Skip to main content

Host-Parasite Interactions

  • Chapter
  • First Online:
Eco-immunology

Abstract

The immune system represents a complicated assemblage of coordinated genes, proteins, cells and tissues. The field of ecological immunology (EI) is founded on the assumption that immunological defenses incur costs (energetic or fitness) under different ecological conditions. These costs are expected to shape investment in immunity and to alter the dynamics of infection. Considering that the primary function of the immune system is to defend the host against infection, it is warranted to ask—to what extent is immune function meaningful outside of parasitism? Parasites provide a physiological context for immune function. The full complexity of the immune response may only be elucidated by the interplay between diverse tissues, cells and molecules of the host and the parasite. Parasites also provide a conceptual keystone for ecological and evolutionary exploration of immune function. We illustrate these points by describing the connections between immune responses at two scales (cell and tissue) against two taxonomic groups of parasites (unicellular and multicellular). We discuss four challenges for future research in EI: (I) Researchers need to empirically demonstrate host-parasite interactions that affect fitness of the organisms under study; (II) Researchers should interpret immunological traits relative to both defense and tolerance; (III) Tests of immunological traits should include co-infections; (IV) The perspective of the parasite should be more thoroughly considered. We believe addressing these challenges will strengthen the integration of immunology and ecology as the field continues to grow.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aebischer T, Bennett CL, Pelizzola M, Vizzardelli C, Pavelka N, Urbano M, Capozzoli M, Luchini A, Ilg T, Granucci F, Blackburn CC, Ricciardi-Castagnoli P (2005) A critical role for lipophosphoglycan in proinflammatory responses of dendritic cells to Leishmania mexicana. Eur J Immunol 35:476–486

    Article  PubMed  CAS  Google Scholar 

  • Alcázar R, Reymond M, Schmitz G, de Meaux J (2011) Genetic and evolutionary perspectives on the interplay between plant immunity and development. Curr Opin Plant Biol 14:378–384

    Article  PubMed  Google Scholar 

  • Altizer S, Davis AK, Cook KC, Cherry JJ (2004) Age, sex, and season affect the risk of mycoplasmal conjunctivitis in a southeastern house finch population. Can J Zool 82:755–763

    Article  Google Scholar 

  • Ayres JS, Schneider DS (2009) The role of anorexia in resistance and tolerance to infections in Drosophila. PLoS Biol 7:e1000150

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Baeta R, Faivre B, Motreuil S, Gaillard M, Moreau J (2008) Carotenoid trade-off between parasitic resistance and sexual display: an experimental study in the blackbird (Turdus merula). Proc Biol Sci 275:427–434

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Bargues MD, Artigas P, Khoubbane M, Flores R, Glöer P, Rojas-García R, Ashrafi K, Falkner G, Mas-Coma S (2011) Lymnaea schirazensis, an overlooked snail distorting fascioliasis data: genotype, phenotype, ecology, worldwide spread, susceptibility, applicability. PLoS One 6(9):e24567

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Baucom RS, de Roode JC (2011) Ecological immunology and tolerance in plants and animals. Funct Ecol 25:18–28

    Article  Google Scholar 

  • Bazzone LE, Smith PM, Rutitzky LI et al (2008) Coinfection with the intestinal nematode Heligmosomoides polygyrus markedly reduces hepatic egg-induced immunopathology and proinflammatory cytokines in mouse models of severe schistosomiasis. Infect Immun 76:2089–2097

    Article  CAS  Google Scholar 

  • Behnke JM, Barnard CJ, Wakelin D (1992) Understanding chronic nematode infections: evolutionary considerations, current hypotheses and the way forward. Int J Parasitol 22:861–907

    Article  PubMed  CAS  Google Scholar 

  • Blackwell JM, Ezekowitz RA, Roberts MB, Channon JY, Sim RB, Gordon S (1985) Macrophage complement and lectin-like receptors bind Leishmania in the absence of serum. J Exp Med 162:324–331

    Article  PubMed  CAS  Google Scholar 

  • Blanchet S, Rey O, Loot G (2010) Evidence for host variation in parasite tolerance in a wild fish population. Evol Ecol 24:1129–1139

    Article  Google Scholar 

  • Brodie TM, Smith MC, Morris RV, Titus RG (2007) Immunomodulatory effects of the Lutzomyia longipalpis salivary gland protein maxadilan on mouse macrophages. Infect Immun 75(5):2359–2365

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Brown M, Mawa PA, Kaleebu P, Elliott AM (2006) Helminths and HIV infection: epidemiological obserations on immunological hypothesis. Parasite Immunol 28:613–623

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Calienes AF, Fraga J, Piontier J-P, Yong M, Sanchez J, Coustau C, Gutiérrez A, Théron A (2004) Detection and genetic distance of resistant populations of Pseudosuccinea columnella (Mollusca: Lymnaeidae) to Fasciola hepatica (Trematoda: Digenea) using RAPD markers. Acta Trop 92:83–87

    Article  PubMed  CAS  Google Scholar 

  • Castillo JC, Reynolds SE, Eleftherianos L (2011) Insect immune responses to nematode parasites. Trends Parasitol 27(12):537–547

    Article  PubMed  CAS  Google Scholar 

  • de Moura TR, Oliveira F, Rodriguez GC, Carneiro MW, Fukutani KF, Novais FO, Miranda JC, Barral-Netto M, Brodskyn C, Barral A, de Oliveira CI (2010) Immunity to Lutzomyia intermedia saliva modulates the inflammatory environment induced bi Leishmania braziliensis. PLoS Negl Trop Dis 4(6):e712

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Ezenwa VO, Jolles AE (2011) From host immunity to pathogen invasion: the effects of helminth coinfection on the dynamics of microparasites. Integr Comp Biol 51:540–551

    Article  PubMed  Google Scholar 

  • Ezenwa VO, Etienne RS, Luikart G, Beja-Pereria A, Jolles AE (2010) Hidden consequences of living in a wormy world: nematode-induced immune suppression facilitates tuberculosis invasion in African buffalo. Am Nat 176:613–624

    Article  PubMed  Google Scholar 

  • Gallego C, Golenbock D, Gomez MA, Saravia NG (2011) Toll-like receptors participate in macrophage activation and intracellular control of Lieshmania (Viannia) panamensis. Infect Immun 79(7):2871–2879

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Garamszegi LZ, Moller AP (2012) The interspecific relationship between prevalence of blood parasites and sexual traits in birds when considering recent methodological advancements. Behav Ecol Sociobiol 66:107–119

    Article  Google Scholar 

  • Gollob KJ, Antonelli LRV, Dutra WO (2005) Insights into CD4+ memory T cells following Leishmania infection. Trends Parasitol 21(8):347–350

    Article  PubMed  CAS  Google Scholar 

  • Gonzáles-Santoyo I, Córdoba-Aguila A (2012) Phenoloxidase: a key component of the insect immune system. Entom Exp et Appl 142:1–16

    Article  CAS  Google Scholar 

  • Graham AL (2002) When T-helper cells don’t help: immunopathology during concomitant infection. Q Rev Biol 77:409–433

    Article  PubMed  Google Scholar 

  • Graham AL (2008) Ecological rules governing helminth-microparasite coinfection. Proc Natl Acad Sci U S A 105:566–570

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Graham AL, Allen JE, Read AF (2005) Evolutionary causes and consequences of immunopathology. Ann Rev Ecol Evol Systemat 36:373–397

    Article  Google Scholar 

  • Graham AL, Hayward AD, Watt KA, Pilkington JG, Pemberton JM, Nussey DH (2010) Fitness correlates of heritable variation in antibody responsiveness in a wild mammal. Science 330:662–665

    Article  PubMed  CAS  Google Scholar 

  • Graham AL, Shuker DM, Pollitt LC, Auld SKJR, Wilson AJ, Little TJ (2011) Fitness consequences of immune responses: strengthening the empirical framework for ecoimmunology. Funct Ecol 25:5–17

    Article  Google Scholar 

  • Gulland FMD (1992) The role of nematode parasites in Soay sheep (Ovis aries L.) mortality during a population crash. Parasitology 105:493–503

    Article  PubMed  Google Scholar 

  • Hamilton WD, Zuk M (1982) Heritable true fitness and bright birds: a role for parasites? Science 218:384–387

    Article  PubMed  CAS  Google Scholar 

  • Hancock REW, Brown KL, Mookherjee N (2006) Host defence peptides from invertebrates-emerging antimicrobial strategies. Immunobiology 211:315–322

    Article  PubMed  CAS  Google Scholar 

  • Hanington PC, Lun C-M, Adema CM, Loker ES (2010) Time series analysis of teh transcriptional responses of Biomphalaria glabrata throughout the course of intramolluscan development of Schistosoma mansoni and Echinostoma paraensei. Int J Parasitol 40:819–831

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Hartgers FC, Yazdanbakhsh M (2006) Co-infection of helminths and malaria: modulation of the immune responses to malaria. Parasite Immunol 28:497–506

    Article  PubMed  CAS  Google Scholar 

  • Hawley DM, Altizer SA (2011) Disease ecology meets ecological immunology: understanding the links between organismal immunity and infection dynamics in natural populations. Funct Ecol 25:48–60

    Article  Google Scholar 

  • Howe FP (1992) Effects of Protocalliphora braueri (Diptera: Calliphoridae) parasitism and inclement weather on nestling sage thrashers. J Wildl Dis 28:141–143

    Article  PubMed  CAS  Google Scholar 

  • Inglis TJJ (2007) Principia ætiologica: taking causality beyond Koch’s postulates. J Med Microbiol 56:1419–1422

    Article  PubMed  Google Scholar 

  • Janeway CA, Travers P, Walport M, Shlomchik MI (2005) Immunobiology: the immune system in health and disease, 6th ed. Garland Publishing, New York

    Google Scholar 

  • John JL (1997) The Hamilton-Zuk theory and initial test: an examination of some parasitological criticisms. Int J Parasitol 27(11):1269–1288

    Article  PubMed  CAS  Google Scholar 

  • Jokela J, Schmid-Hempel P, Rigby MC (2000) Dr. Pangloss restrained by the red queen: steps towards a unified defence theory. Oikos 89:267–274

    Article  Google Scholar 

  • Koch R (1884) Die Aetiologie der Tuberkulose. Mitt Kaiser Gesundh 2:1–88

    Google Scholar 

  • Komar N, Langevin S, Hinten S, Nemeth N, Edwards E, Hettler D, Davis B, Bowen R, Bunning M (2003) Experimental infection of North American birds with the New York 1999 strain of West Nile virus. Emerg Infect Dis 9(3):311–322

    Article  PubMed Central  PubMed  Google Scholar 

  • Koskella B, Lin DM, Buckling A, Thompson JN (2012) The costs of evolving resistance in heterogeneous parasite environments. Proc Biol Sci 279:1896–1903

    Article  PubMed Central  PubMed  Google Scholar 

  • LaDeau SL, Kilpatrick AM, Marra PP (2007) West Nile virus emergence and large-scale declines of North American bird populations. Nature 447:710–714

    Article  PubMed  CAS  Google Scholar 

  • Maizels RM, Balic A, Gomez-Escobar N, Nair M, Taylor MD, Allen JE (2004) Helminth parasites-masters of regulation. Immunol Rev 201:89–116

    Article  PubMed  CAS  Google Scholar 

  • Martin LB, Hawley DM, Ardia DR (2011) An introduction to ecological immunology. Funct Ecol 25:1–4

    Article  Google Scholar 

  • Medley GF (2002) The epidemiological consequences of optimisation of the individual host immune response. Parasitology 125:S61–S70

    Article  PubMed  Google Scholar 

  • Molina EC, Skerratt LF (2005) Cellular and humoral responses in liver of cattle and buffaloes infected with a single dose of Fasciola gigantica. Vet Parasitol 131:157–163

    Article  PubMed  Google Scholar 

  • Moreau E, Chauvin A (2010) Immunity against helminths: interactions with the host and the intercurrent infections. J Biomed Biotechol 2010:42893

    Google Scholar 

  • Morris RV, Shoemaker CB, David JR, Lanzaro GC, Titus RG (2001) Sandfly maxadilan exacerbates infection with Leishmania major and vaccinating against it protects against L. major infection. J Immunol 167:5226–5230

    Article  PubMed  CAS  Google Scholar 

  • Moxon JV, Flynn RJ, Golden O, Hamilton JV, Mulcahy G, Brophy PM (2010) Immune responses directed at egg proteins during experimental infection with the liver fluke Fasciola hepatica. Parasite Immunol 32:111–124

    Article  PubMed  CAS  Google Scholar 

  • Nunn CL, Gittleman JL, Antonovics J (2000) Promiscuity and the primate immune system. Science 290:1168–1170

    Article  PubMed  CAS  Google Scholar 

  • Owen JP, Nelson AC, Clayton DH (2010) Ecological immunology of bird-ectoparasite systems. Trends Parasitol 26:530–539

    Article  PubMed  Google Scholar 

  • Parslow TG, Stites DP, Terr AI, Imboden JB (2001) Medical immunology, 10th ed. McGraw-Hill Publishing, New York

    Google Scholar 

  • Pedersen AB, Fenton A (2007) Emphasizing the ecology in parasite community ecology. Trends Ecol Evol 22:133–139

    Article  PubMed  Google Scholar 

  • Pedersen AB, Babayan SA (2011) Wild immunology. Mol Ecol 20:872–880

    Article  PubMed  CAS  Google Scholar 

  • Peters NC, Egen JG, Secundino N, Debrabant A, Kimblin N, Kamhawi S, Lawyer P, Fay MP, Germain RN, Sacks D (2008) In vivo imaging reveals an essential role for neutrophils if leishmaniasis transmitted by sand flies. Science 321:970–974

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Petney TN, Andrews RH (1998) Multiparasite communities in animals and humans: frequency structure and pathogenic significance. Int J Parasitol 28:377–393

    Article  PubMed  CAS  Google Scholar 

  • Piedrafita D, Estuningsih E, Pleasance J, Prowse R, Raadsma HW, Meeusen ENT, Spithill TW (2007) Peritoneal lavage cells of indonesian thin tail sheep mediate antibody-dependent superoxide radical cytotoxicity in vitro against newly excysted juvenile Fasciola gigantica but not juvenile Fasciola hepatica. Infect Immun 75(4):1954–1963

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Piedrafita D, Spithill TW, Smith RE, Raadsma HW (2010) Improving animal and human health through understanding liver fluke immunology. Parasite Immunol 32:572–581

    PubMed  CAS  Google Scholar 

  • Pleasance J, Raadsma HW, Estuningsih SE, Widjajanti S, Meeusen E, Piedrafita D (2011) Innate and adaptive resistance of Indonesian thin tail sheep to liver fluke: a comparative analysis of Fasciola gigantica and Fasciola heptica infection. Vet Parasitol 178:264–272

    Article  PubMed  Google Scholar 

  • Poulin R (2007) Evolutionary ecology of parasites. Princeton University Press, Princeton

    Google Scholar 

  • Råberg L, Stjernman M (2003) Natural selection on immune responsiveness in blue tits Parus caeruleus. Evolution 57:1670–1678

    Article  PubMed  Google Scholar 

  • Råberg L, de Roode JC, Bell AS, Stamou P, Gray D, Read AF (2006) The role of immune-mediated apparent competition in genetically-diverse malaria infections. Am Nat 168:41–53

    Article  PubMed  Google Scholar 

  • Råberg L, Sim D, Read AF (2007) Disentangling genetic variation for resistance and tolerance to infectious diseases in animals. Science 318:812–814

    Article  PubMed  CAS  Google Scholar 

  • Råberg L, Graham AL, Read. AF. (2009) Decomposing health: tolerance and resistance to parasites in animals. Philos Trans R Soc Lond B Biol Sci 364:37–49

    Article  PubMed Central  PubMed  Google Scholar 

  • Rausher MD (2001) Co-evolution and plant resistance to natural enemies. Nature 411:857–864

    Article  PubMed  CAS  Google Scholar 

  • Ritter U, Frischkencht F, van Zandbergen G (2009) Are neutrophils important host cells for Leishmania parasites? Trends Parasitol 25(11):505–510

    Article  PubMed  CAS  Google Scholar 

  • Roberts LS, Janovy JJ (2000) Foundations of parasitology, 6th ed. McGraw-Hill Publishing, New York

    Google Scholar 

  • Savage LT, Reich RM, Hartley LM, Stapp P, Antolin MF (2011) Climate, soils. and connectivity predict plague epizootics in black-tailed prairie dogs (Cynomys ludovicianus). Ecol Appl 21(8):2933–2943

    Article  Google Scholar 

  • Schmid-Hempel P (2011) Evolutionary parasitology: the integrated study of infections, immunology, ecology, and genetics. Oxford University Press, New York

    Google Scholar 

  • Schneider BS, McGee CE, Jordan JM, Stevenson HL, Soong L et al (2007) Prior exposure to uninfected mosquitoes enhances mortality in naturally-transmitted West Nile virus infection. PLoS One 2(11):e1171. doi:10.1371/journal.pone.0001171

    Article  PubMed Central  PubMed  Google Scholar 

  • Sears BF, Rohr JR, Allen JE, Martin LB (2011) The economy of inflammation: when is less more? Trends Parasitol 27:382–387

    Article  PubMed  Google Scholar 

  • Secor (2006) Interactions between schistosomiasis and infection with HIV-1. Parasite Immunol 28:597–603

    PubMed  CAS  Google Scholar 

  • Stanley D, Miller J, Tunaz H (2009) Eicosanoid actions in insect immunity. J Innate Immun 1:282–290

    Article  PubMed  CAS  Google Scholar 

  • Stjernman M, Råberg L, Nilsson JA (2008) Maximum host survival at intermediate parasite infection intensities. PLoS One 3:e2463

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Tschirren B, Richner H (2006) Parasites shape the optimal investment in immunity. Proc Biol Sci 273:1773–1777

    Article  PubMed Central  PubMed  Google Scholar 

  • Ulrich Y, Schmid-Hempel P (2012) Host modulation of parasite competition in multiple infections. Proc Biol Sci. doi:10.1098/rspb.2012.0474

    Google Scholar 

  • Viney ME, Riley EM, Buchanan KL (2005) Optimal immune responses: immunocompetence revisited. Trends Ecol Evol 20:665–669

    Article  PubMed  Google Scholar 

  • Welter A, Mineo JR, de Oliveira Silva DA, Lourenco EV, Vieria Ferro EA, Roque-Barreira MC, Maria da Silva N (2007) BALB/c mice resistant to Toxoplasma gondii infection proved to be highly susceptible when previously infected with Mycoptes musculinus fur mites. Int J Exp Pathol 88:325–335

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Williams PD (2012) New insights into virulence evolution in multigroup hosts. Am Nat 179(2):228–239

    Article  PubMed  Google Scholar 

  • Wodarz D (2006) Ecological and evolutionary principles in immunology. Ecol Lett 9:694–705

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeb P. Owen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Owen, J., Hawley, D. (2014). Host-Parasite Interactions. In: Malagoli, D., Ottaviani, E. (eds) Eco-immunology. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-8712-3_4

Download citation

Publish with us

Policies and ethics