Skip to main content

Cytocompatible Phospholipid Polymers for Non-invasive Nanodevices

  • Chapter
  • First Online:
Intracellular Delivery II

Part of the book series: Fundamental Biomedical Technologies ((FBMT,volume 7))

  • 1677 Accesses

Abstract

The design of cytocompatible polymer materials without any cytotoxicity is an essential and important part in the preparation of nanodevices for the delivery of bioactive molecules. The phospholipid polymer 2-methacryloyloxyethyl phosphorylcholine (MPC) is a strong candidate to provide such nanodevices because of its excellent cytocompatibility. Water-soluble MPC polymers bearing hydrophobic monomer units can form a stable polymer aggregate structure in biological milieus because of their amphiphilic nature. The obtained polymer aggregate can solubilize poorly soluble molecules, including bioactive molecules. In addition, MPC polymers containing active ester units to immobilize bioactive molecules are useful to investigate the bioactivity of immobilized molecules because non-specific interactions with biomolecules are reduced. The concept of a “cell-shuttle” that can penetrate the cell membrane without showing any cytotoxicity will be described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

MPC:

2-Methacryloyloxyethyl phosphorylcholine

BMA:

n-Butyl methacrylate

MEONP:

p-Nitrophenyloxycarbonyl poly(oxyethylene) methacrylate

PLA:

Poly(L-lactic acid)

R8:

Octaarginine peptide

PTX:

Paclitaxel

References

  • Goda T, Goto Y, Ishihara K (2010) Cell-penetrating macromolecules: direct penetration of amphipathic phospholipid polymers across plasma membrane of living cells. Biomaterials 31(8):2380–2387

    Article  CAS  PubMed  Google Scholar 

  • Goto Y, Matsuno R, Konno T et al (2008a) Polymer nanoparticles covered with phosphorylcholine groups and immobilized with antibody for high-affinity separation of proteins. Biomacromolecules 9(3):828–833

    Article  CAS  PubMed  Google Scholar 

  • Goto Y, Matsuno R, Konno T et al (2008b) Artificial cell membrane-covered nanoparticles embedding quantum dots as stable and highly sensitive fluorescence bioimaging probe. Biomacromolecules 9(11):3252–3257

    Article  CAS  PubMed  Google Scholar 

  • Ishihara K (2000) New polymeric biomaterials-phospholipid polymers with a biocompatible surface. Front Med Biol Eng 10:83–95

    Article  CAS  PubMed  Google Scholar 

  • Ishihara K, Ueda T, Nakabayashi N (1990) Preparation of phospholipid polymers and their properties as polymer hydrogel membrane. Polym J 22:355–360

    Article  CAS  Google Scholar 

  • Ishihara K, Nomura H, Mihara T et al (1998) Why do phospholipid polymers reduce protein adsorption? J Biomed Mater Res 39:323–330

    Article  CAS  PubMed  Google Scholar 

  • Ishihara K, Iwasaki Y, Nakabayashi N (1999) Polymeric lipid nanosphere consisting of water-soluble poly (2-methacryloyloxyethyl phosphoryl choline-co-n-butyl methacrylate). Polym J 31:1231–1236

    Article  CAS  Google Scholar 

  • Ito T, Watanabe J, Takai M et al (2006) Dual mode bioreactions on polymer nanoparticles covered with phosphorylcholine group. Colloids Surf B Biointerfaces 50(1):55–60

    Article  CAS  PubMed  Google Scholar 

  • Iwasaki Y, Nakabayashi N, Ishihara K (2001) Preservation of platelet function on 2-methacryloyloxyethyl phosphorylcholine graft polymer compared to various water-soluble graft polymers. J Biomed Mater Res 57:72–78

    Article  CAS  PubMed  Google Scholar 

  • Kamei T, Kitayama J, Yamaguchi H et al (2011) Spatial distribution of intraperitoneally administrated paclitaxel nanoparticles solubilized with poly (2-methacryloxyethyl phosphorylcholine-co-n-butyl methacrylate) in peritoneal metastatic nodules. Cancer Sci 102(1):200–205

    Article  CAS  PubMed  Google Scholar 

  • Kojima R, Kasuya M, Ishihara K et al (2011) Physicochemical delivery of amphiphilic copolymers to specific organelles. Polym J 43:718–722

    Article  CAS  Google Scholar 

  • Konno T, Watanabe J, Ishihara K (2003) Enhanced solubility of paclitaxel using water-soluble and biocompatible 2-methacryloyloxyethyl phosphorylcholine polymers. J Biomed Mater Res 65A:209–214

    Article  CAS  Google Scholar 

  • Konno T, Watanabe J, Ishihara K (2004) Conjugation of enzymes on polymer nanoparticles covered with phosphorylcholine groups. Biomacromolecules 5:342–347

    Article  CAS  PubMed  Google Scholar 

  • Konno T, Ito T, Takai M et al (2006) Enzymatic photochemical sensing of hydrogen peroxide by polymer nanoparticles covered with artificial cell membrane. J Biomater Sci Polym Edn 17(12):1347–1357

    Article  CAS  Google Scholar 

  • Miyata R, Ueda M, Jinno H et al (2009) Selective targeting by preS1 domain of hepatitis B surface antigen conjugated with phosphorylcholine-based amphiphilic block copolymer micelles as a biocompatible drug delivery carrier for treatment of human hepatocellular carcinoma with paclitaxel. Int J Cancer 124(10):2460–2467

    Article  CAS  PubMed  Google Scholar 

  • Moro T, Takatori Y, Ishihara K et al (2004) Surface grafting of artificial joints with a biocompatible polymer for preventing periprosthetic osteolysis. Nat Mater 3:829–836

    Article  CAS  PubMed  Google Scholar 

  • Shimada T, Ueda M, Jinno H et al (2009) Development of targeted therapy with paclitaxel incorporated into EGF-conjugated nanoparticles. Anticancer Res 29(4):1009–1014

    CAS  PubMed  Google Scholar 

  • Singer SJ, Nicholson GL (1972) The fluid mosaic model of the structure of cell membranes. Science 175:720–731

    Article  CAS  PubMed  Google Scholar 

  • Snyder TA, Tsukui H, Kihara S, Akimoto T, Litwak KN, Kameneva MV, Yamazaki K, Wagner WR (2007) Preclinical biocompatibility assessment of the EVAHEART ventricular assist device: coating comparison and platelet activation. J Biomed Mater Res A 81:85–92

    Article  PubMed  Google Scholar 

  • Soma D, Kitayama J, Konno T et al (2009) Intraperitoneal administration of paclitaxel solubilized with poly(2-methacryloxyethyl phosphorylcholine-co-n-butyl methacrylate) for peritoneal dissemination of gastric cancer. Cancer Sci 100(10):1979–1985

    Article  CAS  PubMed  Google Scholar 

  • Watanabe J, Ishihara K (2006) Sequential enzymatic reactions and stability of biomolecules immobilized onto phospholipid polymer nanoparticles. Biomacromolecules 7:171–175

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomohiro Konno .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Konno, T. (2014). Cytocompatible Phospholipid Polymers for Non-invasive Nanodevices. In: Prokop, A., Iwasaki, Y., Harada, A. (eds) Intracellular Delivery II. Fundamental Biomedical Technologies, vol 7. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-8896-0_13

Download citation

Publish with us

Policies and ethics