Skip to main content

Advanced Methods and Future Perspectives

  • Chapter
Simulation of Fresh Concrete Flow

Part of the book series: RILEM State-of-the-Art Reports ((RILEM State Art Reports,volume 15))

  • 1928 Accesses

Abstract

The one-phase methods described in Chapter 2 were shown to be able to predict casting to some extent, but could not depict segregation, sedimentation and blockage occurring during flow. On the other hand, the distinct element methods described in Chapter 3 did not take into account the presence of two phases in the system and describes concrete as distinct elements interacting through more or less complex laws. A reliable numerical model of a multiphase material behaviour shall take into account both phases (solid and liquid). From the numerical point of view, concrete flow shall be seen therefore as the free surface flow of a highly-concentrated suspension of rigid grains.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Sulsky, D., Schreyer, H.: Antisymmetric form of the material point method with applications to upsetting and Taylor impact problem. Comp. Meth. in Applied Mech. Eng. 139, 409–429 (1996)

    Article  MATH  Google Scholar 

  2. Moresi, L., Dufour, F., Mühlhaus, H.B.: A Lagrangian integration point finite element method for large deformation modeling of viscoelastic geomaterials. J. of Comp. Phys. 184(2), 476–497 (2003)

    Article  MATH  Google Scholar 

  3. Dufour, F., Pijaudier-Cabot, G.: Numerical modeling of concrete flow: homogeneous approach. Int. J. for Num. And Anal. Meth. in Geomechanics 29(4), 395–416 (2005)

    Article  MATH  Google Scholar 

  4. Modigell, M., Vasilic, K., Brameshuber, W., Uebachs, S.: Modelling and Simulation of the Flow Behaviour of Self-Compacting Concrete. In: Schutter de, G., Boel, V. (eds.) 5th International RILEM Symposium on Self-Compacting Concrete, SCC 2007, Ghent, Belgium, September 3-5., vol. 1, pp. S.387–S.392. RILEM Publications, Bagneux (2007) ISBN 978-2-35158-050-9

    Google Scholar 

  5. Modigell, M., Hufschmidt, M., Petera, J.: Two-Phase Simulations as a Development Tool for Thixoforming. Processes Steel Research International 75(9), 513–518 (2004), Larson G.: The structure and rheology of complex fluids. Oxford University Press, New York (1999)

    Google Scholar 

  6. Hufschmidt, M., Modigell, M., Petera, J.: Modelling and simulation of forming processes of metallic suspensions under non-isothermal conditions. J. Non-Newtonian Fluid Mech. 134, 16–26 (2006)

    Article  MATH  Google Scholar 

  7. Petera, J.: A new finite element scheme using the Lagrangian framework for simulation of viscoelastic fluid flows. J. Non-Newtonian Fluid Mec. 103, 1–43 (2002)

    Article  MATH  Google Scholar 

  8. Martys, N.S.: Study of a dissipative particle dynamics based approach for modeling suspensions. Journal of Rheology 49, 401–424 (2005)

    Article  Google Scholar 

  9. Foss, D.R., Brady, J.F.: Structure, diffusion,and rheology of Brownian suspensions by Stokesian dynamics simulations. J. Fluid Mechanics 407, 167–200 (2000)

    Article  MATH  Google Scholar 

  10. Martys, N.S., George, W.L., Chun, B., Lootens, D.: A smoothed particle hydrodynamics based fluid model with a spatially dependent viscosity: Application to flow of a suspension with a non-Newtonian fluid matrix (submitted for publication)

    Google Scholar 

  11. Martys, N.S.: A classical kinetic theory approach to lattice Boltzmann simulations. International Journal of Modern Physics 12, 1169–1178 (2001)

    Article  Google Scholar 

  12. Hoogerbrugge, P.J., Koelman, J.M.V.A.: Simulating microscopic hydrodynamic phenomena with dissipative particle dynamics. Europhysics Letters 19, 155–160 (1992)

    Article  Google Scholar 

  13. Landau, L.D., Lifshitz, E.M.: Fluid Mechanic. Pergamon Press, Oxford (1987)

    Google Scholar 

  14. Ferraris, C.: Private communication

    Google Scholar 

  15. Spangenberg, J., Roussel, N., Hattel, J.H., Thorborg, J., Geiker, M.R., Stang, H., Skocek, J.: Prediction of flow induced heterogeneities and their consequences in Self Compacting Concrete (SCC). In: Khayat, K., Feys, D. (eds.) Proceedings of SCC 2010, Montreal, Canada. Springer (2010)

    Google Scholar 

  16. Jeffery, G.B.: Proceeding of Royal Society A 102, 161–179 (1922)

    Google Scholar 

  17. Folgar, F., Tucker, C.F.: J. Reinf. Plast. Comp. 3, 98 (1984)

    Google Scholar 

  18. Rahnama, M., Koch, D.L., Shaqfeh, E.S.G.: Phys. Fluids 7(3), 487 (1995)

    Google Scholar 

  19. Anczurowski, E., Mason, S.G.: J. Colloïd Interface Sci. 23, 522 (1967)

    Google Scholar 

  20. Trevelyan, B.J., Mason, S.G.: J. Colloïd Sci. 6, 354 (1951)

    Google Scholar 

  21. Mason, S.G., Manley, R.S.: Proc. Royal Soc., Series A 238, 117 (1957)

    Google Scholar 

  22. Harris, J.B., Pittman, J.F.T.: J. Colloïd Interface Sci. 50(2), 280 (1975)

    Google Scholar 

  23. Bibbo, M.A., Dinh, S.M., Armstrong, R.C.: J. Rheol. 29(6), 905 (1985)

    Google Scholar 

  24. Kameswara Rao, C.V.S.: Cem. Concr. Res. 9, 685 (1979)

    Google Scholar 

  25. Dinh, S.M., Armstrong, S.M.: J. Rheol. 28(3), 207 (1984)

    Google Scholar 

  26. Bretherton, F.P.: J. Fluid Mechanics 14, 284 (1962)

    Google Scholar 

  27. Goldsmith, H.L., Mason, S.G.: Rheology: Theory and Applications, New-York, vol. 4, ch. 2, pp. 85–250 (1967)

    Google Scholar 

  28. Lipscomb, G.G., Denn, M.M.: J. Non-Newt. Fluid Mech. 26, 297 (1988)

    Google Scholar 

  29. Vincent, M.: PhD-thesis, ENS des Mines de Paris (1984)

    Google Scholar 

  30. Taskernam-Kroser, R., Ziabicki, A.: J. Polymer Sciences 1(6), 491 (1963)

    Google Scholar 

  31. Martinie, L., Rossi, P., Roussel, N.: Cem. Concr. Res. 40, 226 (2010)

    Google Scholar 

  32. Petrich, M.P., Koch, D.L., Cohen, C.: J. Non-Newt. Fluid Mech. 95, 101 (2000)

    Google Scholar 

  33. Kooiman, A.G.: PhD-thesis, DTU, Netherlands (2000)

    Google Scholar 

  34. Ozyurt, N., Mason, T.O., Shah, S.P.: Cem. Concr. Res. 36, 1653 (2006)

    Google Scholar 

  35. Lataste, J.F., Behloul, M., Breysse, D.: Proceedings of the AUGC Symposium, Bordeaux, France (2007)

    Google Scholar 

  36. Boulekbache, B., Hamrat, M., Chemrouk, M., Amziane, S.: EJECE (1985)

    Google Scholar 

  37. Ozyurt, N., Woo, N.Y., Mason, T.O., Shah, S.P.: ACI Materials Journal. Technical Paper 103(5), 340 (2006)

    Google Scholar 

  38. Dupont, D., Vandewalle, L.: Cem. Concr. Comp. 27, 391 (2005)

    Google Scholar 

  39. Martinie, L., Roussel, N.: Simple tools for fiber orientation prediction in industrial practice. Cem. Concr. Res. 41, 993–1000 (2010, 2011)

    Google Scholar 

  40. Martinie, L.: LCPC, Université Paris-Est. PhD thesis (2010) (in French)

    Google Scholar 

  41. Aveston, J., Kelly, A.: J. Mater. Science 8, 352 (1973)

    Google Scholar 

  42. Krenchel, H.: In: Neville, A. (ed.), p. 69. The Construction Press, UK (1975)

    Google Scholar 

  43. Aidun, C.K., Clausen, J.R.: Lattice-Boltzmann Method for Complex Flows. Annual Review of Fluid Mechanics 42(1), 439–472 (2010)

    Article  MathSciNet  Google Scholar 

  44. Körner, C., Thies, M., Hofmann, T., Thürey, N., Rüde, N.U.: Lattice Boltzmann Model for Free Surface Flow for Modeling Foaming. Journal of Statistical Physics (2005)

    Google Scholar 

  45. Feng, Z., Michaelides, E.: Proteus: a direct forcing method in the simulations of particulate flows. Journal of Computational Physics 202(1), 20–51 (2005)

    Article  MATH  Google Scholar 

  46. Švec, O., Skoček, J., Stang, H., Olesen, J.F., Poulsen, P.N.: Flow simulation of fiber reinforced self compacting concrete using Lattice Boltzmann method. In: Proceedings of 13th International Congress on the Chemistry of Cement, Madrid (2011)

    Google Scholar 

  47. Skoček, J., Švec, O., Spangenberg, J., Stang, H., Geiker, M.R., Roussel, N., Hattel, J.: Modeling of flow of particles in a non-Newtonian fluid using lattice Boltzmann method. In: Proceedings of 13th International Congress on the Chemistry of Cement, Madrid (2011)

    Google Scholar 

  48. Nguyen, N.Q., Ladd, A.: Lubrication corrections for lattice-Boltzmann simulations of particle suspensions. Physical Review E 66(4), 1–12 (2002)

    Article  Google Scholar 

  49. Švec, O., Skoček, J., Stang, H., Olesen, J.F., Poulsen, P.N.: Fully coupled Lattice Boltzmann simulation of fiber reinforced self compacting concrete flow. In: Proceedings of Computer Methods in Mechanics 2011, Warsaw, Poland (2011)

    Google Scholar 

  50. Spangenberg, J., Roussel, N., Hattel, J.H., Stang, H., Skocek, J., Geiker, M.R.: Flow induced particle migration in fresh concrete: Theoretical frame, numerical simulations and experimental results on model fluids. Accepted for publication in Cem. Concr. Res. (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 RILEM

About this chapter

Cite this chapter

Vasilic, K. et al. (2014). Advanced Methods and Future Perspectives. In: Roussel, N., Gram, A. (eds) Simulation of Fresh Concrete Flow. RILEM State-of-the-Art Reports, vol 15. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-8884-7_5

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-8884-7_5

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-017-8883-0

  • Online ISBN: 978-94-017-8884-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics