Skip to main content

Proton-Pumping Microbial Rhodopsins – Ubiquitous Structurally Simple Helpers of Respiration and Photosynthesis

  • Chapter
  • First Online:
The Structural Basis of Biological Energy Generation

Part of the book series: Advances in Photosynthesis and Respiration ((AIPH,volume 39))

Summary

For almost four decades, bacteriorhodopsin has served as a classic example of the simplest standalone proton gradient generator. Bacteriorhodopsin-based bioenergetics was viewed as the most basic type of photosynthesis, becoming useful under limiting oxygen conditions only in a small group of extremophilic haloarchaea. With the advent of genomic and metagenomic high-throughput sequencing, the taxonomic and ecological diversity of bacteriorhodopsin-related proteins (microbial rhodopsins) appeared to be large. In this chapter, we survey structural and taxonomic diversity of proton-pumping microbial rhodopsins, describing haloarchaeal, fungal, algal, and eubacterial representatives, including those in photosynthetic organisms. Comparison of both primary and 3-D structures is made, and common structural trends are pointed out. Finally, we outline the main structural blocks involved in light-driven proton-transport mechanism, and discuss its conserved and variable parts.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ACR-2:

Acetabularia rhodopsin-2;

AR:

– Archaerhodopsin;

BR:

– Bacteriorhodopsin;

GPR:

– Green-absorbing proteorhodopsin;

GR:

Gloeobacter rhodopsin;

PR:

– Proteorhodopsin;

RD:

– Rhodopsin;

TM:

– Transmembrane;

XR:

– Xanthorhodopsin

References

  • Adamian L, Ouyang Z, Tseng YY, Liang J (2006) Evolutionary patterns of retinal-binding pockets of type I rhodopsins and their functions. Photochem Photobiol 82:1426–1435

    CAS  PubMed  Google Scholar 

  • Andersson M, Malmerberg E, Westenhoff S, Katona G, Cammarata M, Wohri AB, Johansson LC, Ewald F, Eklund M, Wulff M, Davidsson J, Neutze R (2009) Structural dynamics of light-driven proton pumps. Structure 17:1265–1275

    CAS  PubMed  Google Scholar 

  • Atamna-Ismaeel N, Sabehi G, Sharon I, Witzel KP, Labrenz M, Jurgens K, Barkay T, Stomp M, Huisman J, Beja O (2008) Widespread distribution of proteorhodopsins in freshwater and brackish ecosystems. ISME J 2:656–662

    CAS  PubMed  Google Scholar 

  • Atamna-Ismaeel N, Finkel OM, Glaser F, Sharon I, Schneider R, Post AF, Spudich JL, von Mering C, Vorholt JA, Iluz D, Beja O and Belkin S (2011) Microbial rhodopsins on leaf surfaces of terrestrial plants. Environ Microbiol 14:40–46

    Google Scholar 

  • Balashov SP (2000) Protonation reactions and their coupling in bacteriorhodopsin. Biochim Biophys Acta 1460:75–94

    CAS  PubMed  Google Scholar 

  • Balashov SP, Govindjee R, Imasheva ES, Misra S, Ebrey TG, Feng Y, Crouch RK, Menick DR (1995) The two pKa’s of aspartate-85 and control of thermal isomerization and proton release in the arginine-82 to lysine mutant of bacteriorhodopsin. Biochemistry 34:8820–8834

    CAS  PubMed  Google Scholar 

  • Balashov SP, Imasheva ES, Ebrey TG, Chen N, Menick DR, Crouch RK (1997) Glutamate-194 to cysteine mutation inhibits fast light-induced proton release in bacteriorhodopsin. Biochemistry 36:8671–8676

    CAS  PubMed  Google Scholar 

  • Balashov SP, Lu M, Imasheva ES, Govindjee R, Ebrey TG, Othersen B 3rd, Chen Y, Crouch RK, Menick DR (1999) The proton release group of bacteriorhodopsin controls the rate of the final step of its photocycle at low pH. Biochemistry 38:2026–2039

    CAS  PubMed  Google Scholar 

  • Balashov SP, Imasheva ES, Boichenko VA, Anton J, Wang JM, Lanyi JK (2005) Xanthorhodopsin: a proton pump with a light-harvesting carotenoid antenna. Science 309:2061–2064

    CAS  PubMed Central  PubMed  Google Scholar 

  • Balashov SP, Imasheva ES, Choi AR, Jung KH, Liaaen-Jensen S, Lanyi JK (2010) Reconstitution of Gloeobacter rhodopsin with echinenone: role of the 4-keto group. Biochemistry 49:9792–9799

    CAS  PubMed Central  PubMed  Google Scholar 

  • Baliga NS, Bonneau R, Facciotti MT, Pan M, Glusman G, Deutsch EW, Shannon P, Chiu Y, Weng RS, Gan RR, Hung P, Date SV, Marcotte E, Hood L, Ng WV (2004) Genome sequence of Haloarcula marismortui: a halophilic archaeon from the Dead Sea. Genome Res 14:2221–2234

    CAS  PubMed Central  PubMed  Google Scholar 

  • Beja O, Aravind L, Koonin EV, Suzuki MT, Hadd A, Nguyen LP, Jovanovich S, Gates CM, Feldman RA, Spudich JL, Spudich EN, DeLong EF (2000) Bacterial rhodopsin: evidence for a new type of phototrophy in the sea. Science 289:1902–1906

    CAS  PubMed  Google Scholar 

  • Beja O, Spudich EN, Spudich JL, Leclerc M, DeLong EF (2001) Proteorhodopsin phototrophy in the ocean. Nature 411:786–789

    CAS  PubMed  Google Scholar 

  • Bergo V, Amsden JJ, Spudich EN, Spudich JL, Rothschild KJ (2004) Structural changes in the photoactive site of proteorhodopsin during the primary photoreaction. Biochemistry 43:9075–9083

    CAS  PubMed  Google Scholar 

  • Bergo VB, Sineshchekov OA, Kralj JM, Partha R, Spudich EN, Rothschild KJ, Spudich JL (2009) His-75 in proteorhodopsin, a novel component in light-driven proton translocation by primary pumps. J Biol Chem 284:2836–2843

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bieszke JA, Spudich EN, Scott KL, Borkovich KA, Spudich JL (1999) A eukaryotic protein, NOP-1, binds retinal to form an archaeal rhodopsin-like photochemically reactive pigment. Biochemistry 38:14138–14145

    CAS  PubMed  Google Scholar 

  • Bolhuis H, Palm P, Wende A, Falb M, Rampp M, Rodriguez-Valera F, Pfeiffer F, Oesterhelt D (2006) The genome of the square archaeon Haloquadratum walsbyi: life at the limits of water activity. BMC Genom 7:169

    Google Scholar 

  • Boyden ES, Chow BY, Han X, Qian X, Klapoetke NC, Kwon AH (2011) Light-activated proton pumps, particular microbial rhodopsins, for use in adjusting cell pH or voltage, or in proton release. USA Patent US 2,011,016,568,1

    Google Scholar 

  • Brown LS (2004) Fungal rhodopsins and opsin-related proteins: eukaryotic homologues of bacteriorhodopsin with unknown functions. Photochem Photobiol Sci 3:555–565

    CAS  PubMed  Google Scholar 

  • Brown LS, Jung KH (2006) Bacteriorhodopsin-like proteins of eubacteria and fungi: the extent of conservation of the haloarchaeal proton-pumping mechanism. Photochem Photobiol Sci 5:538–546

    CAS  PubMed  Google Scholar 

  • Brown LS, Yamazaki Y, Maeda A, Sun L, Needleman R, Lanyi JK (1994) The proton transfers in the cytoplasmic domain of bacteriorhodopsin are facilitated by a cluster of interacting residues. J Mol Biol 239:401–414

    CAS  PubMed  Google Scholar 

  • Brown LS, Sasaki J, Kandori H, Maeda A, Needleman R, Lanyi JK (1995) Glutamic-acid-204 is the terminal proton release group at the surface of bacteriorhodopsin. J Biol Chem 270:27122–27126

    CAS  PubMed  Google Scholar 

  • Brown LS, Dioumaev AK, Needleman R, Lanyi JK (1998) Local-access model for proton transfer in bacteriorhodopsin. Biochemistry 37:3982–3993

    CAS  PubMed  Google Scholar 

  • Brown LS, Needleman R, Lanyi JK (1999) Functional roles of aspartic acid residues at the cytoplasmic surface of bacteriorhodopsin. Biochemistry 38:6855–6861

    CAS  PubMed  Google Scholar 

  • Brown LS, Dioumaev AK, Lanyi JK, Spudich EN, Spudich JL (2001) Photochemical reaction cycle and proton transfers in Neurospora rhodopsin. J Biol Chem 276:32495–32505

    CAS  PubMed  Google Scholar 

  • Butt HJ, Fendler K, Bamberg E, Tittor J, Oesterhelt D (1989) Aspartic acids 96 and 85 play a central role in the function of bacteriorhodopsin as a proton pump. EMBO J 8:1657–1663

    CAS  PubMed Central  PubMed  Google Scholar 

  • Checover S, Marantz Y, Nachliel E, Gutman M, Pfeiffer M, Tittor J, Oesterhelt D, Dencher NA (2001) Dynamics of the proton transfer reaction on the cytoplasmic surface of bacteriorhodopsin. Biochemistry 40:4281–4292

    CAS  PubMed  Google Scholar 

  • Chow BY, Han X, Dobry AS, Qian X, Chuong AS, Li M, Henninger MA, Belfort GM, Lin Y, Monahan PE, Boyden ES (2010) High-performance genetically targetable optical neural silencing by light-driven proton pumps. Nature 463:98–102

    CAS  PubMed Central  PubMed  Google Scholar 

  • Danon A, Stoeckenius W (1974) Photophosphorylation in Halobacterium halobium. Proc Natl Acad Sci U S A 71:1234–1238

    CAS  PubMed Central  PubMed  Google Scholar 

  • Decoursey TE (2003) Voltage-gated proton channels and other proton transfer pathways. Physiol Rev 83:475–579

    CAS  PubMed  Google Scholar 

  • DeLong EF, Beja O (2010) The light-driven proton pump proteorhodopsin enhances bacterial survival during tough times. PLoS Biol 8:e1000359

    PubMed Central  PubMed  Google Scholar 

  • Desiderio RA, Laney SR, Letelier RM, Giovannoni SJ (2007) Using lasers to probe the transient light absorption by proteorhodopsin in marine bacterioplankton. Appl Opt 46:7329–7336

    PubMed  Google Scholar 

  • Dioumaev AK, Brown LS, Needleman R, Lanyi JK (1999) Fourier transform infrared spectra of a late intermediate of the bacteriorhodopsin photocycle suggest transient protonation of Asp-212. Biochemistry 38:10070–10078

    CAS  PubMed  Google Scholar 

  • Dioumaev AK, Brown LS, Shih J, Spudich EN, Spudich JL, Lanyi JK (2002) Proton transfers in the photochemical reaction cycle of proteorhodopsin. Biochemistry 41:5348–5358

    CAS  PubMed  Google Scholar 

  • Dioumaev AK, Wang JM, Balint Z, Varo G, Lanyi JK (2003) Proton transport by proteorhodopsin requires that the retinal Schiff base counterion Asp-97 be anionic. Biochemistry 42:6582–6587

    CAS  PubMed  Google Scholar 

  • Enami N, Yoshimura K, Murakami M, Okumura H, Ihara K, Kouyama T (2006) Crystal structures of archaerhodopsin-1 and -2: common structural motif in archaeal light-driven proton pumps. J Mol Biol 358:675–685

    CAS  PubMed  Google Scholar 

  • Fan Y, Shi L, Brown LS (2007) Structural basis of diversification of fungal retinal proteins probed by site-directed mutagenesis of Leptosphaeria rhodopsin. FEBS Lett 581:2557–2561

    CAS  PubMed  Google Scholar 

  • Fan Y, Solomon P, Oliver RP, Brown LS (2011) Photochemical characterization of a novel fungal rhodopsin from Phaeosphaeria nodorum. Biochim Biophys Acta 1807:1457–1466

    CAS  PubMed  Google Scholar 

  • Feldbauer K, Zimmermann D, Pintschovius V, Spitz J, Bamann C, Bamberg E (2009) Channelrhodopsin-2 is a leaky proton pump. Proc Natl Acad Sci U S A 106:12317–12322

    CAS  PubMed Central  PubMed  Google Scholar 

  • Freier E, Wolf S, Gerwert K (2011) Proton transfer via a transient linear water-molecule chain in a membrane protein. Proc Natl Acad Sci U S A 108:11435–11439

    CAS  PubMed Central  PubMed  Google Scholar 

  • Friedrich T, Geibel S, Kalmbach R, Chizhov I, Ataka K, Heberle J, Engelhard M, Bamberg E (2002) Proteorhodopsin is a light-driven proton pump with variable vectoriality. J Mol Biol 321:821–838

    CAS  PubMed  Google Scholar 

  • Frigaard NU, Martinez A, Mincer TJ, DeLong EF (2006) Proteorhodopsin lateral gene transfer between marine planktonic Bacteria and Archaea. Nature 439:847–850

    CAS  PubMed  Google Scholar 

  • Fu HY, Lin YC, Chang YN, Tseng H, Huang CC, Liu KC, Huang CS, Su CW, Weng RR, Lee YY, Ng WV, Yang CS (2010) A novel six-rhodopsin system in a single archaeon. J Bacteriol 192:5866–5873

    CAS  PubMed Central  PubMed  Google Scholar 

  • Fuhrman JA, Schwalbach MS, Stingl U (2008) Proteorhodopsins: an array of physiological roles? Nat Rev Microbiol 6:488–494

    CAS  PubMed  Google Scholar 

  • Furutani Y, Ikeda D, Shibata M, Kandori H (2006a) Strongly hydrogen-bonded water molecule is observed only in the alkaline form of proteorhodopsin. Chem Phys 324:705–708

    CAS  Google Scholar 

  • Furutani Y, Sumii M, Fan Y, Shi LC, Waschuk SA, Brown LS, Kandori H (2006b) Conformational coupling between the cytoplasmic carboxylic acid and the retinal in a fungal light-driven proton pump. Biochemistry 45:15349–15358

    CAS  PubMed  Google Scholar 

  • Ganea C, Gergely C, Ludmann K, Varo G (1997) The role of water in the extracellular half channel of bacteriorhodopsin. Biophys J 73:2718–2725

    CAS  PubMed Central  PubMed  Google Scholar 

  • Garczarek F, Gerwert K (2006) Functional waters in intraprotein proton transfer monitored by FTIR difference spectroscopy. Nature 439:109–112

    CAS  PubMed  Google Scholar 

  • Gomez-Consarnau L, Akram N, Lindell K, Pedersen A, Neutze R, Milton DL, Gonzalez JM, Pinhassi J (2010) Proteorhodopsin phototrophy promotes survival of marine bacteria during starvation. PLoS Biol 8:e1000358

    PubMed Central  PubMed  Google Scholar 

  • Gonzalez JM, Fernandez-Gomez B, Fernandez-Guerra A, Gomez-Consarnau L, Sanchez O, Coll-Llado M, Del Campo J, Escudero L, Rodriguez-Martinez R, Alonso-Saez L, Latasa M, Paulsen I, Nedashkovskaya O, Lekunberri I, Pinhassi J, Pedros-Alio C (2008) Genome analysis of the proteorhodopsin-containing marine bacterium Polaribacter sp. MED152 (Flavobacteria). Proc Natl Acad Sci U S A 105:8724–8729

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gourdon P, Alfredsson A, Pedersen A, Malmerberg E, Nyblom M, Widell M, Berntsson R, Pinhassi J, Braiman M, Hansson O, Bonander N, KarlssonG, Neutze R (2008) Optimized in vitro and in vivo expression of proteorhodopsin: a seven-transmembrane proton pump. Protein Expr Purif 58:103–113

    CAS  PubMed  Google Scholar 

  • Guex N, Peitsch MC (1997) SWISS-MODEL and the Swiss-PDB viewer: an environment for comparative protein modeling. Electrophoresis 18:2714–2723

    CAS  PubMed  Google Scholar 

  • Hashimoto K, Choi AR, Furutani Y, Jung KH, Kandori H (2010) Low-temperature FTIR study of Gloeobacter rhodopsin: presence of strongly hydrogen-bonded water and long-range structural protein perturbation upon retinal photoisomerization. Biochemistry 49:3343–3350

    CAS  PubMed  Google Scholar 

  • Haupts U, Tittor J, Bamberg E, Oesterhelt D (1997) General concept for ion translocation by halobacterial retinal proteins: the isomerization/switch/transfer (IST) model. Biochemistry 36:2–7

    CAS  PubMed  Google Scholar 

  • Haupts U, Tittor J, Oesterhelt D (1999) Closing in on bacteriorhodopsin: progress in understanding the molecule. Annu Rev Biophys Biomol Struct 28:367–399

    CAS  PubMed  Google Scholar 

  • Hegemann P (2008) Algal sensory photoreceptors. Annu Rev Plant Biol 59:167–189

    CAS  PubMed  Google Scholar 

  • Hempelmann F, Holper S, Verhoefen MK, Woerner AC, Kohler T, Fiedler SA, Pfleger N, Wachtveitl J, Glaubitz C (2011) His75-Asp97 cluster in green proteorhodopsin. J Am Chem Soc 133:4645–4654

    CAS  PubMed  Google Scholar 

  • Herzfeld J, Lansing JC (2002) Magnetic resonance studies of the bacteriorhodopsin pump cycle. Annu Rev Biophys Biomol Struct 31:73–95

    CAS  PubMed  Google Scholar 

  • Herzfeld J, Tounge B (2000) NMR probes of vectoriality in the proton-motive photocycle of bacteriorhodopsin: evidence for an ‘electrostatic steering’ mechanism. Biochim Biophys Acta 1460:95–105

    CAS  PubMed  Google Scholar 

  • Hessling B, Herbst J, Rammelsberg R, Gerwert K (1997) Fourier transform infrared double-flash experiments resolve bacteriorhodopsin’s M1 to M2 transition. Biophys J 73:2071–2080

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hirai T, Subramaniam S (2009) Protein conformational changes in the bacteriorhodopsin photocycle: comparison of findings from electron and X-ray crystallographic analyses. PLoS One 4:e5769

    PubMed Central  PubMed  Google Scholar 

  • Hirai T, Subramaniam S, Lanyi JK (2009) Structural snapshots of conformational changes in a seven-helix membrane protein: lessons from bacteriorhodopsin. Curr Opin Struct Biol 19:433–439

    CAS  PubMed Central  PubMed  Google Scholar 

  • Idnurm A, Verma S, Corrochano LM (2010) A glimpse into the basis of vision in the kingdom Mycota. Fungal Genet Biol 47:881–892

    PubMed Central  PubMed  Google Scholar 

  • Ihara K, Amemiya T, Miyashita Y, Mukohata Y (1994) Met-145 is a key residue in the dark adaptation of bacteriorhodopsin homologs. Biophys J 67:1187–1191

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ihara K, Umemura T, Katagiri I, Kitajima-Ihara T, Sugiyama Y, Kimura Y, Mukohata Y (1999) Evolution of the archaeal rhodopsins: evolution rate changes by gene duplication and functional differentiation. J Mol Biol 285:163–174

    CAS  PubMed  Google Scholar 

  • Imasheva ES, Balashov SP, Wang JM, Lanyi JK (2006) pH-Dependent transitions in xanthorhodopsin. Photochem Photobiol 82:1406–1413

    CAS  PubMed Central  PubMed  Google Scholar 

  • Imasheva ES, Balashov SP, Choi AR, Jung KH, Lanyi JK (2009) Reconstitution of Gloeobacter violaceus rhodopsin with a light-harvesting carotenoid antenna. Biochemistry 48:10948–10955

    CAS  PubMed Central  PubMed  Google Scholar 

  • Johnson ET, Baron DB, Naranjo B, Bond DR, Schmidt-Dannert C, Gralnick JA (2010) Enhancement of survival and electricity production in an engineered bacterium by light-driven proton pumping. Appl Environ Microbiol 76:4123–4129

    CAS  PubMed Central  PubMed  Google Scholar 

  • Jung KH, Trivedi VD, Spudich JL (2003) Demonstration of a sensory rhodopsin in eubacteria. Mol Microbiol 47:1513–1522

    CAS  PubMed  Google Scholar 

  • Jung JY, Choi AR, Lee YK, Lee HK, Jung KH (2008) Spectroscopic and photochemical analysis of proteorhodopsin variants from the surface of the Arctic Ocean. FEBS Lett 582:1679–1684

    CAS  PubMed  Google Scholar 

  • Kandori H (2000) Role of internal water molecules in bacteriorhodopsin. Biochim Biophys Acta 1460:177–191

    CAS  PubMed  Google Scholar 

  • Kandori H (2004) Hydration switch model for the proton transfer in the Schiff base region of bacteriorhodopsin. Biochim Biophys Acta 1658:72–79

    CAS  PubMed  Google Scholar 

  • Kandori H (2011) Protein–controlled ultrafast photoisomerization in rhodopsin and bacteriorhodopsin. In: Ramamurthy V, Inoue Y (eds) Supramolecular photochemistry: controlling photochemical processes. Wiley, Hoboken, pp 571–595

    Google Scholar 

  • Kataoka M, Kamikubo H (2000) Structures of photointermediates and their implications for the proton pump mechanism. Biochim Biophys Acta 1460:166–176

    CAS  PubMed  Google Scholar 

  • Kawanabe A, Furutani Y, Jung KH, Kandori H (2009) Engineering an inward proton transport from a bacterial sensor rhodopsin. J Am Chem Soc 131:16439–16444

    CAS  PubMed  Google Scholar 

  • Kikukawa T, Shimono K, Tamogami J, Miyauchi S, Kim SY, Kimura-Someya T, Shirouzu M, Jung KH, Yokoyama S, Kamo N (2011) Photochemistry of Acetabularia rhodopsin II from a marine plant, Acetabularia acetabulum. Biochemistry 50:8888–8898

    CAS  PubMed  Google Scholar 

  • Kimura H, Young CR, Martinez A, Delong EF (2011) Light-induced transcriptional responses associated with proteorhodopsin-enhanced growth in a marine flavobacterium. ISME J 5:1641–1651

    Google Scholar 

  • Klare JP, Bordignon E, Engelhard M, Steinhoff HJ (2004) Sensory rhodopsin II and bacteriorhodopsin: light activated helix F movement. Photochem Photobiol Sci 3:543–547

    CAS  PubMed  Google Scholar 

  • Klare JP, Chizhov I, Engelhard M (2008) Microbial rhodopsins: scaffolds for ion pumps, channels, and sensors. Results Probl Cell Differ 45:73–122

    CAS  PubMed  Google Scholar 

  • Koh EY, Atamna-Ismaeel N, Martin A, Cowie RO, Beja O, Davy SK, Maas EW, Ryan KG (2010) Proteorhodopsin-bearing bacteria in Antarctic sea ice. Appl Environ Microbiol 76:5918–5925

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kouyama T, Murakami M (2010) Structural divergence and functional versatility of the rhodopsin superfamily. Photochem Photobiol Sci 9:1458–1465

    CAS  PubMed  Google Scholar 

  • Kralj JM, Bergo VB, Amsden JJ, Spudich EN, Spudich JL, Rothschild KJ (2008) Protonation state of Glu142 differs in the green- and blue-absorbing variants of proteorhodopsin. Biochemistry 47:3447–3453

    CAS  PubMed  Google Scholar 

  • Krebs MP, Khorana HG (1993) Mechanism of light-dependent proton translocation by bacteriorhodopsin. J Bacteriol 175:1555–1560

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lanyi JK (2004) Bacteriorhodopsin. Annu Rev Physiol 66:665–688

    CAS  PubMed  Google Scholar 

  • Lanyi JK, Balashov SP (2011) Xanthorhodopsin. In: Ventosa A (ed) Halophiles and hypersaline environments. Springer, Dordrecht, pp 319–340

    Google Scholar 

  • Lanyi JK, Schobert B (2004) Local-global conformational coupling in a heptahelical membrane protein: transport mechanism from crystal structures of the nine states in the bacteriorhodopsin photocycle. Biochemistry 43:3–8

    CAS  PubMed  Google Scholar 

  • Lanyi JK, Schobert B (2006) Propagating structural perturbation inside bacteriorhodopsin: crystal structures of the M state and the D96A and T46V mutants. Biochemistry 45:12003–12010

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lorenz-Fonfria VA, Kandori H (2009) Spectroscopic and kinetic evidence on how bacteriorhodopsin accomplishes vectorial proton transport under functional conditions. J Am Chem Soc 131:5891–5901

    CAS  PubMed  Google Scholar 

  • Lorinczi E, Verhoefen MK, Wachtveitl J, Woerner AC, Glaubitz C, Engelhard M, Bamberg E, Friedrich T (2009) Voltage- and pH-dependent changes in vectoriality of photocurrents mediated by wild-type and mutant proteorhodopsins upon expression in Xenopus oocytes. J Mol Biol 393:320–341

    PubMed  Google Scholar 

  • Luecke H, Schobert B, Richter HT, Cartailler JP, Lanyi JK (1999a) Structural changes in bacteriorhodopsin during ion transport at 2 Angstrom resolution. Science 286:255–260

    CAS  PubMed  Google Scholar 

  • Luecke H, Schobert B, Richter HT, Cartailler JP, Lanyi JK (1999b) Structure of bacteriorhodopsin at 1.55 angstrom resolution. J Mol Biol 291:899–911

    CAS  PubMed  Google Scholar 

  • Luecke H, Schobert B, Cartailler JP, Richter HT, Rosengarth A, Needleman R, Lanyi JK (2000) Coupling photoisomerization of retinal to directional transport in bacteriorhodopsin. J Mol Biol 300:1237–1255

    CAS  PubMed  Google Scholar 

  • Luecke H, Schobert B, Stagno J, Imasheva ES, Wang JM, Balashov SP, Lanyi JK (2008) Crystallographic structure of xanthorhodopsin, the light-driven proton pump with a dual chromophore. Proc Natl Acad Sci U S A 105:16561–16565

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lukashev EP, Govindjee R, Kono M, Ebrey TG, Sugiyama Y, Mukohata Y (1994) pH dependence of the absorption spectra and photochemical transformations of the archaerhodopsins. Photochem Photobiol 60:69–75

    CAS  PubMed  Google Scholar 

  • Maeda A, Gennis RB, Balashov SP, Ebrey TG (2005) Relocation of water molecules between the Schiff base and the Thr46-Asp96 region during light-driven unidirectional proton transport by bacteriorhodopsin: an FTIR study of the N intermediate. Biochemistry 44:5960–5968

    CAS  PubMed  Google Scholar 

  • Man-Aharonovich D, Sabehi G, Sineshchekov OA, Spudich EN, Spudich JL, Beja O (2004) Characterization of RS29, a blue-green proteorhodopsin variant from the Red Sea. Photochem Photobiol Sci 3:459–462

    CAS  PubMed  Google Scholar 

  • Martinez A, Bradley AS, Waldbauer JR, Summons RE, DeLong EF (2007) Proteorhodopsin photosystem gene expression enables photophosphorylation in a heterologous host. Proc Natl Acad Sci U S A 104:5590–5595

    CAS  PubMed Central  PubMed  Google Scholar 

  • Martinez-Garcia M, Swan BK, Poulton NJ, Gomez ML, Masland D, Sieracki ME, Stepanauskas R (2012) High-throughput single-cell sequencing identifies photoheterotrophs and chemoautotrophs in freshwater bacterioplankton. ISME J 6:113–123

    CAS  PubMed Central  PubMed  Google Scholar 

  • McCarren J, DeLong EF (2007) Proteorhodopsin photosystem gene clusters exhibit co-evolutionary trends and shared ancestry among diverse marine microbial phyla. Environ Microbiol 9:846–858

    CAS  PubMed  Google Scholar 

  • Mills DA, Ferguson-Miller S (2003) Understanding the mechanism of proton movement linked to oxygen reduction in cytochrome c oxidase: lessons from other proteins. FEBS Lett 545:47–51

    CAS  PubMed  Google Scholar 

  • Mimuro M, Tsuchiya T, Koyama K, Peschek GA (2011) Bioenergetics in a primordial cyanobacterium Gloeobacter violaceus PCC 7421. In: Peschek GA (ed) Bioenergetic processes of cyanobacteria. Springer, The Netherlands, pp 211–238

    Google Scholar 

  • Miranda MR, Choi AR, Shi L, Bezerra AG Jr, Jung KH, Brown LS (2009) The photocycle and proton translocation pathway in a cyanobacterial ion-pumping rhodopsin. Biophys J 96:1471–1481

    CAS  PubMed Central  PubMed  Google Scholar 

  • Mongodin EF, Nelson KE, Daugherty S, Deboy RT, Wister J, Khouri H, Weidman J, Walsh DA, Papke RT, Sanchez Perez G, Sharma AK, Nesbo CL, MacLeod D, Bapteste E, Doolittle WF, Charlebois RL, Legault B, Rodriguez-Valera F (2005) The genome of Salinibacter ruber: convergence and gene exchange among hyperhalophilic bacteria and archaea. Proc Natl Acad Sci U S A 102:18147–18152

    CAS  PubMed Central  PubMed  Google Scholar 

  • Mulkidjanian AY, Cherepanov DA, Heberle J, Junge W (2005) Proton transfer dynamics at membrane/water interface and mechanism of biological energy conversion. Biochemistry (Mosc) 70:251–256

    CAS  Google Scholar 

  • Neutze R, Pebay-Peyroula E, Edman K, Royant A, Navarro J, Landau EM (2002) Bacteriorhodopsin: a high-resolution structural view of vectorial proton transport. Biochim Biophys Acta 1565:144–167

    CAS  PubMed  Google Scholar 

  • Oesterhelt D, Stoeckenius W (1973) Functions of a new photoreceptor membrane. Proc Natl Acad Sci U S A 70:2853–2857

    CAS  PubMed Central  PubMed  Google Scholar 

  • Okamoto OK, Hastings JW (2003) Novel dinoflagellate clock-related genes identified through microarray analysis. J Phycol 39:519–526

    CAS  Google Scholar 

  • Oren A (1999) Bioenergetic aspects of halophilism. Microbiol Mol Biol Rev 63:334–348

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ormos P (1991) Infrared spectroscopic demonstration of a conformational change in bacteriorhodopsin involved in proton pumping. Proc Natl Acad Sci U S A 88:473–477

    CAS  PubMed Central  PubMed  Google Scholar 

  • Page RD (2002) Visualizing phylogenetic trees using TreeView. Current Protocols in Bioinformatics, Chapter 6: Unit 6.2

    Google Scholar 

  • Partha R, Krebs R, Caterino TL, Braiman MS (2005) Weakened coupling of conserved arginine to the proteorhodopsin chromophore and its counterion implies structural differences from bacteriorhodopsin. Biochim Biophys Acta 1708:6–12

    CAS  PubMed  Google Scholar 

  • Petrovskaya LE, Lukashev EP, Chupin VV, Sychev SV, Lyukmanova EN, Kryukova EA, Ziganshin RH, Spirina EV, Rivkina EM, Khatypov RA, Erokhina LG, Gilichinsky DA, Shuvalov VA, Kirpichnikov MP (2010) Predicted bacteriorhodopsin from Exiguobacterium sibiricum is a functional proton pump. FEBS Lett 584:4193–4196

    CAS  PubMed  Google Scholar 

  • Pfleger N, Worner AC, Yang J, Shastri S, Hellmich UA, Aslimovska L, Maier MS, Glaubitz C (2009) Solid-state NMR and functional studies on proteorhodopsin. Biochim Biophys Acta 1787:697–705

    CAS  PubMed  Google Scholar 

  • Racker E, Stoeckenius W (1974) Reconstitution of purple membrane vesicles catalyzing light-driven proton uptake and adenosine triphosphate formation. J Biol Chem 249:662–663

    CAS  PubMed  Google Scholar 

  • Raven JA (2009) Functional evolution of photochemical energy transformations in oxygen-producing organisms. Funct Plant Biol 36:505–515

    CAS  Google Scholar 

  • Reckel S, Gottstein D, Stehle J, Lohr F, Verhoefen MK, Takeda M, Silvers R, Kainosho M, Glaubitz C, Wachtveitl J, Bernhard F, Schwalbe H, Guntert P, Dotsch V (2011) Solution NMR structure of proteorhodopsin. Angew Chem Int Ed Engl 50:11942–11946

    CAS  PubMed  Google Scholar 

  • Richter HT, Brown LS, Needleman R, Lanyi JK (1996) A linkage of the pK(a)’s of asp-85 and glu-204 forms part of the reprotonation switch of bacteriorhodopsin. Biochemistry 35:4054–4062

    CAS  PubMed  Google Scholar 

  • Riesle J, Oesterhelt D, Dencher NA, Heberle J (1996) D38 is an essential part of the proton translocation pathway in bacteriorhodopsin. Biochemistry 35:6635–6643

    CAS  PubMed  Google Scholar 

  • Rothschild KJ (1992) FTIR difference spectroscopy of bacteriorhodopsin: toward a molecular model. J Bioenerg Biomembr 24:147–167

    CAS  PubMed  Google Scholar 

  • Rothschild KJ, He YW, Sonar S, Marti T, Khorana HG (1992) Vibrational spectroscopy of bacteriorhodopsin mutants. Evidence that Thr-46 and Thr-89 form part of a transient network of hydrogen bonds. J Biol Chem 267:1615–1622

    CAS  PubMed  Google Scholar 

  • Ruiz-Gonzalez MX, Marin I (2004) New insights into the evolutionary history of type 1 rhodopsins. J Mol Evol 58:348–358

    CAS  PubMed  Google Scholar 

  • Sabehi G, Loy A, Jung KH, Partha R, Spudich JL, Isaacson T, Hirschberg J, Wagner M, Beja O (2005) New insights into metabolic properties of marine bacteria encoding proteorhodopsins. PLoS Biol 3:1409–1417

    CAS  Google Scholar 

  • Sasaki J, Spudich JL (2000) Proton transport by sensory rhodopsins and its modulation by transducer-binding. Biochim Biophys Acta 1460:230–239

    CAS  PubMed  Google Scholar 

  • Schafer G, Engelhard M, Muller V (1999) Bioenergetics of the archaea. Microbiol Mol Biol Rev 63:570–620

    CAS  PubMed Central  PubMed  Google Scholar 

  • Schobert B, Brown LS, Lanyi JK (2003) Crystallographic intermediates of structures of the M and N bacteriorhodopsin: assembly of a hydrogen-bonded chain of water molecules between Asp-96 and the retinal Schiff base. J Mol Biol 330:553–570

    CAS  PubMed  Google Scholar 

  • Sharma AK, Spudich JL, Doolittle WF (2006) Microbial rhodopsins: functional versatility and genetic mobility. Trends Microbiol 14:463–469

    CAS  PubMed  Google Scholar 

  • Sharma AK, Walsh DA, Bapteste E, Rodriguez-Valera F, Ford Doolittle W, Papke RT (2007) Evolution of rhodopsin ion pumps in haloarchaea. BMC Evol Biol 7:79

    PubMed Central  PubMed  Google Scholar 

  • Sharma AK, Zhaxybayeva O, Papke RT, Doolittle WF (2008) Actinorhodopsins: proteorhodopsin-like gene sequences found predominantly in non-marine environments. Environ Microbiol 10:1039–1056

    CAS  PubMed  Google Scholar 

  • Sharma AK, Sommerfeld K, Bullerjahn GS, Matteson AR, Wilhelm SW, Jezbera J, Brandt U, Doolittle WF, Hahn MW (2009) Actinorhodopsin genes discovered in diverse freshwater habitats and among cultivated freshwater Actinobacteria. ISME J 3:726–737

    CAS  PubMed  Google Scholar 

  • Shi L, Lake EM, Ahmed MA, Brown LS, Ladizhansky V (2009a) Solid-state NMR study of proteorhodopsin in the lipid environment: secondary structure and dynamics. Biochim Biophys Acta 1788:2563–2574

    CAS  PubMed  Google Scholar 

  • Shi L, Ahmed MA, Zhang W, Whited G, Brown LS, Ladizhansky V (2009b) Three-dimensional solid-state NMR study of a seven-helical integral membrane proton pump–structural insights. J Mol Biol 386:1078–1093

    CAS  PubMed  Google Scholar 

  • Shibata M, Tanimoto T, Kandori H (2003) Water molecules in the Schiff base region of bacteriorhodopsin. J Am Chem Soc 125:13312–13313

    CAS  PubMed  Google Scholar 

  • Shimono K, Hayashi T, Ikeura Y, Sudo Y, Iwamoto M, Kamo N (2003) Importance of the broad regional interaction for spectral tuning in Natronobacterium pharaonis phoborhodopsin (sensory rhodopsin II). J Biol Chem 278:23882–23889

    CAS  PubMed  Google Scholar 

  • Sineshchekov OA, Spudich JL (2004) Light-induced intramolecular charge movements in microbial rhodopsins in intact E. coli cells. Photochem Photobiol Sci 3:548–554

    CAS  PubMed  Google Scholar 

  • Sineshchekov OA, Govorunova EG, Jung KH, Zauner S, Maier UG, Spudich JL (2005) Rhodopsin-mediated photoreception in cryptophyte flagellates. Biophys J 89:4310–4319

    CAS  PubMed Central  PubMed  Google Scholar 

  • Slamovits CH, Okamoto N, Burri L, James ER, Keeling PJ (2011) A bacterial proteorhodopsin proton pump in marine eukaryotes. Nat Commun 2:183

    PubMed  Google Scholar 

  • Spudich JL (2006) The multitalented microbial sensory rhodopsins. Trends Microbiol 14:480–487

    CAS  PubMed  Google Scholar 

  • Spudich JL, Yang CS, Jung KH, Spudich EN (2000) Retinylidene proteins: structures and functions from archaea to humans. Annu Rev Cell Dev Biol 16:365–392

    CAS  PubMed  Google Scholar 

  • Steindler L, Schwalbach MS, Smith DP, Chan F, Giovannoni SJ (2011) Energy starved candidatus pelagibacter ubique substitutes light-mediated ATP production for endogenous carbon respiration. PLoS One 6:e19725

    CAS  PubMed Central  PubMed  Google Scholar 

  • Stingl U, Desiderio RA, Cho JC, Vergin KL, Giovannoni SJ (2007) The SAR92 clade: an abundant coastal clade of culturable marine bacteria possessing proteorhodopsin. Appl Environ Microbiol 73:2290–2296

    CAS  PubMed Central  PubMed  Google Scholar 

  • Subramaniam S, Henderson R (2000) Molecular mechanism of vectorial proton translocation by bacteriorhodopsin. Nature 406:653–657

    CAS  PubMed  Google Scholar 

  • Subramaniam S, Lindahl I, Bullough P, Faruqi AR, Tittor J, Oesterhelt D, Brown L, Lanyi J, Henderson R (1999) Protein conformational changes in the bacteriorhodopsin photocycle. J Mol Biol 287:145–161

    CAS  PubMed  Google Scholar 

  • Subramaniam S, Hirai T, Henderson R (2002) From structure to mechanism: electron crystallographic studies of bacteriorhodopsin. Philos Trans A Math Phys Eng Sci 360:859–874

    CAS  PubMed  Google Scholar 

  • Sudo Y, Ihara K, Kobayashi S, Suzuki D, Irieda H, Kikukawa T, Kandori H, Homma M (2011) A microbial rhodopsin with a unique retinal composition shows both sensory rhodopsin II and bacteriorhodopsin-like properties. J Biol Chem 286:5967–5976

    CAS  PubMed Central  PubMed  Google Scholar 

  • Thompson JD, Gibson TJ, Higgins DG (2002) Multiple sequence alignment using ClustalW and ClustalX. Current Protocols in Bioinformatics, Chapter 2: Unit 2 3

    Google Scholar 

  • Tsunoda SP, Ewers D, Gazzarrini S, Moroni A, Gradmann D, Hegemann P (2006) H+-pumping rhodopsin from the marine alga Acetabularia. Biophys J 91:1471–1479

    CAS  PubMed Central  PubMed  Google Scholar 

  • Venter JC, Remington K, Heidelberg JF, Halpern AL, Rusch D, Eisen JA, Wu D, Paulsen I, Nelson KE, Nelson W, Fouts DE, Levy S, Knap AH, Lomas MW, Nealson K, White O, Peterson J, Hoffman J, Parsons R, Baden-Tillson H, Pfannkoch C, Rogers YH, Smith HO (2004) Environmental genome shotgun sequencing of the Sargasso Sea. Science 304:66–74

    CAS  PubMed  Google Scholar 

  • Wada T, Shimono K, Kikukawa T, Hato M, Shinya N, Kim SY, Kimura-Someya T, Shirouzu M, Tamogami J, Miyauchi S, Jung KH, Kamo N, Yokoyama S (2011) Crystal structure of the eukaryotic light-driven proton-pumping rhodopsin, Acetabularia rhodopsin II, from marine alga. J Mol Biol 411:986–998

    CAS  PubMed  Google Scholar 

  • Walter JM, Greenfield D, Bustamante C, Liphardt J (2007) Light-powering Escherichia coli with proteorhodopsin. Proc Natl Acad Sci U S A 104:2408–2412

    CAS  PubMed Central  PubMed  Google Scholar 

  • Waschuk SA, Bezerra AG, Shi L, Brown LS (2005) Leptosphaeria rhodopsin: bacteriorhodopsin-like proton pump from a eukaryote. Proc Natl Acad Sci U S A 102:6879–6883

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wikstrom M (1998) Proton translocation by bacteriorhodopsin and heme-copper oxidases. Curr Opin Struct Biol 8:480–488

    CAS  PubMed  Google Scholar 

  • Xiao YW, Hutson MS, Belenky M, Herzfeld J, Braiman MS (2004) Role of arginine-82 in fast proton release during the bacteriorhodopsin photocycle: a time-resolved FT-IR study of purple membranes containing N-15-labeled arginine. Biochemistry 43:12809–12818

    CAS  PubMed  Google Scholar 

  • Yoshimura K, Kouyama T (2008) Structural role of bacterioruberin in the trimeric structure of archaerhodopsin-2. J Mol Biol 375:1267–1281

    CAS  PubMed  Google Scholar 

  • Zhang F, Vierock J, Yizhar O, Fenno LE, Tsunoda S, Kianianmomeni A, Prigge M, Berndt A, Cushman J, Polle J, Magnuson J, Hegemann P, Deisseroth K (2011) The microbial opsin family of optogenetic tools. Cell 147:1446–1457

    CAS  PubMed  Google Scholar 

  • Zubkov MV (2009) Photoheterotrophy in marine prokaryotes. J Plankton Res 31:933–938

    CAS  Google Scholar 

Download references

Acknowledgements

This work is supported by Natural Sciences and Engineering Research Council of Canada and the University of Guelph.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leonid S. Brown .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Brown, L.S. (2014). Proton-Pumping Microbial Rhodopsins – Ubiquitous Structurally Simple Helpers of Respiration and Photosynthesis. In: Hohmann-Marriott, M. (eds) The Structural Basis of Biological Energy Generation. Advances in Photosynthesis and Respiration, vol 39. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-8742-0_1

Download citation

Publish with us

Policies and ethics