Skip to main content

Challenges in Life Cycle Assessment: An Overview of Current Gaps and Research Needs

  • Chapter
  • First Online:
Background and Future Prospects in Life Cycle Assessment

Abstract

This chapter provides a comprehensive overview of current gaps of and challenges for LCA structured into inventory, impact assessment, generic and evolving aspects. A total of 34 gaps and challenges were identified. These include challenges like ‘allocation’, ‘uncertainty’ or ‘biodiversity’, as well as issues like ‘littering’, ‘animal well-being’ or ‘positive impacts’ which are not covered as often in the existing LCA literature. Each of these gaps is described by a high-level overview of the topic and its relevance to LCA, and the state of the art in terms of literature and potential solutions, if any, is presented.

The motivation for such an overview is two-fold: First, robust, sustainable and credible use of LCA should avoid the over-interpretation of LCA results without proper consideration of its gaps and limitations. Second, these gaps and challenges represent research needs for the scientific LCA community and hopefully inspire further progress in method development.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • ABDA (2012) ABDATA Pharma-Daten-Service. http://www.dimdi.de/static/de/amg/abda/index.htm. Accessed 29 April 2013

  • Ackermann R, Bergmann T, Finkbeiner M (2009) Yin-/Yang-concept of environmental sustainability assessment. In: Shunmugam MS, Babu NR (eds) 7th global Conference on sustainable manufacturing, Chennai

    Google Scholar 

  • Ackermann R, Bergmann T, Jung K, Finkbeiner M (2010) Yin-/Yang-concept for life cycle impact assessment. In: Life Cycle Assessment X, Portland, Oregon

    Google Scholar 

  • Althaus H-J, de Haan P, Scholz RW (2009) Traffic noise in LCA, Part 1: state-of-science and requirement profile for consistent context-sensitive integration of traffic noise in LCA. Int J Life Cycle Assess 14(6):560–570

    Google Scholar 

  • Ambrose EE, Solarin BB, Isebor CE, Williams AB (2005) Assessment of fish by-catch species from coastal artisanal shrimp beam trawl fisheries in Nigeria. Fish Res 71(1):125–132. doi:10.1016/j.fishres.2004.07.005

    Google Scholar 

  • Amores-Barrero MJ, Verones F, Raptis C, Juraske R, Pfister S, Stoessel F, Antón A, Castells F, Hellweg S (2013) Biodiversity impacts from salinity increase in a coastal wetland. Environ Sci Technol 47(12):6384–6392. doi:10.1021/es3045423

    Google Scholar 

  • Anderson-Teixeira KJ, Snyder PK, De Lucia EH (2011) Do biofuels life cycle analyses accurately quantify the climate impacts of biofuels-related land use change? Univ Ill Law Rev 2:589–622

    Google Scholar 

  • ANEC (2012) ANEC position: environmental assessment goes astray. A critique of environmental footprint methodology and its ingredients. ANEC-ENV-2012-G-008final. ANEC, the European association for the co-ordination of consumer representation in standardisation. http://www.anec.eu/attachments/ANEC-ENV-2012-G-008final%20%283%29.pdf. Accessed 20 Mar 2012

  • Ardente F, Beccali G, Cellura M, Lo Brano V (2005) Life cycle assessment of a solar thermal collector. Renew Energ 30(7):1031–1054. doi:http://dx.doi.org/10.1016/j.renene.2004.09.009

    Google Scholar 

  • Ardente F, Beccali M, Cellura M, Lo Brano V (2008) Energy performances and life cycle assessment of an Italian wind farm. Renew Sust Eng Rev 12(1):200–217. doi:http://dx.doi.org/10.1016/j.rser.2006.05.013

    Google Scholar 

  • Arnett EB, Strickland MD, Morrison ML (2007) Renewable energy resources and wildlife: impacts and opportunities. Transactions of the 72nd North American Wildlife and Natural Resources Conference

    Google Scholar 

  • Arvesen A, Hertwich EG (2012) Assessing the life cycle environmental impacts of wind power: a review of present knowledge and research needs. Renew Sust Eng Rev 16(8):5994–6006. doi:http://dx.doi.org/10.1016/j.rser.2012.06.023

    Google Scholar 

  • Azapagic A, Clift R (1999) Allocation of environmental burdens in multiple-function systems. J Clean Prod 7:101–119

    Google Scholar 

  • Baker J, Lepech M (2009) Treatment of uncertainties in life cyle assessment. Stanford University, Stanford

    Google Scholar 

  • Balmford A, Bennun L, ten Brink B, Cooper D, Cote IM, Crane P, Dobson A, Dudley N, Dutton I, Green RE, Gregory RD, Harrison J, Kennedy ET, Kremen C, Leader-Williams N, Lovejoy TE, Mace G, May R, Mayaux P, Morling P, Phillips J, Redford K, Ricketts TH, Rodriguez JP, Sanjayan M, Schei PJ, van Jaarsveld AS, Walther BA (2005) The convention on biological diversity’s 2010 target. Science 307(5707):212–213. doi:10.1126/science.1106281

    CAS  Google Scholar 

  • Banks RC (1979) Human related mortality of birds in the United States. Washington, DC

    Google Scholar 

  • Bayart JB, Bulle C, Koehler A, Margni M, Pfister S, Vince F, Deschenes L (2010) A framework for assessing off-stream freshwater use in LCA. Int J Life Cycle Assess 15(5):439–453

    CAS  Google Scholar 

  • Becker H, Herzberg F, Schulte A, Kolossa-Gehring M (2010a) The carcinogenic potential of nanomaterials, their release from products and options for regulating them. Int J Hyg Environ Health 214(3):231–238

    Google Scholar 

  • Becker M, Edwards S, Massey RI (2010b) Toxic chemicals in toys and children’s products: limitations of current responses and recommendations for government and industry. Environ Sci Technol 44(21):7986–7991

    CAS  Google Scholar 

  • Benetto E, Dujet C (2003) Uncertainty analysis and MCDA: a case study from the life cycle assessment (LCA) practice. In: 57th Meeting of the European working group on multicriteria decision aiding, Viterbo, 27–29 March

    Google Scholar 

  • Berger M, Finkbeiner M (2010) Water footprinting: how to address water use in life cycle assessment? Sustainability 2:919–944. doi:10.3390/su2040919

    Google Scholar 

  • Berger M, Warsen J, Krinke S, Bach V, Finkbeiner M (2012) Water footprint of European cars: potential impacts of water consumption along automobile life cycles. Environ Sci Technol 46(7):4091–4099

    CAS  Google Scholar 

  • Bindraban P, van der Velde M, Ye L, van den Berg M, Materechera S, Kiba D, Tamene L, Vala RK, Jongschaap R, Hoogmoed M, Hoogmoed W, van Beek C, van Lynden G (2012) Assessing the impact of soil degradation on food production. Current Opinion in Environmental Sustainability 4(5):478–488

    Google Scholar 

  • Birnbaum LS, Jung P (2011) From endocrine disruptors to nanomaterials: advancing our understanding of environmental health to protect public health. Health Aff 30(5):814–822. doi:10.1377/hlthaff.2010.1225

    Google Scholar 

  • Blaisdell R (2007) Health effects of odors. Exposure modeling section. Office of Enviromental Health Hazard Assessment. http://www.aqmd.gov/tao/conferencesworkshops/OdorForum/BlaisdellSlides.pdf. Accessed 25 May 2013

  • BMELV (2012) Charta für Landwirtschaft und Verbraucher. Bundesministerin für Ernährung, Landwirtschaft und Verbraucherschutz. doi:http://dx.doi.org/10.1016/S0140-6736(02)11274-8

  • Boulay A-M, Bouchard C, Bulle C, Deschenes L, Margni M (2011) Categorizing water for LCA inventory. Int J Life Cycle Assess 16(7):639–651

    CAS  Google Scholar 

  • BPA (2013) Integrated fish and wildlife program. http://efw.bpa.gov/IntegratedFWP/. Accessed 6 Feb 2013

  • Brakkee K, Huijbregts M, Eickhout B, Hendriks A (2008) Characterisation actors for greenhouse gases at a midpoint level including indirect effects based on calculations with IMAGE model. Int J Life Cycle Assess 13(3):191–201

    CAS  Google Scholar 

  • Brander M, Tipper R, Hutchison C, Davis G (2009) Consequential and attributional approaches to LCA: a guide to policy makers with specific reference to greenhouse gas LCA of biofuels Technical Paper TP-090403-A. Ecometrica

    Google Scholar 

  • Bringezu S, Schütz H, O´Brien M, Kauppi L, Howarth RW, McNeely J (2009) Towards sustainable production and use of resources: assessing biofuels. United Nations Environment Programme (UNEP)

    Google Scholar 

  • Brunekreef B, Holgate ST (2002) Air pollution and health. The Lancet 360(9341):1233–1242. doi:http://dx.doi.org/10.1016/S0140-6736(02)11274-8

    CAS  Google Scholar 

  • Burger AE (1993) Estimating the mortality of seabirds following oil-spills-effects of spill volume. Mar Pollut Bull 26(3):140–143. doi:10.1016/0025-326x(93)90123–2

    CAS  Google Scholar 

  • Burkhardt JJ, Heath G, Cohen E (2012) Life cycle greenhouse gas emissions of trough and tower concentrating solar power electricity generation. J Ind Ecol 16:93–109. doi:10.1111/j.1530-9290.2012.00474.x

    Google Scholar 

  • Canada Mortgage and Housing Corporation (2004) Sensitivity and uncertainity. vol Annex 31. Energy-related environmental impact of buildings. International Energy Ageny, Energy conservaton in buildings and bommunity systems programme

    Google Scholar 

  • Cherubini F, Bird ND, Cowie A, Jungmeier G, Schlamadinger B, Woess-Gallasch S (2009) Energy- and greenhouse gas-based LCA of biofuel and bioenergy systems: key issues, ranges and recommendations. Res Con Rec 53(8):434–447. doi:http://dx.doi.org/10.1016/j.resconrec.2009.03.013

    Google Scholar 

  • Ciroth A, Fleischer G, Steinbach J (2004) Uncertainty calculation in life cycle assessments—a combined model of simulation and approximation. Int J Life Cycle Assess 9(4):216–226

    Google Scholar 

  • Clark C, Martin R, van Kempen E, Alfred T, Head J, Davies HW, Haines MM, Barrio IL, Matheson M, Stansfeld SA (2006) Exposure-effect relations between aircraft and road traffic noise exposure at school and reading comprehension—The RANCH project. Am J Epidemiol 163(1):27–37

    Google Scholar 

  • Cleuvers M (2003) Aquatic ecotoxicity of pharmaceuticals including the assessment of combination effects. Toxicol Lett 142(3): 185–194. doi:10.1016/s0378-4274(03)00068–7

    CAS  Google Scholar 

  • Cole SG (2011) Wind power compensation is not for the birds: an opinion from an environmental economist. Restoration Ecol 19(2):147–153

    Google Scholar 

  • Cooper JS (2003) Specifying functional units and reference flows for comparable alternatives. Int J Life Cycle Assess 8(6):337–349

    Google Scholar 

  • Cornman D (2003) Effects of noise on wildlife. Nature Sounds Society. http://www.naturesounds.org/conservENW.html. Accessed 21 May 2013

  • Cowell SJ, Clift R (2000) A methodology for assessing soil quantity and quality in life cycle assessment. J Clean Prod 8(4):321–331

    Google Scholar 

  • Cucurachi S, Heijungs R, Ohlau K (2012) Towards a general framework for including noise impacts in LCA. Int J Life Cycle Assess 17(4):471–487. doi:10.1007/s11367-011-0377-4

    Google Scholar 

  • Curran MA (2007) Co-product and input allocation approaches for creating life cycle inventory data—a literature review. Int J Life Cycle Assess 12(1):65–78

    Google Scholar 

  • Curran MA, Mann M, Norris GA (2001) Report on the international workshop on electricity data for life cycle inventories Available via EPA http://nepis.epa.gov/Adobe/PDF/P1001NRO.pdf. Accessed 28 May 2013

  • Curran M, de Baan L, de Schryver AM, van Zelm R, Hellweg S, Koellner T, Sonnemann G, Huijbregts MAJ (2011) Toward meaningful end points of biodiversity in life cycle assessment. Environ Sci Technol 45(1):70–79

    CAS  Google Scholar 

  • Dalgaard R, Schmidt J, Halberg N, Christensen P, Thrane M, Pengue WA (2008) LCA of soybean meal. Int J Life Cycle Assess 13(3):240–254

    CAS  Google Scholar 

  • de Vries M, Bokkers E, Dijkstra T, von Schaik G, de Boer J (2011) Invited review: Associations between variables of routine herd data and dairy cow cattle wellfare indicators. J Dairy Sci 94:3213–3228

    CAS  Google Scholar 

  • Deimel I, Franz A, Frentrup M, Meyer M von, Spiller A, Theuvsen L, Dettmer J, Gauly M, Salzborn C, Schrader L, Weghe H van den (2010) Perspektiven für ein Europäisches Tierschutzlabel. Available via BLE http://download.ble.de/08HS010.pdf. Accessed 29 May 2013

  • Delfino RJ, Sioutas C, Malik S (2005) Potential role of ultrafine particles in associations between airborne particle mass and cardiovascular health. Environ Health Perspectives 113(8):934–946

    Google Scholar 

  • Deng L, Babbitt CW, Williams ED (2011) Economic-balance hybrid LCA extended with uncertainty analysis: case study of a laptop computer. J Clean Prod 19(11):1198–1206. doi:10.1016/j.jclepro.2011.03.004

    Google Scholar 

  • Diamanti-Kandarakis E, Bourguignon J-P, Giudice LC, Hauser R GSP, Soto AM et al (2009) Endocrine-disrupting chemicals: an Endocrine Society scientific statement. Endocrine Rev 30(4):293–342

    CAS  Google Scholar 

  • Dodić SN, Popov SD, Dodić JM, Ranković JA, Zavargo ZZ (2010) Biomass energy in Vojvodina: market conditions, environment and food security. Renew Sust Energ Rev 14(2): 862–867. doi:http://dx.doi.org/10.1016/j.rser.2009.10.019

    Google Scholar 

  • Dovì VG, Friedler F, Huisingh D, Klemeš JJ (2009) Cleaner energy for sustainable future. J Clean Prod 17(10):889–895. doi:http://dx.doi.org/10.1016/j.jclepro.2009.02.001

    Google Scholar 

  • EC (2010) Critical raw materials for the EU. Report of the Ad-hoc Working Group on defining critical raw materials. Raw Materials Supply Group, European Commission

    Google Scholar 

  • EC (2012a) Decoupling indicators: basket-of-products indicators, waste management indicators, framework, methodology, data basis and updating procedures

    Google Scholar 

  • EC (2012b) Endocrine disruptors website. European Commission. http://ec.europa.eu/environment/endocrine/definitions/endodis_en.htm. Accessed 21 May 2013

  • EC (2012c) Nanomaterials. http://ec.europa.eu/environment/chemicals/nanotech/index.htm. Accessed 11 February 2013

  • EC-JRC (2010a) International reference life cycle data system (ILCD) handbook—framework and requirements for LCIA models and indicators. EUR 24586 EN. European Commission – Joint Research Centre – Institute for Environment and Sustainability. Publications Office of the European Union

    Google Scholar 

  • EC-JRC (2010b) International reference life cycle data system (ILCD) handbook—General guide for life cycle assessment—Detailed guidance. EUR 24709 EN. European Commission—Joint Research Centre—Institute for Environment and Sustainability

    Google Scholar 

  • EC-JRC (2010c) International reference life cycle data system (ILCD) handbook—Specific guide for life cycle inventory data sets. EUR 24709 EN. European Commission—Joint Research Centre—Institute for Environment and Sustainability

    Google Scholar 

  • EC-JRC (2011) International reference life cycle data system (ILCD) handbook—Recommendations for life cycle impact assessment in the European context. EUR 24571 EN, vol EUR 24571 EN., 1 edn. European Commission—Joint Research Centre—Institute for Environment and Sustainability. Publications Office of the European Union, Luxemburg

    Google Scholar 

  • Ecoinvent (2013) Ecoinvent 2.2 and 3.0 Swiss centre for Life Cycle Inventories. Available via http://www.ecoinvent.ch/

  • EEA (2012) The impacts of endocrine disrupters on wildlife, people and their environments. European Environmental Agency (EEA) Technical Report. doi:10.2800/41462

    Google Scholar 

  • EFSA (2013) EFSA supports European Commission in defining scientific criteria for endocrine disruptors. Press release 20 March. European Food Safety Authority http://www.efsa.europa.eu/en/press/news/130320.htm. Accessed 21 May 2013

  • Ekvall T (2002) Limitations of consequential LCA. http://www.lcacenter.org/lca-lcm/pdf/Consequential-LCA.pdf. Accessed 20 Mar 2013

  • Ekvall T, Andrae ASG (2006) Attributional and consequential environmental assessment of the shift to lead-free solders. Int J Life Cycle Assess 11(5):344–353

    CAS  Google Scholar 

  • Ekvall T, Finnveden G (2001) Allocation in ISO 14041—a critical review. J Clean Prod 9:197–208

    Google Scholar 

  • Ekvall T, Finnveden G (2009) Allocation in ISO 14041—a critical review. J Clean Prod 9:197–208

    Google Scholar 

  • Ekvall T, Tillmann AM (1997) Open-loop recycling: criteria for allocation procedures. Int J Life Cycle Assess 2(3):155–162

    Google Scholar 

  • Ekvall T, Weidema B (2004) System boundaries and input data in consequential life cycle iInventory analysis. Int J Life Cycle Assess 9(3):161–171

    Google Scholar 

  • EPA (1993) Life cycle assessment: Inventory guidelines and principles. Cincinnati

    Google Scholar 

  • EPA (2012) Environmental databases. http://www.epa.gov/opp00001/science/efed_databasesdescription.htm#ecotoxicity. Accessed 25 Feb 2013

  • Erdmann L, Graedel TE (2011) Criticality of non-fuel minerals: a review of major approaches and analyses. Environ Sci Technol 45(18):7620–7630

    CAS  Google Scholar 

  • Erickson WP, Johnson GD, Young DP (2005) A summary and comparison of bird mortality from anthropogenic causes with an emphasis on collisions. USDA Forest Service 1029–1042

    Google Scholar 

  • Erikson O, Finnveden G, Ekvall T, Bjorklund A (2007) Life cycle assessment of fuels for district heating: a comparison of waste incineration, biomass- and natural gas combustion. Eng Pol 35(17):1346–1362

