Skip to main content

Meteorological Aspects of Dust Storms

  • Chapter
  • First Online:
Mineral Dust

Abstract

Dust emission requires the combination of deflatable soil material and near-surface wind speeds above the local emission threshold. Across the many dust source regions on Earth a number of generic meteorological phenomena can be identified and classified: (1) Large-scale monsoon-type flows associated with an acceleration towards a continental heat low, predominantly in late spring and early summer; (2) mobile synoptic-scale systems such as anticyclones, cyclones and their cold fronts, typically in late winter and spring; (3) gust fronts generated by outflow from moist convective storms, most common during the beginning of the summer rainy season; (4) intense dry convection in the daytime planetary boundary layer particularly during summer, leading to the generation of dust devils and dusty plumes. These processes can locally be modified by topographic effects and are usually characterised by marked diurnal cycles, for example caused by the development and subsequent breakdown of nocturnal low-level jets in areas of sufficiently large pressure gradients and stable nighttime conditions. In this chapter the different meteorological phenomena listed above will be explained and illustrated using ground-based observations, satellite data and measurements from field campaigns as well as data from meteorological models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdou K, Parker DJ, Brooks B et al (2010) The diurnal cycle of lower boundary-layer wind in the West African monsoon. Q J Roy Meteorol Soc 136:66–76

    Google Scholar 

  • Alizadeh Choobari O, Zawar-Reza P, Sturman A (2012a) Atmospheric forcing of the three-dimensional distribution of dust particles over Australia: A case study. J Geophys Res 117, D11206. doi:10.1029/2012JD017748

    Google Scholar 

  • Alizadeh Choobari O, Zawar-Reza P, Sturman A (2012b) Feedback between windblown dust and planetary boundary-layer characteristics: sensitivity to boundary and surface layer parameterizations. Atmos Environ 61:294–304

    Google Scholar 

  • Alpert P, Ziv B (1989) The Sharav cyclone: observations and some theoretical considerations. J Geophys Res 94(D15):18495–18514

    Google Scholar 

  • Ansmann A, Tesche M, Knippertz P et al (2009) Vertical profiling of convective dust plumes in southern Morocco during SAMUM. Tellus 61B:340–353

    Google Scholar 

  • Bach AJ, Brazel AJ, Lancaster N (1996) Temporal and spatial aspects of blowing dust in the Mojave and Colorado deserts of southern California, 1973–1994. Phys Geogr 17(4):329–353

    Google Scholar 

  • Badarinath KVS, Kharol SK, Kaskaoutis DG, Kambezidis AH (2007) Case study of a dust storm over Hyderabad area, India: its impact on solar radiation using satellite data and ground measurements. Sci Total Environ 384(1–3):316–332

    Google Scholar 

  • Baddock MC, Bullard JE, Bryant RG (2009) Dust source identification using MODIS: a comparison of techniques applied to the Lake Eyre Basin, Australia. Remote Sens Environ 113(7):1511–1528

    Google Scholar 

  • Balme M, Greeley R (2006) Dust devils on Earth and Mars. Rev Geophys 44, RG3003. doi:10.1029/2005RG000188

    Google Scholar 

  • Balme M, Metzger S, Towner M et al (2003) Friction wind speeds in dust devils: a field study. Geophys Res Lett 30(16):1830. doi:10.1029/2003GL017493

    Google Scholar 

  • Blackadar AK (1957) Boundary layer wind maxima and their significance for the growth of nocturnal inversions. Bull Am Meteorol Soc 38:282–290

    Google Scholar 

  • Bou Karam D, Flamant C, Knippertz P (2008) Dust emissions over the Sahel associated with the West African Monsoon inter-tropical discontinuity region: a representative case study. Q J Roy Meteorol Soc 134:621–634

    Google Scholar 

  • Bou Karam D, Flamant C, Cuesta J et al (2010) Dust emission and transport associated with a Saharan depression: the February 2007 case. J Geophys Res 115, D00H27. doi:10.1029/2009JD012390

    Google Scholar 

  • Brazel AJ, Nickling WG (1986) The relationship of weather types to dust storm generation in Arizona (1965–1980). J Climatol 6(3):255–275

    Google Scholar 

  • Cabello M, Orza JAG, Barrero MA et al (2012) Spatial and temporal variation of the impact of an extreme Saharan dust event. J Geophys Res 117, D11204. doi:10.1029/2012JD017513

    Google Scholar 

  • Cakmur RV, Miller RL, Torres O (2004) Incorporating the effect of small-scale circulations upon dust emission in an atmospheric general circulation model. J Geophys Res 109, D07201. doi:10.1029/2003JD004067

    Google Scholar 

  • Cavazos C, Todd MC, Schepanski K (2009) Numerical model simulation of the Saharan dust event of 6–11 March 2006 using the Regional Climate Model version 3 (RegCM3). J Geophys Res 114, D12109. doi:10.1029/2008JD011078

    Google Scholar 

  • Cavazos-Guerra C, Todd MC (2012) Model simulations of complex dust emissions over the Sahara during the West African monsoon onset. Adv Meteorol 2012. doi:10.1155/2012/351731

  • Chen W, Fryrear D (2002) Sedimentary characteristics of a haboob dust storm. Atmos Res 61:75–85

    Google Scholar 

  • Cook KH, Vizy EK (2006) Coupled model simulations of the West African monsoon system: 20th century simulations and 21st century predictions. J Clim 19:3681–3703

    Google Scholar 

  • de Villiers M, van Heerden J (2011) Nashi dust storm over the United Arab Emirates. Weather 66(3):79–81

    Google Scholar 

  • DeSouza-Machado SG, Strow LL, Imbiriba B et al (2010) Infrared retrievals of dust using AIRS: comparisons of optical depths and heights derived for a North African dust storm to other collocated EOS A-Train and surface observations. J Geophys Res 115, D15201. doi:10.1029/2009JD012842

    Google Scholar 

  • Ekström M, McTainsh GH, Chappell A (2004) Australian dust storms: temporal trends and relationships with synoptic pressure distributions (1960–99). Int J Climatol 24(12):1581–1599

    Google Scholar 

  • Emmel C, Knippertz P, Schulz O (2010) Climatology of convective density currents in the southern foothills of the Atlas mountains. J Geophys Res 115, D11115. doi:10.1029/2009JD011819

    Google Scholar 

  • Engelstaedter S, Washington R (2007) Atmospheric controls on the annual cycle of North African dust. J Geophys Res 112. doi:10.1029/2006JD007195

  • Engelstaedter S, Washington R (2008) Reply to comment by E. Williams on “Atmospheric controls on the annual cycle of North African dust”. J Geophys Res 113, D23110. doi:10.1029/2008JD010275

    Google Scholar 

  • Farquharson M (1937) Haboobs and instability in the Sudan. Q J Roy Meteorol Soc 63:393–414

    Google Scholar 

  • Fiedler S, Schepanski K, Heinold B et al (2013) Climatology of nocturnal low-level jets over North Africa and implications for modeling mineral dust emission. J Geophys Res 118(12):6100–6121. doi:10.1002/jgrd.50394

    Google Scholar 

  • Flamant C, Chaboureau J-P, Parker DJ (2007) Airborne observations of the impact of a convective system on the planetary boundary layer thermodynamics and aerosol distribution in the inter-tropical discontinuity region of the West African Monsoon. Q J Roy Meteorol Soc 133:1175–1189

    Google Scholar 

  • Freeman M (1952) Duststorms of the Anglo-Egyptian Sudan, Meteorological Reports 11. Her Majesty’s Stn. Off, London, p 22

    Google Scholar 

  • Gabric AJ, Cropp RA, McTainsh GH et al (2010) Australian dust storms in 2002–2003 and their impact on Southern Ocean biogeochemistry. Global Biogeochem Cycles 24, GB2005. doi:10.1029/2009GB003541

    Google Scholar 

  • Garratt JR (1984) Cold fronts and dust storms during the Australian summer 1982–1983. Weather 39:98–103

    Google Scholar 

  • Gibson B (2007) Examination of a density current with severe winds and extensive dust: South Australia case study. 2 April 2005. Aust Meteorol Mag 56(4):267–283

    Google Scholar 

  • Gläser G, Knippertz P, Heinold B (2012) Orographic effects and evaporative cooling along a subtropical cold front: the case of the spectacular Saharan dust outbreak of March 2004. Mon Weather Rev 140(8):2520–2533

    Google Scholar 

  • Godon NA, Todhunter PE (1998) A climatology of airborne dust for the Red River Valley of North Dakota. Atmos Environ 32(9):1587–1594

    Google Scholar 

  • Goudie AS, Middleton NJ (1992) The changing frequency of dust storms through time. Clim Change 20(3):197–225

    Google Scholar 

  • Grams CM, Jones SC, Marsham JM et al (2010) The Atlantic inflow to the Saharan heat low: observations and modelling. Q J Roy Meteorol Soc 136:125–140

    Google Scholar 

  • Hahnenberger M, Nicoll K (2012) Meteorological characteristics of dust storm events in the eastern Great Basin of Utah, U.S.A. Atmos Environ 60:601–612

    Google Scholar 

  • Hannachi A, Awad A, Ammar K (2010) Climatology and classification of spring Saharan cyclone tracks. Clim Dyn. doi:10.1007/s00382-010-0941-9

    Google Scholar 

  • Heinold B, Knippertz P, Marsham JH et al (2013) The role of deep convection and low-level jets for dust emissions in West Africa. J Geophys Res 118(10):4385–4400. doi:10.1002/jgrd.50402

    Google Scholar 

  • Hess GD, Spillane KT (1990) Characteristics of dust devils in Australia. J Appl Meteorol 29:498–507

    Google Scholar 

  • Ito J, Niino H, Nakanishi M (2013) Formation mechanism of dust devil–like vortices in idealized convective mixed layers. J Atmos Sci 70:1173–1186

    Google Scholar 

  • Jauregui E (1989) The dust storms of Mexico-City. Int J Climatol 9(2):169–180

    Google Scholar 

  • Joseph PV (1982) A tentative model of Andhi. Mausam 33:417

    Google Scholar 

  • Kanak K (2005) Numerical simulation of dust devil-scale vortices. Q J Roy Meteorol Soc 131:1271–1292

    Google Scholar 

  • Kaplan ML, Vellore RK, Lewis JM et al (2011) The role of unbalanced mesoscale circulations in dust storms. J Geophys Res 116, D23101. doi:10.1029/2011JD016218

    Google Scholar 

  • Karyampudi VM, Carlson TN (1988) Analysis and numerical simulations of the Saharan air layer and its effect on easterly wave disturbances. J Atmos Sci 45:3102–3136

    Google Scholar 

  • Klose M, Shao Y, Karremann MK, Fink AH (2010) Sahel dust zone and synoptic background. Geophys Res Lett 37, L09802. doi:10.1029/2010GL042816

    Google Scholar 

  • Knippertz P (2008) Dust mobilization in the West African heat trough – the role of the diurnal cycle and of extratropical synoptic disturbances. Meteorol Z 17:553–563

    Google Scholar 

  • Knippertz P, Fink AH (2006) Synoptic and dynamic aspects of an extreme springtime Saharan dust outbreak. Q J Roy Meteorol Soc 132:1153–1177

    Google Scholar 

  • Knippertz P, Todd MC (2010) The central west Saharan dust hot spot and its relation to African easterly waves and extratropical disturbances. J Geophys Res 115, D12117. doi:10.1029/2009JD012819

    Google Scholar 

  • Knippertz P, Todd MC (2012) Mineral dust aerosols over the Sahara: processes of emission and transport, and implications for modeling. Rev Geophys 50, RG1007. doi:10.1029/2011RG000362

    Google Scholar 

  • Knippertz P, Deutscher C, Kandler K et al (2007) Dust mobilization due to density currents in the Atlas region: observations from the SAMUM 2006 field campaign. J Geophys Res 112, D21109. doi:10.1029/2007JD008774

    Google Scholar 

  • Knippertz P, Ansmann A, Althausen D et al (2009a) Dust mobilization and transport in the northern Sahara during SAMUM 2006 – a meteorological overview. Tellus 61B:12–31

    Google Scholar 

  • Knippertz P, Trentmann J, Seifert A (2009b) High-resolution simulations of convective cold pools over the northwestern Sahara. J Geophys Res 114, D08110. doi:10.1029/2008JD011271

    Google Scholar 

  • Knippertz P, Tesche M, Heinold B (2011) Dust mobilization and aerosol transport from West Africa to Cape Verde – a meteorological overview of SAMUM-2. Tellus 63B:430–447

    Google Scholar 

  • Koch J, Renno NO (2005) The role of convective plumes and vortices on the global aerosol budget. Geophys Res Lett 32. doi:10.1029/2005GL023420

  • Kocha C, Lafore J-P, Tulet P et al (2012) High-resolution simulation of a major West African dust-storm: comparison with observations and investigation of dust impact. Q J Roy Meteorol Soc 138:455–470

    Google Scholar 

  • Kocha C, Tulet P, Lafore J-P, Flamant C (2013) The importance of the diurnal cycle of Aerosol Optical Depth in West Africa. Geophys Res Lett 40:785–790

    Google Scholar 

  • Koren I, Kaufman YJ (2004) Direct wind measurements of Saharan dust events from Terra and Aqua satellites. Geophys Res Lett 31, L06122. doi:10.1029/2003GL019338

    Google Scholar 

  • Kurgansky MV (2006) Steady-state properties and statistical distribution of atmospheric dust devils. Geophys Res Lett 33, L19S06. doi:10.1029/2006GL026142

    Google Scholar 

  • Kurgansky MV, Montecinos A, Villagran V, Metzger SM (2011) Micro-meteorological conditions for dust devil occurrence in the Atacama Desert. Bound Layer Meteorol 138(2):285–298

    Google Scholar 

  • Laurent B, Marticorena B, Bergametti G, Mei D (2006) Modeling mineral dust emissions from Chinese and Mongolian deserts. Global Planet Change 52(1–4):121–141

    Google Scholar 

  • Lawson TJ (1971) Haboob structure at Khartoum. Weather 26:105–112

    Google Scholar 

  • Leslie LM, Speer MS (2006) Modelling dust transport over central eastern Australia. Meteorol App 13(2):141–167

    Google Scholar 

  • Lewis JM, Kaplan ML, Vellore R et al (2011) Dust storm over the Black Rock Desert: larger-scale dynamic signatures. J Geophys Res 116, D06113. doi:10.1029/2010JD014784

    Google Scholar 

  • Littmann T (1991) Dust storm frequency in Asia – climatic control and variability. Int J Climatol 11(4):393–412

    Google Scholar 

  • Liu M, Westphal DL (2001) A study of the sensitivity of simulated mineral dust production to model resolution. J Geophys Res 106(D16):18099–18112

    Google Scholar 

  • Liu M, Westphal DL, Wang SG et al (2003) A high-resolution numerical study of the Asian dust storms of April 2001. J Geophys Res 108(D23):8653. doi:10.1029/2002JD003178

    Google Scholar 

  • Liu M, Westphal DL, Walker AL et al (2007) COAMPS real-time dust storm forecasting during operation Iraqi freedom. Weather Forecast 22(1):192–206

    Google Scholar 

  • Luo C, Mahowald NM, Jones C (2004) Temporal variability of dust mobilization and concentration in source regions. J Geophys Res 109, D20202. doi:10.1029/2004JD004861

    Google Scholar 

  • Lyons TJ, Nair US, Foster IJ (2008) Clearing enhances dust devil formation. J Arid Environ 72(10):1918–1928

    Google Scholar 

  • Maghrabi A, Alharbi B, Tapper N (2011) Impact of the March 2009 dust event in Saudi Arabia on aerosol optical properties, meteorological parameters, sky temperature and emissivity. Atmos Environ 45(13):2164–2173

    Google Scholar 

  • Mallet M, Tulet P, Serça D et al (2009) Impact of dust aerosols on the radiative budget, surface heat fluxes, heating rate profiles and convective activity over West Africa during March 2006. Atmos Chem Phys 9:7143–7160

    Google Scholar 

  • Mangold A, De Backer H, De Paepe B et al (2011) Aerosol analysis and forecast in the European Centre for Medium-Range Weather Forecasts Integrated Forecast System: 3. Evaluation by means of case studies. J Geophys Res 116, D03302. doi:10.1029/2010JD014864

    Google Scholar 

  • Marsham JH, Parker DJ, Grams CM (2008a) Uplift of Saharan dust south of the inter-tropical discontinuity. J Geophys Res 113, D21102. doi:10.1029/2008JD009844

    Google Scholar 

  • Marsham JH, Parker DJ, Grams CM et al (2008b) Observations- of mesoscale and boundary-layer scale circulations affecting dust transport and uplift over the Sahara. Atmos Chem Phys 8:6979–6993

    Google Scholar 

  • Marsham JH, Knippertz P, Dixon N et al (2011) The importance of the representation of deep convection for modeled dust-generating winds over West Africa during summer. Geophys Res Lett 38, L16803. doi:10.1029/2011GL048368

    Google Scholar 

  • Marsham JH, Hobby M, Allen CJT et al (2013a) Meteorology and dust in the central Sahara: observations from Fennec supersite-1 during the June 2011 Intensive Observation Period. J Geophys Res. doi:10.1002/jgrd.50211

    Google Scholar 

  • Marsham J, Dixon N, Garcia-Carreras L et al (2013b) The role of moist convection in the West African monsoon system – insights from continental-scale convection-permitting simulations. Geophys Res Lett 40(9):1843–1849. doi:10.1002/grl.50347

    Google Scholar 

  • Marticorena B, Chatenet B, Rajot JL (2010) Temporal variability of mineral dust concentrations over West Africa: analyses of a pluriannual monitoring from the AMMA Sahelian Dust Transect. Atmos Chem Phys 10:8899–8915

    Google Scholar 

  • Mattsson JO, Nihlén T, Yue W (1993) Observations of dust devils in a semi-arid district of southern Tunisia. Weather 48:359–363

    Google Scholar 

  • Mbourou GN, Bertrand JJ, Nicholson SE (1997) The diurnal and seasonal cycles of wind-borne dust over Africa north of the equator. J Appl Meteorol 36:868–882

    Google Scholar 

  • McGinnigle JB (1966) Dust whirls in north-west Libya. Weather 21:272–276

    Google Scholar 

  • McTainsh G, Chan Y-C, McGowan H et al (2005) The 23rd October 2002 dust storm in eastern Australia: characteristics and meteorological conditions. Atmos Environ 39(7):1227–1236

    Google Scholar 

  • Membery D (1985) A gravity-wave haboob? Weather 40:214–221

    Google Scholar 

  • Middleton NJ (1986) A geography of dust storms in southwest Asia. J Climatol 6(2):183–196

    Google Scholar 

  • Mikami M, Shi GY, Uno I et al (2006) Aeolian dust experiment on climate impact: an overview of Japan–China joint project ADEC. Global Planet Change 52(1–4):142–172

    Google Scholar 

  • Miller SSD, Kuciauskas AP, Liu M et al (2008) Haboob dust storms of the southern Arabian Peninsula. J Geophys Res 113, D01202. doi:10.1029/2007JD008550

    Google Scholar 

  • Min Q-L, Li R, Lin B et al (2009) Evidence of mineral dust altering cloud microphysics and precipitation. Atmos Chem Phys 9:3223–3231

    Google Scholar 

  • Morcrette J-J, Beljaars A, Benedetti A et al (2008) Seasalt and dust aerosols in the ECMWF IFS model. Geophys Res Lett 35, L24813. doi:10.1029/2008GL036041

    Google Scholar 

  • Natsagdory L, Jugder D, Chung YS (2003) Analysis of dust storms observed in Mongolia during 1937–1999. Atmos Environ 37:1401–1411

    Google Scholar 

  • Novlan DJ, Hardiman M, Gill TE (2007) A synoptic climatology of blowing dust events in El Paso, Texas from 1932–2005. Preprints 16th Conference on Applied Climatology, Am Meteorol Soc, J3.12

    Google Scholar 

  • Offer ZY, Goossens D (2001) Ten years of aeolian dust dynamics in a desert region (Negev desert, Israel): analysis of airborne dust concentration, dust accumulation and the high-magnitude dust events. J Arid Environ 47(2):211–249

    Google Scholar 

  • Ohno H, Takemi T (2010) Mechanisms for intensification and maintenance of numerically simulated dust devils. Atmos Sci Lett 11:27–32

    Google Scholar 

  • Oke AMC, Tapper NJ, Dunkerley D (2007) Willy-willies in the Australian landscape: the role of key meteorological variables and surface conditions in defining frequency and spatial characteristics. J Arid Environ 71(2):201–215

    Google Scholar 

  • Orgill MM, Sehmel GA (1976) Frequency and diurnal-variation of dust storms in contiguous USA. Atmos Environ 10(10):813–825

    Google Scholar 

  • Orlovsky L, Orlovsky N, Durdyev A (2005) Dust storms in Turkmenistan. J Arid Environ 60(1):83–97

    Google Scholar 

  • Parker DJ, Burton RR, Diongue-Niang A et al (2005) The diurnal cycle of the West African monsoon circulation. Q J Roy Meteorol Soc 131:2839–2860

    Google Scholar 

  • Pauley PM, Baker NL, Barker EH (1996) An observational study of the “Interstate 5” dust storm case. Bull Am Meteorol Soc 77(4):693–720

    Google Scholar 

  • Prasad AK, Singh RP (2007) Changes in aerosol parameters during major dust storm events (2001–2005) over the Indo-Gangetic Plains using AERONET and MODIS data. J Geophys Res 112(D9), D09208. doi:10.1029/2006JD007778

    Google Scholar 

  • Qian W, Quan L, Shi S (2002) Variations of the dust storm in China and its climatic control. J Clim 15:1216–1229

    Google Scholar 

  • Raasch S, Franke T (2011) Structure and formation of dust devil–like vortices in the atmospheric boundary layer: a high‐resolution numerical study. J Geophys Res 116, D16120. doi:10.1029/2011JD016010

    Google Scholar 

  • Reid JS, Flocchini RG, Cahill TA et al (1994) Local meteorological, transport, and source aerosol characteristics of late autumn Owens Lake (dry) dust storms. Atmos Environ 28(9):1699–1706

    Google Scholar 

  • Reinfried F, Tegen I, Heinold B et al (2009) Density currents in the Atlas Region leading to dust mobilization: a model sensitivity study. J Geophys Res 114, D08127. doi:10.1029/2008JD010844

    Google Scholar 

  • Renno NO, Burkett ML, Larkin MP (1998) A simple thermodynamical theory for dust devils. J Atmos Sci 55:3244–3252

    Google Scholar 

  • Renno NO, Abreu VJ, Koch J et al (2004) MATADOR 2002: a pilot field experiment on convective plumes and dust devils. J Geophys Res 109, E07001. doi:10.1029/2003JE002219

    Google Scholar 

  • Ridley DA, Heald CL, Pierce JR, Evans MJ (2013) Towards resolution-independent dust emissions in global models: impacts on the seasonal and spatial distribution of dust. Geophys Res Lett. doi:10.1002/grl.50409

    Google Scholar 

  • Rivera Rivera NI, Gill TE, Gebhart KA et al (2009) Wind modeling of Chihuahuan Desert dust outbreaks. Atmos Environ 43(2):347–354

    Google Scholar 

  • Roberts A, Knippertz P (2014) The formation of a large summertime Saharan dust plume: convective and synoptic-scale analysis. J Geophys Res. doi:10.1002/2013JD020667

    Google Scholar 

  • Ryan JA (1972) Relation of dust devil frequency and diameter to atmospheric temperature. J Geophys Res 77:7133–7137

    Google Scholar 

  • Ryan JA, Carroll JJ (1970) Dust devil wind velocities: mature state. J Geophys Res 75(3):531–541

    Google Scholar 

  • Saeed TM, Al-Dashti H (2011) Optical and physical characterization of “Iraqi freedom” dust storm, a case study. Theor Appl Climatol 104(1–2):123–137

    Google Scholar 

  • Sander N, Jones SC (2008) Diagnostic measures for assessing numerical forecasts of African easterly waves. Meteorol Z 17:209–220

    Google Scholar 

  • Schepanski K, Knippertz P (2011) Soudano-Saharan depressions and their importance for precipitation and dust: a new perspective on a classical synoptic concept. Q J Roy Meteorol Soc 137:1431–1445

    Google Scholar 

  • Schepanski K, Tegen I, Laurent B et al (2007) A new Saharan dust source activation frequency map derived from MSG-SEVIRI IR-channels. Geophys Res Lett 34. doi: 10.1029/2007GL030168

  • Schepanski K, Tegen I, Todd MC et al (2009) Meteorological processes forcing Saharan dust emission inferred from MSG-SEVIRI observations of subdaily dust source activation and numerical models. J Geophys Res 114, D10201. doi:10.1029/2008JD010325

    Google Scholar 

  • Seino N, Sasaki H, Yamamoto A et al (2005) Numerical simulation of mesoscale circulations in the Tarim Basin associated with dust events. J Meteorol Soc Japan 83A:205–218

    Google Scholar 

  • Shao Y, Wang JJ (2003) A climatology of Northeast Asian dust events. Meteorol Z 12(4):187–196

    Google Scholar 

  • Shao Y, Jung E, Leslie LM (2002) Numerical prediction of northeast Asian dust storms using an integrated wind erosion modeling system. J Geophys Res 107(D24):4814. doi:10.1029/2001JD001493

    Google Scholar 

  • Shao Y, Yang Y, Wang JJ et al (2003) Northeast Asian dust storms: real-time numerical prediction and validation. J Geophys Res 108(D22):4691. doi:10.1029/2003JD003667

    Google Scholar 

  • Shao Y, Leys JF, McTainsh GH, Tews K (2007) Numerical simulation of the October 2002 dust event in Australia. J Geophys Res 112, D08207. doi:10.1029/2006JD007767

    Google Scholar 

  • Shao Y, Fink AH, Klose M (2010) Numerical simulation of a continental-scale Saharan dust event. J Geophys Res 115, D13205. doi:10.1029/2009JD012678

    Google Scholar 

  • Shen B-W, Tao W-K, Wu M-LC (2010) African easterly waves in 30-day high-resolution global simulations: a case study during the 2006 NAMMA period. Geophys Res Lett 37, L18803. doi:10.1029/2010GL044355

    Google Scholar 

  • Sinclair PC (1964) Some preliminary dust devil measurements. Mon Weather Rev 22(8):363–367

    Google Scholar 

  • Sinclair PC (1969) General characteristics of dust devils. J Appl Meteorol 8:32–45

    Google Scholar 

  • Slingo A et al (2006) Observations of the impact of a major Saharan dust storm on the atmospheric radiation balance. Geophys Res Lett 33, L24817. doi:10.1029/2006GL027869

    Google Scholar 

  • Smirnov VV, Johnson TC, Krapivtseva GM et al (1993) Synoptic meteorological conditions during the U.S.S.R./U.S. dust experiment in Tadzhikistan in September 1989. Atmos Environ 27(16):2471–2479

    Google Scholar 

  • Smith RK, Reeder J, Tapper NJ, Christie DR (1995) Central Australian cold fronts. Mon Weather Rev 123:16–38

    Google Scholar 

  • Snow JT, McClelland TM (1990) Dust devils at White Sands Missile Range, New Mexico: 1. Temporal and spatial distributions. J Geophys Res 95:13707–13721

    Google Scholar 

  • Stanelle T, Vogel B, Vogel H et al (2010) Feedback between dust particles and atmospheric processes over West Africa during dust episodes in March 2006 and June 2007. Atmos Chem Phys 10:10771–10788

    Google Scholar 

  • Strong CL, Parsons K, McTainsh GH, Sheehan A (2011) Dust transporting wind systems in the lower Lake Eyre Basin, Australia: a prelimary study. Aeolian Res 2:205–214

    Google Scholar 

  • Sullivan PP, Patton EG (2011) The effect of mesh resolution on convective boundary layer statistics and structures generated by large-eddy simulation. J Atmos Sci 68:2395–2415

    Google Scholar 

  • Sun JM, Zhang MY, Liu TS (2001) Spatial and temporal characteristics of dust storms in China and its surrounding regions, 1960–1999: relations to source area and climate. J Geophys Res 106(D10):10325–10333

    Google Scholar 

  • Sutton LJ (1925) Haboobs. Q J Roy Meteorol Soc 51:25–30

    Google Scholar 

  • Takemi T (2005) Explicit simulations of convective-scale transport of mineral dust in severe convective weather. J Meteorol Soc Japan 83A:187–203

    Google Scholar 

  • Takemi T, Seino N (2005) Dust storms and cyclone tracks over the arid regions in east Asia in spring. J Geophys Res 110(D18), D18S11. doi:10.1029/2004JD004698

    Google Scholar 

  • Tao G, Yongfu X, Yuhua B, Xiao Y (2006) Synoptic characteristics of dust storms observed in Inner Mongolia and their influence on the downwind area (the Beijing–Tianjin Region). Meteorol Appl 13:393–403

    Google Scholar 

  • Todd M, Bou Karam D, Cavazos C et al (2008a) Quantifying uncertainty in estimates of mineral dust flux: an intercomparison of model performance over the Bodélé Depression, northern Chad. J Geophys Res 113, D24107. doi:10.1029/2008JD010476

    Google Scholar 

  • Todd MC, Washington R, Raghavan S et al (2008b) Regional model simulations of the Bodélé low-level jet of northern Chad during the Bodélé Dust Experiment (BoDEx 2005). J Clim 21:995–1012

    Google Scholar 

  • Todd MC, Allen CJT, Bart M et al (2013) Meteorological and dust aerosol conditions over the Western Saharan region observed at Fennec supersite-2 during the Intensive Observation Period in June 2011. J Geophys Res. doi:10.1002/jgrd.50470

    Google Scholar 

  • Tulet P, Mallet M, Pont V et al (2008) The 7–13 March 2006 dust storm over West Africa: generation, transport, and vertical stratification. J Geophys Res 113, D00C08. doi:10.1029/2008JD009871

    Google Scholar 

  • van de Wiel BJH, Moene AF, Steeneveld GJ et al (2010) A conceptual view on inertial oscillations and nocturnal low-level jets. J Atmos Sci 67:2679–2689

    Google Scholar 

  • Wain AG, Lee S, Mills GA et al (2006) Meteorological overview and verification of HYSPLIT and AAQFS dust forecasts for the duststorm of 22–24 October 2002. Aust Meteorol Mag 55(1):35–46

    Google Scholar 

  • Washington R, Todd MC (2005) Atmospheric controls on mineral dust emission from the Bodélé Depression, Chad: the role of the low level jet. Geophys Res Lett 32, L17701. doi:10.1029/2005GL023597

    Google Scholar 

  • Washington R, Todd MC, Engelstaedter S et al (2006) Dust and the low-level circulation over the Bodélé Depression, Chad: observations from BoDEx 2005. J Geophys Res 111(D3). doi:10.1029/2005JD006502

  • Wheaton EE, Chakravarti AK (1990) Dust storms in the Canadian prairies. Int J Climatol 10(8):829–837

    Google Scholar 

  • White JR, Cerveny RS, Balling RC Jr (2012) Seasonality in European Red Dust/“Blood” rain events. Bull Am Meteorol Soc 93(4):471–476

    Google Scholar 

  • Wiegand L, Twitchett A, Schwierz C, Knippertz P (2011) Heavy precipitation at the Alpine south side and Saharan dust over central Europe: a predictability study using TIGGE. Weather Forecast 26:958–974

    Google Scholar 

  • Williams E (2008) Comment on “Atmospheric controls on the annual cycle of North African dust” by S. Engelstaedter and R. Washington. J Geophys Res 113, D23109. doi:10.1029/2008JD009930

    Google Scholar 

  • Williams E, Nathou N, Hicks E et al (2008) The electrification of dust-lofting gust fronts (‘haboobs’) in the Sahel. Atmos Res. doi:10.1016/j.atmosres.2008.05.017

    Google Scholar 

  • Yamamoto T, Yoshino M, Suzuki J (2007) The relationship between occurrence of dust events and synoptic climatological condition in East Asia, 1999–2003. J Meteorol Soc Japan 85(2):81–99

    Google Scholar 

  • Yin D, Nickovic S, Barbaris B et al (2005) Modeling wind-blown desert dust in the Southwestern United States for public health warning: a case study. Atmos Environ 39:6243–6254

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Knippertz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Knippertz, P. (2014). Meteorological Aspects of Dust Storms. In: Knippertz, P., Stuut, JB. (eds) Mineral Dust. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-8978-3_6

Download citation

Publish with us

Policies and ethics