Vogelstein B, Kinzler KW, Velculescu VE (2006) The consensus coding sequences of human breast and colorectal cancers. Science 314:268–274

    PubMed  Google Scholar 

  • Smith TA, Appleyard MV, Sharp S, Fleming IN, Murray K, Thompson AM (2013) Response to trastuzumab by HER2 expressing breast tumour xenografts is accompanied by decreased hexokinase II, GLUT1 and 18F-FDG incorporation and changes in 31P-NMR-detectable phosphomonoesters. Cancer Chemother Pharmacol 71(2):473–480

    CAS  PubMed  Google Scholar 

  • Smolková K, Ježek P (2012) The role of mitochondrial NADPH-dependent isocitrate dehydrogenase in cancer cells. Int J Cell Biol 2012:273947

    PubMed Central  PubMed  Google Scholar 

  • Smolková K, Plecitá–Hlavatá L, Bellance N, Benard G, Rossignol R, Ježek P (2011a) Waves of gene regulation suppress and then restore oxidative phosphorylation in cancer cells. Int J Biochem Cell Biol 43:950–958

    PubMed  Google Scholar 

  • Smolková K, Dvořák A, Zelenka J, Vítek L, Ježek P (2011b) Reductive carboxylation pathway and redox potential in cancer cells with IDH2 silencing. Free Radic Biol Med 51:S121

    Google Scholar 

  • Stacpoole PW, Barnes CL, Hurbanis MD, Cannon SL, Kerr DS (1997) Treatment of congenital lactic acidosis with dichloroacetate. Arch Dis Child 77:535–541

    CAS  PubMed Central  PubMed  Google Scholar 

  • Stacpoole PW, Nagaraja NV, Hutson AD (2003) Efficacy of dichloroacetate as a lactate-lowering drug. J Clin Pharmacol 43:683–691

    CAS  PubMed  Google Scholar 

  • Strum SB, Adalsteinsson O, Black RR, Segal D, Peress NL, Waldenfels J (2013) Case report: sodium dichloroacetate (DCA) inhibition of the “Warburg effect” in a human cancer patient: complete response in non-Hodgkin’s lymphoma after disease progression with rituximab-CHOP. J Bioenerg Biomembr 45:307–315

    CAS  PubMed  Google Scholar 

  • Sun RC, Fadia M, Dahlstrom JE, Parish CR, Board PG, Blackburn AC (2010) Reversal of the glycolytic phenotype by dichloroacetate inhibits metastatic breast cancer cell growth in vitro and in vivo. Breast Cancer Res Treat 120:253–260

    CAS  PubMed  Google Scholar 

  • Sun RC, Board PG, Blackburn AC (2011) Targeting metabolism with arsenic trioxide and dichloroacetate in breast cancer cells. Mol Cancer 10:142

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sutendra G, Dromparis P, Kinnaird A, Stenson TH, Haromy A, Parker JM, McMurtry MS, Michelakis ED (2013) Mitochondrial activation by inhibition of PDKII suppresses HIF1a signaling and angiogenesis in cancer. Oncogene 32:1638–1650

    CAS  PubMed  Google Scholar 

  • Teicher BA, Linehan WM, Helman LJ (2012) Targeting cancer metabolism. Clin Cancer Res 18:5537–5545

    CAS  PubMed Central  PubMed  Google Scholar 

  • Theeler BJ, Yung WK, Fuller GN, De Groot JF (2012) Moving toward molecular classification of diffuse gliomas in adults. Neurology 79:1917–1926

    CAS  PubMed Central  PubMed  Google Scholar 

  • Thornburg J, Nelson K, Clem B, Lane A, Arumugam S, Simmons A, Eaton JW, Telang S, Chesney J (2008) Targeting aspartate aminotransferase in breast cancer. Breast Cancer Res 10:R84

    PubMed Central  PubMed  Google Scholar 

  • Tong J, Xie G, He J, Li J, Pan F, Liang H (2011) Synergistic antitumor effect of dichloroacetate in combination with 5-fluorouracil in colorectal cancer. J Biomed Biotechnol 2011:740564

    PubMed Central  PubMed  Google Scholar 

  • Tuganova A, Boulatnikov I, Popov KM (2002) Interaction between the individual isoenzymes of pyruvate dehydrogenase kinase and the inner lipoyl-bearing domain of transacetylase component of pyruvate dehydrogenase complex. Biochem J 366:129–136

    CAS  PubMed Central  PubMed  Google Scholar 

  • Upadhyay M, Samal J, Kandpal M, Singh OV, Vivekandan P (2013) The Warburg effect: insights from the past decade. Pharmacol Ther 137:318–330

    CAS  PubMed  Google Scholar 

  • Vali M, Liapi E, Kowalski J, Hong K, Khwaja A, Torbenson MS, Georgiades C, Geschwind JF (2007) Intra-arterial therapy with a new potent inhibitor of tumor metabolism (3-bromopyruvate): identification of therapeutic dose and method of injection in an animal model of liver cancer. J Vasc Interv Radiol 18:95–101

    PubMed  Google Scholar 

  • Vella S, Conti M, Tasso R, Cancedda R, Pagano A (2012) Dichloroacetate inhibits neuroblastoma growth by specifically acting against malignant undifferentiated cells. Int J Cancer 130:1484–1493

    CAS  PubMed  Google Scholar 

  • Wang P, Dong Q, Zhang C, Kuan PF, Liu Y, Jeck WR, Andersen JB, Jiang W, Savich GL, Tan TX, Auman JT, Hoskins JM, Misher AD, Moser CD, Yourstone SM, Kim JW, Cibulskis K, Getz G, Hunt HV, Thorgeirsson SS, Roberts LR, Ye D, Guan KL, Xiong Y, Qin LX, Chiang DY (2013) Mutations in isocitrate dehydrogenase 1 and 2 occur frequently in intrahepatic cholangiocarcinomas and share hypermethylation targets with glioblastomas. Oncogene 32:3091–3100

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ward PS, Patel J, Wise DR, Abdel-Wahab O, Bennett BD, Coller HA, Cross JR, Fantin VR, Hedvat CV, Perl AE, Rabinowitz JD, Carroll M, Su SM, Sharp KA, Levine RL, Thompson CB (2010) The common feature of leukemia-associated IDH1 and IDH2 mutations is a neomorphic enzyme activity converting α-ketoglutarate to 2-hydroxyglutarate. Cancer Cell 17:225–234

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ward PS, Cross JR, Lu C, Weigert O, Abel-Wahab O, Levine RL, Weinstock DM, Sharp KA, Thompson CB (2012) Identification of additional IDH mutations associated with oncometabolite R(-)-2-hydroxyglutarate production. Oncogene 31:2491–2498

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ward PS, Lu C, Cross JR, Abdel-Wahab O, Levine RL, Schwartz GK, Thompson CB (2013) The potential for isocitrate dehydrogenase mutations to produce 2-hydroxyglutarate depends on allele specificity and subcellular compartmentalization. J Biol Chem 288:3804–3815

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wenner CE (2012) Targeting mitochondria as a therapeutic target in cancer. J Cell Physiol 227:450–456

    CAS  PubMed  Google Scholar 

  • Wise DR, DeBerardinis RJ, Mancuso A, Sayed N, Zhang XY, Pfeiffer HK, Nissim I, Daikhin E, Zudkoff M, McMahon SB, Thompson CB (2008) Myc regulates a transcriptional program that stimulates mitochondrial glutaminolysis and leads to glutamine addiction. Proc Natl Acad Sci U S A 105:18782–18787

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wise DR, Ward PS, Shay JE, Cross JR, Gruber JJ, Sachdeva UM, Platt JM, Dematteo RG, Simon MC, Thompson CB (2011) Hypoxia promotes isocitrate dehydrogenase-dependent carboxylation of α-ketoglutarate to citrate to support cell growth and viability. Proc Natl Acad Sci U S A 108:19611–19616

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wolf A, Agnihotri S, Micallef J, Mukherjee J, Sabha N, Cairns R, Hawkins C, Guha A (2011a) Hexokinase 2 is a key mediator of aerobic glycolysis and promotes tumor growth in human glioblastoma multiforme. J Exp Med 208:313–326

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wolf A, Agnihotri S, Munoz D, Guha A (2011b) Developmental profile and regulation of the glycolytic enzyme hexokinase 2 in normal brain and glioblastoma multiforme. Neurobiol Dis 44:84–91

    CAS  PubMed  Google Scholar 

  • Wong JY, Huggins GS, Debidda M, Munshi NC, De Vivo I (2008) Dichloroacetate induces apoptosis in endometrial cancer cells. Gynecol Oncol 109:394–402

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wu P, Blair PV, Sato J, Jaskiewicz J, Popov KM, Harris RA (2000) Starvation increases the amount of pyruvate dehydrogenase kinase in several mammalian tissues. Arch Biochem Biophys 381:1–7

    CAS  PubMed  Google Scholar 

  • Xiao H, Li S, Zhang D, Liu T, Yu M, Wang F (2013) Separate and concurrent use of 2-deoxy-D-glucose and 3-bromopyruvate in pancreatic cancer cells. Oncol Rep 29:329–334

    CAS  PubMed  Google Scholar 

  • Xie J, Wang BS, Yu DH, Lu Q, Ma J, Qi H, Fang C, Chen HZ (2011) Dichloroacetate shifts the metabolism from glycolysis to glucose oxidation and exhibits synergistic growth inhibition with cisplatin in HeLa cells. Int J Oncol 38:409–417

    CAS  PubMed  Google Scholar 

  • Xu XW, Yang H, Liu Y, Yang Y, Wang P, Kim SH, Ito S, Yang C, Wang P, Xiao MT, Liu LX, Jiang WQ, Liu J, Zhang JY, Wang B, Frye S, Zhang Y, Xu YH, Lei QY, Guan KL, Zhao SM, Xiong Y (2011) Oncometabolite 2-hydroxyglutarate is a competitive inhibitor of α-ketoglutarate-dependent dioxygenases. Cancer Cell 19:17–30

    CAS  PubMed Central  PubMed  Google Scholar 

  • Yamashita K, Nakashima S, You F, Hayashi S, Iwama T (2009) Overexpression of immediate early gene X-1 (IEX-1) enhances gamma-radiation-induced apoptosis of human glioma cell line, U87-MG. Neuropathology 29:20–24

    PubMed  Google Scholar 

  • Yan H, Parsons DW, Jin G, McLendon R, Rasheed BA, Yuan W, Kos I, Batinic-Haberle I, Jones S, Riggins GJ, Friedman H, Friedman A, Reardon D, Herndon J, Kinzler KW, Velculescu VE, Vogelstein B, Bigner DD (2009) IDH1 and IDH2 mutations in gliomas. New Engl J Med 360:765–773

    CAS  PubMed Central  PubMed  Google Scholar 

  • Yang H, Ye D, Guan KL, Xiong Y (2012) IDH1 and IDH2 mutations in tumorigenesis: mechanistic insights and clinical perspectives. Clin Cancer Res 18:5562–5571

    CAS  PubMed Central  PubMed  Google Scholar 

  • Yin F, Sancheti H, Cadenas E (2012) Silencing of nicotinamide nucleotide transhydrogenase impairs cellular redox homeostasis and energy metabolism in PC12 cells. Biochim Biophys Acta 1817:401–409

    CAS  PubMed Central  PubMed  Google Scholar 

  • Yoo H, Antoniewicz MR, Stephanopoulos G, Kelleher JK (2008) Quantifying reductive carboxylation flux of glutamine to lipid in a brown adipocyte cell line. J Biol Chem 283:20621–20627

    CAS  PubMed Central  PubMed  Google Scholar 

  • Yu W, Dittenhafer-Reed KE, Denu JM (2012) SIRT3 protein deacetylates isocitrate dehydrogenase 2 (IDH2) and regulates mitochondrial redox status. J Biol Chem 287:14078–14086

    CAS  PubMed Central  PubMed  Google Scholar 

  • Yuneva M (2008) Finding an “Achilles’ heel” of cancer: the role of glucose and glutamine metabolism in the survival of transformed cells. Cell Cycle 7:2083–2089

    CAS  PubMed  Google Scholar 

  • Yuneva M, Zamboni N, Oefner P, Sachidanandam R, Lazebnik Y (2007) Deficiency in glutamine but not glucose induces MYC dependent apoptosis in human cells. J Cell Biol 178:93–105

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zhang X, Varin E, Briand M, Allouche S, Heutte N, Schwartz L, Poulain L, Icard P (2009) Novel therapy for malignant pleural mesothelioma based on anti-energetic effect: an experimental study using 3-bromopyruvate on nude mice. Anticancer Res 29:1443–1448

    CAS  PubMed  Google Scholar 

  • Zhao Y, Liu H, Riker AI, Fodstad O, Ledoux SP, Wilson GL, Ming T (2011) Emerging metabolic targets in cancer therapy. Front Biosci 16:1844–1860

    CAS  Google Scholar 

Download references

Acknowledgements

The project was supported by the Grant Agency of the Czech Republic grant P301/12/P308 to K.S.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Petr Ježek .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Ježek, P., Smolková, K., Dvořák, A., Olejár, T. (2014). Emerging Anti-cancer Targets in Mitochondria. In: Neuzil, J., Pervaiz, S., Fulda, S. (eds) Mitochondria: The Anti- cancer Target for the Third Millennium. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-8984-4_10

Download citation

Publish with us

Policies and ethics