    Google Scholar 

  • Ernstoff A (2012) Direct consumer exposure during use of personal care products, plasticizers and flooring materials. Paper presented at the 9th International Conference on EcoBalance, Yokohama, Japan

    Google Scholar 

  • EU (2003) European Union (EU): Communication from the Commission to the Council and the European Parliament of 18 June 2003– integrated product policy—building on environmental life-cycle thinking. COM (2003) 302 final. Brussels, Belgium

    Google Scholar 

  • EU (2009) Nanomaterials. European Union (EU), DG Health and Consumer Protection, Public Health. http://ec.europa.eu/health/scientific_committees/opinions_layman/nanomaterials/en/index.htm#4. Accessed 21 May 2013

  • Feitz AJ, Lundie S (2002) Soil salinisation: a local life cycle assessment impact category. Int J Life Cycle Assess 7(4):244–249

    CAS  Google Scholar 

  • Ferrer M, de Lucas M, Janss GFE, Casado E, Munoz AR, Bechard MJ, Calabuig CP (2012) Weak relationship between risk assessment studies and recorded mortality in wind farms. J Appl Ecol 49(1):38–46. doi:10.1111/j.1365-2664.2011.02054.x

    Google Scholar 

  • Finkbeiner M (2009) Carbon footprinting—opportunities and threats. Int J Life Cycle Assess 14:91–94

    Google Scholar 

  • Finkbeiner M (2013) Indirekte Landnutzungsänderungen in Ökobilanzen—wissenschaftliche Belastbarkeit und Übereinstimmung mit internationalen Standards. Technische Universität Berlin, Lehrstuhl am Fachgebiet Sustainable Engineering am Institut für Technischen Umweltschutz

    Google Scholar 

  • Finkbeiner M, Schau EM, Lehmann A, Traverso M (2010) Towards life cycle sustainability assessment Sustainability 2: 3309–3322

    Google Scholar 

  • Finkbeiner M, Neugebauer S, Berger M (2012) Carbon footprint of recycle biogenic products: the challenge of modelling CO2 removal credits. Int J Sustain Eng 1(6):1–8

    Google Scholar 

  • Finnveden G (1999) A critical review of operational valuation/weighting methods for life cycle assessment. Available via AFN http://naturvardsverket.se/Documents/publikationer/afr-r-253-se.pdf. Accessed 28 May 2013

  • Finnveden G, Hauschild MZ, Ekvall T, Guinée J, Heijungs R, Hellweg S, Koehler A, Pennington D, Suh S (2009) Recent developments in life cycle assessment. J Environ Management 91(1):1–21

    Google Scholar 

  • Fleet D, Franeker JV, Dagevos J, Hougee M (2009) Quality status report—marine Litter. Wilhelmshaven

    Google Scholar 

  • Flysjo A, Cederberg C, Henriksson M, Ledgard S (2012) The interaction between milk and beef production and emissions from land use change—critical considerations in life cycle assessment and carbon footprint studies of milk. J Clean Prod 28:134–142. doi:10.1016/j.jclepro.2011.11.046

    Google Scholar 

  • Franco V, Garraín D, Vidal R (2010) Methodological proposals for improved assessments of the impact of traffic noise upon human health. Int J Life Cycle Assess 15(8):869–882

    Google Scholar 

  • Frees N (2008) Crediting aluminium recycling in LCA by demand of by disposal. Int J Life Cycle Assess 13(3):212–218

    Google Scholar 

  • Frischknecht R (2010) LCI modelling approaches applied on recycling of materials in view of environmental sustainability, risk perception and eco-efficiency. Int J Life Cycle Assess 15(7):666–671

    CAS  Google Scholar 

  • Frischknecht R, Althaus H, Bauer C, Doka G, Heck T, Jungbluth N, Kellenberger D (2007) The environmental relevance of capital goods in life cycle assessments of products and services. Int J Life Cycle Assess 12(1):1–11. doi: http://dx.doi.org/10.1065/lca2007.02.309 [PDF via treeze.ch]

    Google Scholar 

  • Frischknecht R, Steiner R, Jungbluth N AB (2009) The ecological scarcity method—Eco-factors 2006. A method for impact assessment in LCA. Environmental Studies no 0906. Federal Office for the Environment (FOEN), Bern

    Google Scholar 

  • Gamarra P, Salhofer S (2007) A comparison of waste management in Peru and some Latin-American countries: an overview of major problems, characteristiccs and real needs in the region. In: Diaz LF, Eggerth LL, Savage GM (eds) Management of solid wastes in developing countries. IWWG Task group on waste management in developing countries. CISA Publisher, Padova, pp 71–81

    Google Scholar 

  • Garrigues E, Corson MS, Angers DA, van der Werf HMG, Walter C (2012) Soil quality in life cycle assessment: towards development of an indicator. Ecol Indic 18:434–442. doi:10.1016/j.ecolind.2011.12.014

    CAS  Google Scholar 

  • Garrigues E, Corson M, Angers D, Werf HG, Walter C (2013) Development of a soil compaction indicator in life cycle assessment. Int J Life Cycle Assess 18:1316–1324

    Google Scholar 

  • Garrity SD, Levings SC (1993) Effects of an oil-spill on some organisms living on mangrove (rhizophora-mangle L) roots in low wave-energy habitats in Carribean Panama. Mar Environ Res 35(3): 251–271. doi:10.1016/0141-1136(93)90097-j

    CAS  Google Scholar 

  • Gavankar S, Suh S, Keller AF (2012) Life cycle assessment at nanoscale: review and recommendations. Int J Life Cycle Assess 17(3):295–303. doi:10.1007/s11367-011-0368-5

    Google Scholar 

  • Geyer R, Lindner JP, Stoms DM, Davis FW, Wittstock B (2010) Coupling GIS and LCA for biodiversity assessments of land use: part 2: impact assessment. Int J Life Cycle Assess 15(7):692–703

    CAS  Google Scholar 

  • GHG (2011) Greenhouse gas protocol—Life cycle accounting and reporting standard. World Business Council for Sustainable Development, World Resources Institute

    Google Scholar 

  • Goedkoop MJ, Spriensma R (2001) The eco-indicator 99– A damage oriented method for life cycle impact assessment. vol 3. PRé Consultants B.V., Amersfoort, The Netherlands

    Google Scholar 

  • Goedkoop MJ, Müller-Wenk R, Mettier T, Hungerbühler K, Braunschweig A, Klaus T (2000) Eco-indicator 99– Eine schadensorientierte Bewertungsmethode. Paper presented at the Nachbereitung zum 12 Diskussionsforum Ökobilanzen vom 30 Juni 2000 an der ETH Zürich

    Google Scholar 

  • Goedkoop MJ, Heijungs R, Huijbregts M, de Schryver A, Struijs J, van Zelm R (2009) ReCiPe 2008– A life cycle impact assessment method which comprises harmonised category indicators at the midpoint and the endpoint level. Den Haag

    Google Scholar 

  • Gontier M, Balfors B, Mörtberg U (2006) Biodiversity in environmental assessment Amersfort Ccurrent practice and tools for prediction. Environ Impact Assess Rev 26(3):268–286

    Google Scholar 

  • Gottschalk F, Sonderer T, Scholz RW, Nowack B (2009) Modeled environmental concentrations of engineered nanamaterials for different regions. Environ Sci Technol 43:9126–9222

    Google Scholar 

  • Graedel T, Barr R, Chandler C, Chase T, Choi J, Christofferson L, Friedlander E, Henly C, Jun C, Nassar N, Schechner D, Warren S, Yang M-y, Zhu C (2012) Methodology of metal criticality determination. Environ Sci Technol 46(2):1063–1070. doi: 10.1021/es203534z

    CAS  Google Scholar 

  • Greco SL, Wilson AM, Spengler JD, Levy JI (2007) Spatial patterns of mobile source particulate matter emissions-to-exposure relationships across the United States. Atmos Environ 41(5):1011–1025

    CAS  Google Scholar 

  • Griefahn B, Marks A, Robens S (2006) Noise emitted from road, rail and air traffic and their effects on sleep. J Sound Vibration 295(1–2):129–140

    Google Scholar 

  • Grießhammer R, Hochfeld C (2009) Memorandum product carbon footprint. Öko-Institut e.V., UBA und BMU, Freiburg

    Google Scholar 

  • Guinée JB, Gorree M, Heijungs R, Huppes G, Kleijn R, de Koning A, van Oers L, Wegener Sleeswijk A, Suh S, Udo deHHA, de Bruijn H, van Duin R, Huijbregts MAJ (2002) Handbook on life cycle assessment. Operational guide to the ISO standards. I: LCA in perspective. IIa: Guide. IIb: Operational annex. III: Scientific background, vol 7. Kluwer Academic Publishers, Dordrecht, The Netherlands

    Google Scholar 

  • Guinée JB, Heijungs R, Huppes G (2004) Economic allocation: examples and derived decision tree. Int J Life Cycle Assess 9(1):23–33. doi:10.1007/bf02978533

    Google Scholar 

  • Guinée JB, Heijungs R, Kleijn R, Voet EVD, Koning AD, Oers LV, Elshkaki A, Huele R, Huppes G, Suh S, Sleeswijk AW (2006) Human and ecological life cycle tools for the integrated assessment of systems (HELIAS). Int J Life Cycle Assess 11(1):19–28

    Google Scholar 

  • Guney M, Zagury GJ (2011) Toxic chemicals in toys and children’s products. Environ Sci Technol 45(9):3819–3819. doi:10.1021/es200810s

    CAS  Google Scholar 

  • Halleux H, Lassaux S, Renzoni R, Germain A (2008) Comparative life cycle assessment of two biofuels: ethanol from sugar beet and rapeseed methyl ester. Int J Life Cycle Assess 13(3):184–190

    CAS  Google Scholar 

  • Häusler A, Scherer-Lorenzen M (2002) Nachhaltige Forstwirtschaft in Deutschland im Spiegel des ganzheitlichen Ansatzes der Biodiversitätskonvention Bundesamt für Naturschutz, Bonn

    Google Scholar 

  • HCES (2013) Particulate matter: little things can cause big problems. Hamilton County, Environmental services, airquality management division. http://www.hcdoes.org/airquality/monitoring/pm.htm#Environment. Accessed 20 Jan 2013

  • Heijungs R (2010) Uncertainty analysis in LCA—concepts, tools, and practice. Institute of Environmental Sciences (CML) Leiden University

    Google Scholar 

  • Heijungs R, Guinée JB, Huppes G, Lankreijer RM, Udo deHHA, Wegener Sleeswijk A., Ansems AMM, Eggels PG, van Duin R, de Goede HP (1992) Environmental life cycle assessment of products. I: Guide. II: Backgrounds. Centre of environmental science (CML), Leiden University, Leiden

    Google Scholar 

  • Heijungs R, Huijbregts M (2004) A review of approaches to treat uncertainty in LCA. In: Pahl-Wostl S, Schmidt AE, Rizzoli, Jakeman AJ (eds) Complexity and integrated resources management Transactions of the 2nd biennial meeting of the international environmental modelling and software society, vol 1. Osnabrück, p 1533

    Google Scholar 

  • Henderson A, Hauschild M, van de Meent D, Huijbregts M, Larsen H, Margni M, McKone T, Payet J, Rosenbaum R, Jolliet O (2011) USEtox fate and ecotoxicity factors for comparative assessment of toxic emissions in life cycle analysis: sensitivity to key chemical properties. Int J Life Cycle Assess 16(8):701–709. doi:10.1007/s11367-011-0294-6

    CAS  Google Scholar 

  • Henderson A, Ernstoff A, Chung S, Jolliet O (2012) Assessing direct impact of products on consumers in LCA. Paper presented at the LCA XII—Life cycle thinking … life cycle living, Tacoma, 25–27 September

    Google Scholar 

  • Henzen C (2008) The impact of land use on biodiversity in the framework of life cycle assessment. University of Basel, Basel

    Google Scholar 

  • Hertwich EG (2005) Consumption and the rebound effect. J Ind Ecol 9(1–2):85–98

    Google Scholar 

  • Hewson C (2003a) Can we assess welfare? Canad Vet J 44(9):749–753

    Google Scholar 

  • Hewson C (2003b) What is animal welfare? Common definitions and their practical consequences. The Canad Vet J 44(6):496–499

    Google Scholar 

  • Hischier R, Reichart I (2003) Multifunctional electronic media—Traditional media—The problem of an adequate functional unit—A case study of a printed newspaper, an internet newspaper and a TV broadcast. Int J Life Cycle Assess 8(4):201–208

    Google Scholar 

  • Hofmann F, Kill J, Meder R, Plachter H, Volz K-R (2000) Waldnutzung in Deutschland Bestandsaufnahme, Handlungsbedarf und Maßnahmen zur Umsetzung des Leitbildes einer nachhaltigen Entwicklung. Metzler-Poeschel., Stuttgart

    Google Scholar 

  • Hospido A, Moreira M, Feijoo G (2003) Simplified life cycle assessment of galician milk production. Int Dairy J 13:783–796

    Google Scholar 

  • Howard N, Kneppers B (2011) Weighting for LCA based tools, methods and ecolabels—practical but contentious! http://www.conference.alcas.asn.au/2011/HowardKneppers.pdf. Accessed 29 Mar 2013

  • Hsu DD, O’Donoughue P, Fthenakis V, Heath GA, Kim HC, Sawyer P, Choi J-K, Turney DE (2012) Life cycle greenhouse gas emissions of crystalline silicon photovoltaic electricity generation. J Ind Ecol 16:122–135. doi:10.1111/j.1530-9290.2011.00439.x

    Google Scholar 

  • Huijbregts M (1998) Application of uncertainty and variability in LCA. Int J Life Cycle Assess 3(5):273–280

    Google Scholar 

  • Humbert S, Marshall JD, Shaked S, Spadaro JV, Nishioka Y, Preiss P, McKone TE, Horvath A, Jolliet O (2011) Intake fraction for particulate matter: recommendations for life cycle impact assessment. Environ Sci Technol 45(11):4808–4816

    CAS  Google Scholar 

  • Hunkeler D, Lichtenvort K, Rebitzer G (eds) (2008) Environmental life cycle costing. SETAC, Pensacola, FL in collaboration with CRC Press, Boca Raton, FL

    Google Scholar 

  • Huppes G, Oers Lv (2011) Background review of existing weighting approaches in life cycle impact assessment (LCIA). European Commission Joint Research Centre, Institute for Environment and Sustainability

    Google Scholar 

  • Ibenholt K (2002) Materials flow analysis and economic modelling. In: Ayres RU, Ayres LW (eds) Handbook of industrial ecology. Edward Elgar, Cheltenham, pp 177–184

    Google Scholar 

  • IPCC (2001) Third assessment report—climate change. Cambridge University Press

    Google Scholar 

  • ISO 14040 (2006) Environmental management—Life cycle assessment—Principles and framework (ISO 14040:2006). International Organization for Standardization, Geneva, Switzerland

    Google Scholar 

  • ISO 14044 (2006) Environmental management—Life cycle assessment—Requirements and guidelines (ISO 14044:2006). International Organization for Standardization, Geneva, Switzerland

    Google Scholar 

  • ISO 31000 (2009) Risk management—Principles and guidelines (ISO 31000:2009). International Organization for Standardization, Geneva, Switzerland

    Google Scholar 

  • ISO/TS 14067 (2013) Greenhouse gases—Carbon footprint of products—Requirements and guidelines for quantification and communication. International Organization for Standardization Geneva, Switzerland

    Google Scholar 

  • ISO/TR 14049 (2012) Environmental management—Life cycle assessment—Illustrative examples on how to apply ISO 14044 to goal and scope definition and inventory analysis. International Organization for Standardization, Geneva, Switzerland

    Google Scholar 

  • Jannick H Schmidt JR, Bo PW (2012) A model of indirect land use change. Proceedings of the 8th International Conference on Life Cycle Assessment in the Agri-Food Sector (LCA Food 2012), 1–4 October 2012, Saint Malo, France. INRA, Rennes, France, p 7

    Google Scholar 

  • Jeffery S, Gardi C, Jones A (eds) (2010) European atlas of soil biodiversity. EUR 24375 EN European Commission—Joint Research Centre, Publication Office of the European Union, Luxemburg

    Google Scholar 

  • Jeswani HK, Azapagic A, Schepelmann P, Ritthoff M (2010) Options for broadening and deepening the LCA approaches. J Clean Prod 18(2):120–127. doi:10.1016/j.jclepro.2009.09.023

    Google Scholar 

  • Jolliet O, Margni M, Charles R, Humbert S, Payet J, Rebitzer G, Rosenbaum R (2003) IMPACT 2002 + : A new life cycle impact assessment methodology. Int J Life Cycle Assess 8(6):324–330. doi:10.1007/bf02978505

    Google Scholar 

  • Jolliet O, Müller-Wenk R, Bare J, Brent A, Goedkoop M, Heijungs R, Itsubo N, Pena C, Pennington D, Potting J, Rebitzer G, Stewart M, Udo deHHA, Weidema B (2004) The LCIA midpoint-damage framework of the UNEP/SETAC life cycle initiative. Int J Life Cycle Assess 9(6):394–404

    Google Scholar 

  • Jolliet O, Hong J, Rosenbaum R, Dettling J (2009) Analytical uncertainty propagation in life cycle inventory and impact assessment: high-efficiency versus conventional hand dryers. In: LCA IX—Toward the global life cycle economy, Boston, 29 Sept–2 October

    Google Scholar 

  • Juraske R, Mutel C, Stoessel F, Hellweg S (2009) Life cycle human toxicity assessment of pesticides: comparing fruit and vegetable diets in Switzerland and the United States. Chemosphere 77:939–945

    CAS  Google Scholar 

  • Kennedy D, Montgomery D, Quay B (1996) Stochastic environmental life cycle assessment—A probabilistic approach to incorporating variable input data quality. Int J Life Cycle Assess 1(4):199–207

    CAS  Google Scholar 

  • Khazzoom J (1980) Economic implications of mandated efficiency in standards for household appliances. Energy 1(4):21–40

    Google Scholar 

  • Kim S, Hwang T, Lee KM (1997) Allocation for cascade recycling system. Int J Life Cycle Assess 2(4):217–222

    Google Scholar 

  • Klöpffer W (1996) Allocation rule for open-loop recycling in life cycle assessment. Int J Life Cycle Assess 1(1):27–31

    Google Scholar 

  • Klöpffer W (2008) Life cycle sustainability assessment of products (with comments by Helias A. Udo de Haes p.95). Int J Life Cycle Assess 13(2):89–95

    Google Scholar 

  • Klöpffer W (2012) Verhalten und Abbau von Umweltchemikalien: Physikalisch-chemische Grundlagen, vol 2., völlig überarbeitet. Wiley-VCH, Weinheim

    Google Scholar 

  • Klöpffer W, Grahl B (2009) Ökobilanz (LCA)—Ein Leitfaden für Ausbildung und Beruf. Wiley-VCH, Weinheim

    Google Scholar 

  • Knudsen MT, Halberg N (2007) How to include on-farm biodiversity in LCA on food? In: LCA Food Conference, Gothenburg

    Google Scholar 

  • Koellner T, Scholz R (2008) Assessment of land use impacts on the natural environment. Part 2: Generic characterization factors for local species diversity in Central Europe. Int J Life Cycle Assess 13(1):32–48

    Google Scholar 

  • Koellner T, Baan L, Beck T, Brandão M, Civit B, Margni M, Canals LMi, Saad R, Souza DMd, Müller-Wenk R (2013) UNEP-SETAC guideline on global land use impact assessment on biodiversity and ecosystem services in LCA. Int J Life Cycle Assess 18:1188–1202. doi:10.1007/s11367-013-0579-z

    Google Scholar 

  • Koornneef J, Ramirez A, van Harmelen T, van Horssen A, Turkenburg W, Faaij A (2010) The impact of CO2 capture in the power and heat sector on the emission of SO2, NOx, particulate matter, volatile organic compounds and NH3 in the European Union. Atmos Environ 44(11):1369–1385

    CAS  Google Scholar 

  • Kuswanti C, Xu G, Qiao J, Stuart JA, Koelling K, Lilly B (2003) An engineering approach to plastic recycling based on rheological characterization. J Ind Ecol 6(3–4):125–135

    Google Scholar 

  • Kuvlesky WP Jr, Brennan LA, Morrison ML, Boydston KK, Ballard BM, Bryant FC (2007) Wind energy development and wildlife conservation—challenges and opportunities. J Wildlife Management 71(8):2487–2498. doi:10.2193/2007-248

    Google Scholar 

  • Lagerstedt J, Luttropp C, Lindfors L-G (2003) Functional priorities in LCA and design for environment. Int J Life Cycle Assess 8(3):160–166

    Google Scholar 

  • Landsiedel R, Saling P (2002) Assessment of toxicological risks for life cycle assessment and eco-efficiency analysis. Int J Life Cycle Assess 7(5):261–268

    CAS  Google Scholar 

  • Larsen HF, Olsen SI, Hauschild M, Laurent A (2009) Neptune—new sustainable concepts and processes for optimization and upgrading municipal waster water and sludge treatment/Deliverable 4.2 Methodology for including specific biological effects and pathogen aspects into LCA. Technical University of Denmark (DTU), Lyngby

    Google Scholar 

  • Leske T, Buckley c (2003) Towards the development of a salinity impact category for South African environmental life-cycle assessments: Part 1—a new impact category. Water SA 29(3):289–296

    Google Scholar 

  • Leske T, Buckley C (2004) Towards the development of a salinity impact category for South African life cycle assessments: Part 2– A conceptual multimedia environmental fate and effect model. Water SA 30(2):241–252

    Google Scholar 

  • Lloyd S, Ries R (2007) Characterizing, propagating, and analyzing uncertainty in life cycle assessment—a survey of quantitative approaches. J Ind Ecol 11(1):161–179

    Google Scholar 

  • Lo SC, Ma H, Lo SL (2004) Quantifying and reducing uncertainty in life cycle assessment using the Bayesian Monte Carlo method. Science Total Environ 340(1–3):23–33

    Google Scholar 

  • Luo L, van der Voet E, Huppes G, Udo deHHA (2009) Allocation issues in LCA methodology: a case study of corn stover-based fuel ethanol. Int J Life Cycle Assess 14(6):529–539

    CAS  Google Scholar 

  • Marchand M, Aissani L, Mallard P, Béline F, Réveret J-P (2012) Odour and life cycle assessment (LCA) in waste management—a local assessment proposal. Waste Biomass Valor 4:607-617. doi:10.1007/s12649-012-9173-z

    Google Scholar 

  • Matthiessen P (2000) Is endocrine disruption a significant ecological issue? Ecotoxicology 9(1–2):21–24

    CAS  Google Scholar 

  • Mattila T, Helin T, Antikainen R, Soimakallio S, Pingoud K, Wessman H (2011) Land use in life cycle assessment. Finnish Environment Institute, Helsinki. doi:http://www.ymparisto.fi/download.asp?contentid=130275&lan=en

  • Mattila T, Helin T, Antikainen R (2012) Land use indicators in life cycle assessment. A case study on beer production. Int J Life Cycle Assess 17(3):277–286. doi:10.1007/s11367-011-0353-z

    CAS  Google Scholar 

  • May J, Brennan D (2003) Application of data quality assessment methods to an LCA of electricity generation. Int J Life Cycle Assess 8(4):215–225

    Google Scholar 

  • Meijer A (2007) The significance of indoor air emissions in life cycle assessment of dwellings. International Conference Sustainable Urban Areas, Netherlands

    Google Scholar 

  • Meijer A, Huijbregts MA, Hertwich E, Reijnders L (2006) Including human health damages due to road traffic in life cycle assessment of dwellings. Int J Life Cycle Assess 11(1):64–71

    CAS  Google Scholar 

  • Michelsen O, Cherubini F, Stromman AH (2012) Impact assessment of biodiversity and carbon pools from land use and land use changes in life cycle assessment, exemplified with forestry operations in Norway. J Ind Ecol 16(2):231–242

    Google Scholar 

  • Milà i Canals L (2003) Contribution to LCA methodology for agricultural systems. Site-dependency and soil degradation impact assessment., Universitat Autónoma de Barcelona

    Google Scholar 

  • Milà i Canals L (2007) Land use in LCA—a new subject area and call for papers (editorial). Int J Life Cycle Assess 12(1):1

    Google Scholar 

  • Milà i Canals L, Bauer C, Depestele J, Dubeuil A, Knuchel R, Gaillard G, Michelsen O, Mueller-Wenk R, Rydgren B (2007a) Key elements in a framework for land use impact assessment within LCA. Int J Life Cycle Assess 12(1):5–15

    Google Scholar 

  • Milà i Canals L, Romanya J, Cowell S (2007b) Method for assessing impacts on life support functions (LSF) related to the use od fertile land in LCA. J Clean Prod 15(15):1426–1440

    Google Scholar 

  • Millennium Ecosystem Assessment (2005) Ecosystems and human well-being biodiversity synthesis. World Resources Institute, Washington, DC

    Google Scholar 

  • Müller NC, Nowack B (2008) Exposure modeling of engineered nanoparticles in the environment. Environ Sci Technol 42:4447–4453

    Google Scholar 

  • Müller-Wenk R (2002) Attribution to road traffic of the impact of noise on health. Environmental series no 339 Swiss agency for the environment, forests and landscape (SAEFL), Bern

    Google Scholar 

  • Müller-Wenk R (2004) A method to include in LCA road traffic noise and its health effects. Int J Life Cycle Assess 9(2):76–85

    Google Scholar 

  • Narščius A, Olenin S, Zaiko A, Minchin D (2012) Biological invasion impact assessment system: from idea to implementation. Ecological Informatics 7(1):46–51. doi:10.1016/j.ecoinf.2011.11.003

    Google Scholar 

  • National Research Council (2008) Minerals, critical minerals, and the U.S. Economy. National Research Council, Committee on critical mineral impacts of the U.S. economy, Washington, DC

    Google Scholar 

  • Neugebauer S, Finkbeiner M (2012) The multi-recycling-approach as a new option to deal with end-of-life allocation dilemma. LCA XII—Life cycle thinking … life cycle living, Tacoma

    Google Scholar 

  • Nishioka Y, Levy JI, Norris GA, Wilson AM, Hofstetter P, Spengler JD (2002) Integrating risk assessment and life cycle assessment—a case study of insulation. Risk Anal 22(5):1003–1017

    Google Scholar 

  • Noss R (1990) Indicators for monitoring biodiversity— a hierarchical approach. Conserv Biol 4(4):355–364

    Google Scholar 

  • Notten P, Petrie J (2003) An integrated approach to uncertainty assessment in LCA. In: International workshop on LCI-quality, Karlsruhe, 20–21 October

    Google Scholar 

  • NRMMC (2006) Australian guideline for water recycling: managing health and environmental risks (phase 1). National water quality management strategy 21. Natural Resource Management Ministerial Council, Environment Protection and Heritage Council, Australian Health Ministers Conference, Canberra

    Google Scholar 

  • Núñez M, Civit B, Munoz P, Arena AP, Rieradevall J, Anton A (2010) Assessing potential desertification environmental impact in life cycle assessment. Int J Life Cycle Assess 15(1):67–78

    Google Scholar 

  • Núñez M, Antón A, Muñoz P, Rieradevall J (2013). Inclusion of soil erosion impacts in life cycle assessment on a global scale: application to energy crops in Spain. Int J Life Cycle Assess 18:755–767

    Google Scholar 

  • NYSERDA (2009) Comparison of reported effects and risks to vertebrate wildlife from six electricity generation types in the New York/New England region. Albany, NY

    Google Scholar 

  • OECD (2013) Safety of manufactured nanomaterials. Organisation for Economic Co-operation and Development (OECD). http://www.oecd.org/env/ehs/nanosafety/. Accessed 21 May 2013

  • OED (2013) Oxford dictionairies: “improbable”. http://oxforddictionaries.com/definition/english/improbable?q=improbable+. Accessed 20 Mar 2013

  • Ou X, Zhang X, Chang S (2010) Scenario analysis on alternative fuel/vehicle for China’s future road transport: Life-cycle energy demand and GHG emissions. J Energy Policy 38(8):3943–3956

    Google Scholar 

  • PAS 2050 (2008) Specification for the assessment of the life cycle greenhouse gas emissions of goods and services. BSI publications, London

    Google Scholar 

  • PAS 2050 (2011) Specification for the assessment of the life cycle greenhouse gas emissions of goods and services. BSI publications, London

    Google Scholar 

  • Pehnt M (2006) Dynamic life cycle assessment (LCA) of renewable energy technologies. Renew Energy 31(1):55–71. doi:http://dx.doi.org/10.1016/j.renene.2005.03.002

    Google Scholar 

  • Pfister S, Saner D, Koehler A (2011) The environmental relevance of freshwater consumption in global power production. Int J Life Cycle Assess 16(6):580–591

    Google Scholar 

  • Piemonte V, Gironi F (2011) Land-use change emissions: How green are the bioplastics? Environ Prog Sustain Energy 30(4):685–691. doi:10.1002/ep.10518

    CAS  Google Scholar 

  • Piemonte V, Gironi F (2012) Bioplastics and GHGs saving: the land use change (LUC) emissions issue. Energ Source Part A 34(11):1995–2003. doi:10.1080/15567036.2010.497797

    CAS  Google Scholar 

  • Plevin RJ, O’Hare M, Jones AD, Torn MS, Gibbs HK (2010) Greenhouse gas emissions from biofuels’ indirect land use change are uncertain but may be much greater than previously estimated. Environ Sci Technol 44(21):8015–8021. doi:10.1021/es101946t

    CAS  Google Scholar 

  • Podmore C (2009) Irrigation salinity causes and impacts. Department of Primary Industries. DPI http://www.dpi.nsw.gov.au/__data/assets/pdf_file/0018/310365/Irrigation-salinity-causes-and-impacts.pdf. Accessed 29 May 2013

  • Pope C, Burnett RT, Krewski D, Jerrett M, Shi Y, Calle EE, Thun MJ (2009) Cardiovascular mortality and exposure to airborne fine particulate matter and cigarette smoke—shape of the exposure-response relationship. Circulation 120(11):941–948

    CAS  Google Scholar 

  • Potting J, Preiss P, Seppala J, Struijs J, Wiertz J, Blazek M, Heijungs R, Itsubo N, Masanet E, Nebel B, Nishioka Y, Payet J, Becaert V, Basset-Mens C, Jolliet O (2007) Current practice in LCIA of transboundary impact categories. Report of task force 4 on transboundary impacts. UNEP/SETAC Life Cycle Initiative. Life cycle impact assessment programm

    Google Scholar 

  • Pro Igel (2012) Wildtier Igel. Eine kleine Igelkunde. www.pro-igel.de/merkblaetter/publpdfs/wildtier.pdf. Accessed 8 Feb 2013

    Google Scholar 

  • