Skip to main content

Part of the book series: Subcellular Biochemistry ((SCBI,volume 80))

Abstract

Natural killer (NK) cells and cytotoxic T lymphocytes (CTL) use a highly toxic pore-forming protein perforin (PFN) to destroy cells infected with intracellular pathogens and cells with pre-cancerous transformations. However, mutations of PFN and defects in its expression can cause an abnormal function of the immune system and difficulties in elimination of altered cells. As discussed in this chapter, deficiency of PFN due to the mutations of its gene, PFN1, can be associated with malignancies and severe immune disorders such as familial hemophagocytic lymphohistiocytosis (FHL) and macrophage activation syndrome. On the other hand, overactivity of PFN can turn the immune system against autologous cells resulting in other diseases such as systemic lupus erythematosus, polymyositis, rheumatoid arthritis and cutaneous inflammation. PFN also has a crucial role in the cellular rejection of solid organ allografts and destruction of pancreatic β-cells resulting in type 1 diabetes. These facts highlight the importance of understanding the biochemical characteristics of PFN.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AD:

Atopic dermatitis

CD4:

Cluster of differentiation 4

CD8:

Cluster of differentiation 8

CDC:

Cholesterol dependent cytolysin

CIA:

Collagen-induced arthritis

CL:

Cytotoxic lymphocytes

CTL:

Cytotoxic T lymphocytes

DM:

Dermatomyositis

DMD:

Duchenne muscular dystrophy

EGF:

Epidermal growth factor regulatory domain

FasL:

Fas ligand, a type-II transmembrane protein that belongs to the TNF family

FHL:

Familial hemophagocytic lymphohistiocytosis

FHL-2:

Familial hemophagocytic lymphohistiocytosis type 2

HGMD:

Human gene mutation database

LCMV:

Lymphocytic choriomeningitis virus

LCMV-GP:

Glycoprotein of lymphocytic choriomeningitis virus

MACPF:

Membrane attack complex-PFN

MHC:

Major histocompatibility complex

NK:

Natural killer

PFN:

Perforin

PM:

Polymyositis

SLE:

Systemic lupus erythematosus

SLEDAI:

SLE disease activity index

Tc1:

Type 1 CD8 T cells

Tc2:

Type 2 CD8 T cells

TNF:

Tumor necrosis factor

WT:

Wild type

References

  1. Abo-Elenein A, Shaaban D, Gheith O (2008) Flowcytometric study of expression of perforin and CD134 in patients with systemic lupus erythematosus. Egypt J Immunol 15:135–143

    PubMed  Google Scholar 

  2. Amrani A, Verdaguer J, Anderson B, Utsugi T, Bou S, Santamaria P (1999) Perforin-independent beta-cell destruction by diabetogenic CD8(+) T lymphocytes in transgenic nonobese diabetic mice. J Clin Invest 103:1201–1209

    CAS  PubMed Central  PubMed  Google Scholar 

  3. An O, Gursoy A, Gurgey A, Keskin O (2013) Structural and functional analysis of perforin mutations in association with clinical data of familial hemophagocytic lymphohistiocytosis type 2 (FHL2) patients. Protein Sci 22:823–839

    CAS  PubMed  Google Scholar 

  4. Badorff C, Noutsias M, Kühl U, Schultheiss H-P (1997) Cell-mediated cytotoxicity in hearts with dilated cardiomyopathy: correlation with interstitial fibrosis and foci of activated t lymphocytes. J Am Coll Cardiol 29:429–434

    CAS  PubMed  Google Scholar 

  5. Badovinac VP (2000) Regulation of antigen-specific cd8+ t cell homeostasis by perforin and interferon-gamma. Science 290:1354–1357

    CAS  PubMed  Google Scholar 

  6. Balasa B, Van Gunst K, Jung N, Balakrishna D, Santamaria P, Hanafusa T, Itoh N, Sarvetnick N (2000) Islet-specific expression of IL-10 promotes diabetes in nonobese diabetic mice independent of Fas, perforin, TNF receptor-1, and TNF receptor-2 molecules. J Immunol 165:2841–2849

    CAS  PubMed  Google Scholar 

  7. Bauer K, Knipper A, Tu-Rapp H, Koczan D, Kreutzer H-J, Nizze H, Mix E, Thiesen H-J, Holmdahl R, Ibrahim SM (2005) Perforin deficiency attenuates collagen-induced arthritis. Arthritis Res Ther 7:R877–R884

    CAS  PubMed Central  PubMed  Google Scholar 

  8. Behrendt C, Gollnick H, Bonnekoh B (2000) Up-regulated perforin expression of CD8+ blood lymphocytes in generalized non-anaphylactic drug eruptions and exacerbated psoriasis. Eur J Dermatol 10:365–369

    CAS  PubMed  Google Scholar 

  9. Billiau AD, Roskams T, Van Damme-Lombaerts R, Matthys P, Wouters C (2005) Macrophage activation syndrome: characteristic findings on liver biopsy illustrating the key role of activated, IFN-gamma-producing lymphocytes and IL-6- and TNF-alpha-producing macrophages. Blood 105:1648–1651

    CAS  PubMed  Google Scholar 

  10. Blanco P, Pitard V, Viallard J-F, Taupin J-L, Pellegrin J-L, Moreau J-F (2005) Increase in activated CD8+ T lymphocytes expressing perforin and granzyme B correlates with disease activity in patients with systemic lupus erythematosus. Arthritis Rheum 52:201–211

    CAS  PubMed  Google Scholar 

  11. Blumenthal R, Millard PJ, Henkart MP, Reynolds CW, Henkart Pa (1984) Liposomes as targets for granule cytolysin from cytotoxic large granular lymphocyte tumors. Proc Natl Acad Sci USA 81:5551–5555

    CAS  PubMed Central  PubMed  Google Scholar 

  12. Brahn E, Peacock DJ, Banquerigo ML, Liu DY (1992) Effects of tumor necrosis factor alpha (TNF-alpha) on collagen arthritis. Lymphokine Cytokine Res 11:253–256

    CAS  PubMed  Google Scholar 

  13. Brennan AJ, Chia J, Trapani JA, Voskoboinik I (2010) Perforin deficiency and susceptibility to cancer. Cell Death Differ 17:607–615

    CAS  PubMed  Google Scholar 

  14. Brown DM, Lee S, Garcia-Hernandez MDLL, Swain SL (2012) Multifunctional CD4 cells expressing gamma interferon and perforin mediate protection against lethal influenza virus infection. J Virol 86:6792–6803

    CAS  PubMed Central  PubMed  Google Scholar 

  15. Busiello R, Adriani M, Locatelli F, Galgani M, Fimiani G, Clementi R, Ursini MV, Racioppi L, Pignata C (2004) Atypical features of familial hemophagocytic lymphohistiocytosis. Blood 103:4610–4612

    CAS  PubMed  Google Scholar 

  16. Busiello R, Fimiani G, Miano MG, Aricò M, Santoro A, Ursini MV, Pignata C (2006) A91V perforin variation in healthy subjects and FHLH patients. Int J Immunogenet 33:123–125

    Google Scholar 

  17. Chia J, Thia K, Brennan AJ, Little M, Williams B, Lopez JA, Trapani JA, Voskoboinik I (2012) Fatal immune dysregulation due to a gain of glycosylation mutation in lymphocyte perforin. Blood 119:1713–1716

    CAS  PubMed  Google Scholar 

  18. Chia J, Yeo KP, Whisstock JC, Dunstone MA, Trapani JA, Voskoboinik I (2009) Temperature sensitivity of human perforin mutants unmasks subtotal loss of cytotoxicity, delayed FHL, and a predisposition to cancer. Proc Natl Acad Sci USA 106:9809–9814

    CAS  PubMed Central  PubMed  Google Scholar 

  19. Choy JC (2010) Granzymes and perforin in solid organ transplant rejection. Cell Death Differ 17:567–576

    CAS  PubMed  Google Scholar 

  20. Chun-yan G, Bo H, Hong C, Hong-lei J, Xiu-zhen H (2009) Anti-perforin neutralizing antibody reduces myocardial injury in viral myocarditis. Cardiol Young 19:601–607

    PubMed  Google Scholar 

  21. Clementi R, Chiocchetti A, Cappellano G, Cerutti E, Ferretti M, Orilieri E, Dianzani I, Ferrarini M, Bregni M, Danesino C, Bozzi V, Putti MC, Cerutti F, Cometa A, Locatelli F, Maccario R, Ramenghi U, Dianzani U (2006) Variations of the perforin gene in patients with autoimmunity/lymphoproliferation and defective Fas function. Blood 108:3079–3084

    CAS  PubMed  Google Scholar 

  22. Clementi R, Emmi L, Maccario R, Liotta F, Moretta L, Danesino C, Aricó M (2002) Adult onset and atypical presentation of hemophagocytic lymphohistiocytosis in siblings carrying PRF1 mutations. Blood 100:2266–2267

    CAS  PubMed  Google Scholar 

  23. Clementi R, Locatelli F, Dupré L, Garaventa A, Emmi L, Bregni M, Cefalo G, Moretta A, Danesino C, Comis M, Pession A, Ramenghi U, Maccario R, Aricò M, Roncarolo MG (2005) A proportion of patients with lymphoma may harbor mutations of the perforin gene. Blood 105:4424–4428

    CAS  PubMed  Google Scholar 

  24. Côte M, Ménager MM, Burgess A, Mahlaoui N, Picard C, Schaffner C, Al-Manjomi F, Al-Harbi M, Alangari A, Le Deist F, Gennery AR, Prince N, Cariou A, Nitschke P, Blank U, El-Ghazali G, Ménasché G, Latour S, Fischer A, de Saint Basile G (2009) Munc18-2 deficiency causes familial hemophagocytic lymphohistiocytosis type 5 and impairs cytotoxic granule exocytosis in patient NK cells. J Clin Invest 119:3765–3773

    Google Scholar 

  25. Egeler RM, Shapiro R, Loechelt B, Filipovich A (1996) Characteristic immune abnormalities in hemophagocytic lymphohistiocytosis. J Pediatr Hematol Oncol 18:340–345

    CAS  PubMed  Google Scholar 

  26. Enomoto N, Hyde E, Ma JZ-I, Yang J, Forbes-Blom E, Delahunt B, Le Gros G, Ronchese F (2012) Allergen-specific CTL require perforin expression to suppress allergic airway inflammation. J Immunol 188:1734–1741

    CAS  PubMed  Google Scholar 

  27. Fang M, Siciliano NA, Hersperger AR, Roscoe F, Hu A, Ma X, Shamsedeen AR, Eisenlohr LC, Sigal LJ (2012) Perforin-dependent CD4+ T-cell cytotoxicity contributes to control a murine poxvirus infection. Proc Natl Acad Sci USA 109:9983–9988

    Google Scholar 

  28. Feldmann J, Callebaut I, Raposo G, Certain S, Bacq D, Dumont C, Lambert N, Ouachée-Chardin M, Chedeville G, Tamary H, Minard-Colin V, Vilmer E, Blanche S, Le Deist F, Fischer A, de Saint Basile G (2003) Munc13-4 is essential for cytolytic granules fusion and is mutated in a form of familial hemophagocytic lymphohistiocytosis (FHL3). Cell 115:461–473

    CAS  PubMed  Google Scholar 

  29. Feldmann J, Le Deist F, Ouachée-Chardin M, Certain S, Alexander S, Quartier P, Haddad E, Wulffraat N, Casanova JL, Blanche S, Fischer A, de Saint Basile G (2002) Functional consequences of perforin gene mutations in 22 patients with familial haemophagocytic lymphohistiocytosis. Br J Haematol 117:965–972

    CAS  PubMed  Google Scholar 

  30. Fink TM, Zimmer M, Weitz S, Tschopp J, Jenne DE, Lichter P (1992) Human perforin (PRF1) maps to 10q22, a region that is syntenic with mouse chromosome 10. Genomics 13:1300–1302

    CAS  PubMed  Google Scholar 

  31. Gebhard JR, Perry CM, Harkins S, Lane T, Mena I, Asensio VC, Campbell IL, Whitton JL (1998) Coxsackievirus B3-induced myocarditis: perforin exacerbates disease, but plays no detectable role in virus clearance. Am J Pathol 153:417–428

    CAS  PubMed Central  PubMed  Google Scholar 

  32. Gilbert RJC, Mikelj M, Dalla Serra M, Froelich CJ, Anderluh G (2013) Effects of MACPF/CDC proteins on lipid membranes. Cell Mol Life Sci 70:2083–2098

    CAS  PubMed  Google Scholar 

  33. Goebels N, Michaelis D, Engelhardt M, Huber S, Bender A, Pongratz D, Johnson MA, Wekerle H, Tschopp J, Jenne D, Hohlfeld R (1996) Differential expression of perforin in muscle-infiltrating T cells in polymyositis and dermatomyositis. J Clin Invest 97:2905–2910

    CAS  PubMed Central  PubMed  Google Scholar 

  34. Gupta M, Greer P, Mahanty S, Shieh W-J, Zaki SR, Ahmed R, Rollin PE (2005) CD8-mediated protection against Ebola virus infection is perforin dependent. J Immunol 174:4198–4202

    CAS  PubMed  Google Scholar 

  35. Gürgey A, Göğüş S, Özyürek E, Aslan D, Gümrük F, Çetin M, Yüce A, Ceyhan M, Seçmeer G, Yetgin S, Hiçsönmez G (2003) Primary hemophagocytic lymphohistiocytosis in Turkish children. Pediatr Hematol Oncol 20:367–371

    Google Scholar 

  36. Henkart PA, Millard PJ, Reynolds CW, Henkart MP (1984) Cytolytic activity of purified cytoplasmic granules from cytotoxic rat large granular lymphocyte tumors. J Exp Med 160:75–93

    CAS  PubMed  Google Scholar 

  37. Henriques A, Teixeira L, Inês L, Carvalheiro T, Gonçalves A, Martinho A, Pais ML, da Silva JAP, Paiva A (2013) NK cells dysfunction in systemic lupus erythematosus: relation to disease activity. Clin Rheumatol 32:805–813

    PubMed  Google Scholar 

  38. Henter J-I, Elinder G, Soder O, Hansson M, Andersson B, Andersson U (1991) Hypercytokinemia in familial hemophagocytic lymphohistiocytosis. Blood 78:2918–2922

    CAS  PubMed  Google Scholar 

  39. Henter J-I, Ehrnst A, Andersson J, Elinder G (1993) Familial hemophagocytic lymphohistiocytosis and viral infections. Acta Paediatr 82:369–372

    CAS  PubMed  Google Scholar 

  40. Henter J-I, Elinder G, Söder O, Ost A (1991) Incidence in Sweden and clinical features of familial hemophagocytic lymphohistiocytosis. Acta Paediatr Scand 80:428–435

    CAS  PubMed  Google Scholar 

  41. Henter J-I, Horne A, Aricó M, Egeler RM, Filipovich AH, Imashuku S, Ladisch S, McClain K, Webb D, Winiarski J, Janka G (2007) HLH-2004: Diagnostic and therapeutic guidelines for hemophagocytic lymphohistiocytosis. Pediatr Blood Cancer 48:124–131

    PubMed  Google Scholar 

  42. Hermsen C, van de Wiel T, Mommers E, Sauerwein R, Eling W (1997) Depletion of CD4+ or CD8+ T-cells prevents Plasmodium berghei induced cerebral malaria in end-stage disease. Parasitology 114:7–12

    PubMed  Google Scholar 

  43. Herrera PL, Harlan DM, Vassalli P (2000) A mouse CD8 T cell-mediated acute autoimmune diabetes independent of the perforin and Fas cytotoxic pathways: possible role of membrane TNF. Proc Natl Acad Sci USA 97:279–284

    CAS  PubMed Central  PubMed  Google Scholar 

  44. Hom JT, Bendele AM, Carlson DG (1988) In vivo administration with IL-1 accelerates the development of collagen-induced arthritis in mice. J Immunol 141:834–841

    CAS  PubMed  Google Scholar 

  45. Ishii E, Ohga S, Tanimura M, Imashuku S, Sako M, Mizutani S, Miyazaki S (1998) Clinical and epidemiologic studies of familial hemophagocytic lymphohistiocytosis in Japan. Japan LCH Study Group. Med Pediatr Oncol 30:276–283

    CAS  PubMed  Google Scholar 

  46. James JA, Harley JB, Scofield RH (2001) Role of viruses in systemic lupus erythematosus and Sjögren syndrome. Curr Opin Rheumatol 13:370–376

    CAS  PubMed  Google Scholar 

  47. Janka GE (2012) Familial and acquired hemophagocytic lymphohistiocytosis. Annu Rev Med 63:233–246

    CAS  PubMed  Google Scholar 

  48. Kägi D (1996) Development of insulitis without diabetes in transgenic mice lacking perforin-dependent cytotoxicity. J Exp Med 183:2143–2152

    PubMed  Google Scholar 

  49. Kägi D, Ledermann B, Bürki K, Hengartner H, Zinkernagel RM (1994) CD8+ T cell-mediated protection against an intracellular bacterium by perforin-dependent cytotoxicity. Eur J Immunol 24:3068–3072

    PubMed  Google Scholar 

  50. Kägi D, Ledermann B, Bürki K, Seiler P, Odermatt B, Olsen KJ, Podack ER, Zinkernagel RM, Hengartner H (1994) Cytotoxicity mediated by T cells and natural killer cells is greatly impaired in perforin-deficient mice. Nature 369:31–37

    PubMed  Google Scholar 

  51. Kägi D, Odermatt B, Seiler P, Zinkernagel RM, Mak TW, Hengartner H (1997) Reduced incidence and delayed onset of diabetes in perforin-deficient nonobese diabetic mice. J Exp Med 186:989–997

    PubMed Central  PubMed  Google Scholar 

  52. Killar LM, Dunn CJ (1989) Interleukin-1 potentiates the development of collagen-induced arthritis in mice. Clin Sci 76:535–538

    CAS  PubMed  Google Scholar 

  53. Kohyama K, Matsumoto Y (1999) C-protein in the skeletal muscle induces severe autoimmune polymyositis in Lewis rats. J Neuroimmunol 98:130–135

    CAS  PubMed  Google Scholar 

  54. Koike H, Kanda T, Sumino H, Yokoyama T, Arai M, Motooka M, Suzuki T, Tamura J, Kobayashi I (2001) Reduction of viral myocarditis in mice lacking perforin. Res Commun Mol Pathol Pharmacol 110:229–237

    CAS  PubMed  Google Scholar 

  55. Kozłowska A, Hrycaj P, Łącki JK, Jagodziński PP (2010) Perforin level in CD4+ T cells from patients with systemic lupus erythematosus. Rheumatol Int 30:1627–1633

    PubMed  Google Scholar 

  56. Krupnick AS, Kreisel D, Popma SH, Balsara KR, Szeto WY, Krasinskas AM, Riha M, Wells AD, Turka LA, Rosengard BR (2002) Mechanism of T cell-mediated endothelial apoptosis. Transplantation 74:871–876

    CAS  PubMed  Google Scholar 

  57. Law RHP, Lukoyanova N, Voskoboinik I, Caradoc-Davies TT, Baran K, Dunstone MA, D’Angelo ME, Orlova EV, Coulibaly F, Verschoor S, Browne KA, Ciccone A, Kuiper MJ, Bird PI, Trapani JA, Saibil HR, Whisstock JC (2010) The structural basis for membrane binding and pore formation by lymphocyte perforin. Nature 468:447–451

    CAS  PubMed  Google Scholar 

  58. Lena G, Trapani JA, Sutton VR, Ciccone A, Browne KA, Smyth MJ, Denny WA, Spicer JA (2008) Dihydrofuro[3,4-c]pyridinones as inhibitors of the cytolytic effects of the pore-forming glycoprotein perforin. J Med Chem 51:7614–7624

    CAS  PubMed  Google Scholar 

  59. Lichtenheld MG, Olsen KJ, Lu P, Lowrey DM, Hameed A, Hengartner H, Podack ER (1988) Structure and function of human perforin. Nature 335:448–451

    CAS  PubMed  Google Scholar 

  60. Lopez JA, Susanto O, Jenkins MR, Lukoyanova N, Sutton VR, Law RHP, Johnston A, Bird CH, Bird PI, Whisstock JC, Trapani JA, Saibil HR, Voskoboinik I (2013) Perforin forms transient pores on the target cell plasma membrane to facilitate rapid access of granzymes during killer cell attack. Blood 121:2659–2668

    CAS  PubMed  Google Scholar 

  61. Luci C, Gaudy-Marqueste C, Rouzaire P, Audonnet S, Cognet C, Hennino A, Nicolas J-F, Grob J-J, Tomasello E (2012) Peripheral natural killer cells exhibit qualitative and quantitative changes in patients with psoriasis and atopic dermatitis. Br J Dermatol 166:789–796

    CAS  PubMed  Google Scholar 

  62. Lyons DM, Huttunen KM, Browne KA, Ciccone A, Trapani JA, Denny WA, Spicer JA (2011) Inhibition of the cellular function of perforin by 1-amino-2,4-dicyanopyrido[1,2-a]benzimidazoles. Bioorg Med Chem 19:4091–4100

    CAS  PubMed  Google Scholar 

  63. Maglinao M, Klopfleisch R, Seeberger PH, Lepenies B (2013) The C-type lectin receptor DCIR is crucial for the development of experimental cerebral malaria. J Immunol 191:2551–2559

    CAS  PubMed  Google Scholar 

  64. Mancebo E, Allende LM, Guzmán M, Paz-Artal E, Gil J, Urrea-Moreno R, Fernández-Cruz E, Gayà A, Calvo J, Arbós A, Durán MA, Canet R, Balanzat J, Udina MA, Vercher FJ (2006) Familial hemophagocytic lymphohistiocytosis in an adult patient homozygous for A91V in the perforin gene, with tuberculosis infection. Haematologica 91:1257–1260

    PubMed  Google Scholar 

  65. Marsland BJ, Harris NL, Camberis M, Kopf M, Hook SM, Le Gros G (2004) Bystander suppression of allergic airway inflammation by lung resident memory CD8+ T cells. Proc Natl Acad Sci USA 101:6116–6121

    CAS  PubMed Central  PubMed  Google Scholar 

  66. Mehta PA, Davies SM, Kumar A, Devidas M, Lee S, Zamzow T, Elliott J, Villanueva J, Pullen J, Zewge Y, Filipovich A (2006) Perforin polymorphism A91V and susceptibility to B-precursor childhood acute lymphoblastic leukemia: a report from the Children’s Oncology Group. Leukemia 20:1539–1541

    CAS  PubMed Central  PubMed  Google Scholar 

  67. Miyahara N, Swanson BJ, Takeda K, Taube C, Miyahara S, Kodama T, Dakhama A, Ott VL, Gelfand EW (2004) Effector CD8+ T cells mediate inflammation and airway hyper-responsiveness. Nat Med 10:865–869

    CAS  PubMed  Google Scholar 

  68. Moshous D, Feyen O, Lankisch P, Schwarz K, Schaper J, Schneider M, Dilloo D, Laws H-J, Schwahn BC, Niehues T (2007) Primary necrotizing lymphocytic central nervous system vasculitis due to perforin deficiency in a four-year-old girl. Arthritis Rheum 56:995–999

    PubMed  Google Scholar 

  69. Niece JA, Rogers ZR, Ahmad N, Langevin A, McClain KL (2010) Hemophagocytic lymphohistiocytosis in Texas: observations on ethnicity and race. Pediatr Blood Cancer 54:424–428

    PubMed  Google Scholar 

  70. Nitcheu J, Bonduelle O, Combadiere C, Tefit M, Seilhean D, Mazier D, Combadiere B (2003) Perforin-dependent brain-infiltrating cytotoxic CD8+ T lymphocytes mediate experimental cerebral malaria pathogenesis. J Immunol 170:2221–2228

    CAS  PubMed  Google Scholar 

  71. Orilieri E, Cappellano G, Clementi R, Cometa A, Ferretti M, Cerutti E, Cadario F, Martinetti M, Larizza D, Calcaterra V, D’Annunzio G, Lorini R, Cerutti F, Bruno G, Chiocchetti A, Dianzani U (2008) Variations of the perforin gene in patients with type 1 diabetes. Diabetes 57:1078–1083

    CAS  PubMed  Google Scholar 

  72. Piva L, Tetlak P, Claser C, Karjalainen K, Renia L, Ruedl C (2012) Cutting edge: Clec9A+ dendritic cells mediate the development of experimental cerebral malaria. J Immunol 189:1128–1132

    CAS  PubMed  Google Scholar 

  73. Podack ER, Dennert G (1983) Assembly of two types of tubules with putative cytolytic function by cloned natural killer cells. Nature 302:442–445

    CAS  PubMed  Google Scholar 

  74. Potter S, Chan-Ling T, Ball HJ, Mansour H, Mitchell A, Maluish L, Hunt NH (2006) Perforin mediated apoptosis of cerebral microvascular endothelial cells during experimental cerebral malaria. Int J Parasitol 36:485–496

    CAS  PubMed  Google Scholar 

  75. Praper T, Beseničar MP, Istinič H, Podlesek Z, Metkar SS, Froelich CJ, Anderluh G (2010) Human perforin permeabilizing activity, but not binding to lipid membranes, is affected by pH. Mol Immunol 47:2492–2504

    CAS  PubMed  Google Scholar 

  76. Roy A, Kucukural A, Zhang Y (2010) I-TASSER: a unified platform for automated protein structure and function prediction. Nat Protoc 5:725–738

    CAS  PubMed Central  PubMed  Google Scholar 

  77. Sanapala S, Yu J-J, Murthy AK, Li W, Guentzel MN, Chambers JP, Klose KE, Arulanandam BP (2012) Perforin- and granzyme-mediated cytotoxic effector functions are essential for protection against Francisella tularensis following vaccination by the defined F. tularensis subsp. novicida ΔfopC vaccine strain. Infect Immun 80:2177–2185

    CAS  PubMed Central  PubMed  Google Scholar 

  78. Santoro A, Cannella S, Trizzino A, Lo Nigro L, Corsello G, Arico M (2005) A single amino acid change A91V in perforin: a novel, frequent predisposing factor to childhood acute lymphoblastic leukemia? Haematologica 90:697–698

    PubMed  Google Scholar 

  79. Schneider EM, Lorenz I, Müller-Rosenberger M, Steinbach G, Kron M, Janka-Schaub GE (2002) Hemophagocytic lymphohistiocytosis is associated with deficiencies of cellular cytolysis but normal expression of transcripts relevant to killer-cell-induced apoptosis. Blood 100:2891–2898

    CAS  PubMed  Google Scholar 

  80. Smyth MJ, Thia KY, Street SE, MacGregor D, Godfrey DI, Trapani JA (2000) Perforin-mediated cytotoxicity is critical for surveillance of spontaneous lymphoma. J Exp Med 192:755–760

    CAS  PubMed Central  PubMed  Google Scholar 

  81. Spencer MJ, Montecino-Rodriguez E, Dorshkind K, Tidball JG (2001) Helper (CD4(+)) and cytotoxic (CD8(+)) T cells promote the pathology of dystrophin-deficient muscle. Clin Immunol 98:235–243

    CAS  PubMed  Google Scholar 

  82. Spencer MJ, Walsh CM, Dorshkind KA, Rodriguez EM, Tidball JG (1997) Myonuclear apoptosis in dystrophic mdx muscle occurs by perforin-mediated cytotoxicity. J Clin Invest 99:2745–2751

    CAS  PubMed Central  PubMed  Google Scholar 

  83. Spicer JA, Huttunen KM, Miller CK, Denny WA, Ciccone A, Browne KA, Trapani JA (2012) Inhibition of the pore-forming protein perforin by a series of aryl-substituted isobenzofuran-1(3H)-ones. Bioorg Med Chem 20:1319–1336

    CAS  PubMed  Google Scholar 

  84. Spicer JA, Lena G, Lyons DM, Huttunen KM, Miller C, O’Connor PD, Bull M, Helsby N, Jamieson S, Denny WA, Ciccone A, Browne K, Lopez J, Rudd-Schmidt J, Voskoboinik I, Trapani JA (2013) Exploration of a series of 5-arylidene-2-thioxoimidazolidin-4-ones as inhibitors of the cytolytic protein perforin. J Med Chem. doi:10.1021/jm401604x

    PubMed Central  PubMed  Google Scholar 

  85. Stenson PD, Ball EV, Mort M, Phillips AD, Shiel JA, Thomas NST, Abeysinghe S, Krawczak M, Cooper DN (2003) Human gene mutation database (HGMD): 2003 update. Hum Mutat 21:577–581

    CAS  PubMed  Google Scholar 

  86. Stepp SE, Dufourcq-Lagelouse R, Le Deist F, Bhawan S, Certain S, Mathew PA, Henter JI, Bennett M, Fischer A, de Saint Basile G, Kumar V (1999) Perforin gene defects in familial hemophagocytic lymphohistiocytosis. Science 286:1957–1959

    Google Scholar 

  87. Street SE, Cretney E, Smyth MJ (2001) Perforin and interferon-gamma activities independently control tumor initiation, growth, and metastasis. Blood 97:192–197

    CAS  PubMed  Google Scholar 

  88. Su MW-C, Pyarajan S, Chang J-H, Yu C-L, Jin Y-J, Stierhof Y-D, Walden P, Burakoff SJ (2004) Fratricide of CD8+ cytotoxic T lymphocytes is dependent on cellular activation and perforin-mediated killing. Eur J Immunol 34:2459–2470

    CAS  PubMed  Google Scholar 

  89. Sugihara T, Okiyama N, Suzuki M, Kohyama K, Matsumoto Y, Miyasaka N, Kohsaka H (2010) Definitive engagement of cytotoxic CD8 T cells in C protein-induced myositis, a murine model of polymyositis. Arthritis Rheum 62:3088–3092

    PubMed  Google Scholar 

  90. Sullivan KE, Delaat CA, Douglas SD, Filipovich AH (1998) Defective natural killer cell function in patients with hemophagocytic lymphohistiocytosis and in first degree relatives. Pediatr Res 44:465–468

    CAS  PubMed  Google Scholar 

  91. Tada Y, Ho A, Koh DR, Mak TW (1996) Collagen-induced arthritis in CD4- or CD8-deficient mice: CD8+ T cells play a role in initiation and regulate recovery phase of collagen-induced arthritis. J Immunol 156:4520–4526

    CAS  PubMed  Google Scholar 

  92. Thomas HE, Trapani JA, Kay TWH (2010) The role of perforin and granzymes in diabetes. Cell Death Differ 17:577–585

    CAS  PubMed  Google Scholar 

  93. Trambas C, Gallo F, Pende D, Marcenaro S, Moretta L, De Fusco C, Santoro A, Notarangelo L, Arico M, Griffiths GM (2005) A single amino acid change, A91V, leads to conformational changes that can impair processing to the active form of perforin. Blood 106:932–937

    CAS  PubMed  Google Scholar 

  94. Trapani JA, Thia KYT, Andrews M, Davis ID, Gedye C, Parente P, Svobodova S, Chia J, Browne K, Campbell IG, Phillips WA, Voskoboinik I, Cebon JS (2013) Human perforin mutations and susceptibility to multiple primary cancers. Oncoimmunology 2:e24185

    Google Scholar 

  95. Trentham DE (1977) Autoimmunity to type II collagen an experimental model of arthritis. J Exp Med 146:857–868

    CAS  PubMed  Google Scholar 

  96. Van den Broek ME, Kägi D, Ossendorp F, Toes R, Vamvakas S, Lutz WK, Melief CJ, Zinkernagel RM, Hengartner H (1996) Decreased tumor surveillance in perforin-deficient mice. J Exp Med 184:1781–1790

    PubMed  Google Scholar 

  97. Vastert SJ, van Wijk R, D’Urbano LE, de Vooght KMK, de Jager W, Ravelli A, Magni-Manzoni S, Insalaco A, Cortis E, van Solinge WW, Prakken BJ, Wulffraat NM, de Benedetti F, Kuis W (2010) Mutations in the perforin gene can be linked to macrophage activation syndrome in patients with systemic onset juvenile idiopathic arthritis. Rheumatology 49:441–449

    CAS  PubMed  Google Scholar 

  98. Voskoboinik I, Dunstone MA, Baran K, Whisstock JC, Trapani JA (2010) Perforin: structure, function, and role in human immunopathology. Immunol Rev 235:35–54

    CAS  PubMed  Google Scholar 

  99. Voskoboinik I, Sutton VR, Ciccone A, House CM, Chia J, Darcy PK, Yagita H, Trapani JA (2007) Perforin activity and immune homeostasis: the common A91V polymorphism in perforin results in both presynaptic and postsynaptic defects in function. Blood 110:1184–1190

    Google Scholar 

  100. Voskoboinik I, Thia M-C, Fletcher J, Ciccone A, Browne K, Smyth MJ, Trapani JA (2005) Calcium-dependent plasma membrane binding and cell lysis by perforin are mediated through its C2 domain: a critical role for aspartate residues 429, 435, 483, and 485 but not 491. J Biol Chem 280:8426–8434

    CAS  PubMed  Google Scholar 

  101. Wakeland EK, Liu K, Graham RR, Behrens TW (2001) Delineating the genetic basis of systemic lupus erythematosus. Immunity 15:397–408

    CAS  PubMed  Google Scholar 

  102. Walsh CM, Matloubian M, Liu CC, Ueda R, Kurahara CG, Christensen JL, Huang MT, Young JD, Ahmed R, Clark WR (1994) Immune function in mice lacking the perforin gene. Proc Natl Acad Sci USA 91:10854–10858

    CAS  PubMed Central  PubMed  Google Scholar 

  103. Yañez DM, Manning DD, Cooley AJ, Weidanz WP, van der Heyde HC (1996) Participation of lymphocyte subpopulations in the pathogenesis of experimental murine cerebral malaria. J Immunol 157:1620–1624

    PubMed  Google Scholar 

  104. Yawalkar N, Schmid S, Braathen LR, Pichler WJ (2001) Perforin and granzyme B may contribute to skin inflammation in atopic dermatitis and psoriasis. Br J Dermatol 144:1133–1139

    CAS  PubMed  Google Scholar 

  105. Yoon J-W, Jun H-S (2005) Autoimmune destruction of pancreatic beta cells. Am J Ther 12:580–591

    PubMed  Google Scholar 

  106. Young JD, Damiano A, DiNome MA, Leong LG, Cohn ZA (1987) Dissociation of membrane binding and lytic activities of the lymphocyte pore-forming protein (perforin). J Exp Med 165:1371–1382

    CAS  PubMed  Google Scholar 

  107. Young LH, Joag SV, Zheng LM, Lee CP, Lee YS, Young JD (1990) Perforin-mediated myocardial damage in acute myocarditis. Lancet 336:1019–1021

    CAS  PubMed  Google Scholar 

  108. Youssef A-R, Otley C, Mathieson PW, Smith RM (2004) Role of CD4+ and CD8+ T cells in murine skin and heart allograft rejection across different antigenic desparities. Transpl Immunol 13:297–304

    CAS  PubMed  Google Scholar 

  109. Zhang Y (2008) I-TASSER server for protein 3D structure prediction. BMC Bioinformatics 9:40

    PubMed Central  PubMed  Google Scholar 

  110. Zur Stadt U, Beutel K, Weber B, Kabisch H, Schneppenheim R, Janka G (2004) A91V is a polymorphism in the perforin gene not causative of an FHLH phenotype. Blood 104:1909 (author reply 1910)

    Google Scholar 

  111. Zur Stadt U, Rohr J, Seifert W, Koch F, Grieve S, Pagel J, Strauss J, Kasper B, Nürnberg G, Becker C, Maul-Pavicic A, Beutel K, Janka G, Griffiths G, Ehl S, Hennies HC (2009) Familial hemophagocytic lymphohistiocytosis type 5 (FHL-5) is caused by mutations in Munc18-2 and impaired binding to syntaxin 11. Am J Hum Genet 85:482–492

    PubMed Central  PubMed  Google Scholar 

  112. Zur Stadt U, Schmidt S, Kasper B, Beutel K, Diler AS, Henter J-I, Kabisch H, Schneppenheim R, Nürnberg P, Janka G, Hennies HC (2005) Linkage of familial hemophagocytic lymphohistiocytosis (FHL) type-4 to chromosome 6q24 and identification of mutations in syntaxin 11. Hum Mol Genet 14:827–834

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Apolonija Bedina Zavec .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Naneh, O., Avčin, T., Bedina Zavec, A. (2014). Perforin and Human Diseases. In: Anderluh, G., Gilbert, R. (eds) MACPF/CDC Proteins - Agents of Defence, Attack and Invasion. Subcellular Biochemistry, vol 80. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-8881-6_11

Download citation

Publish with us

Policies and ethics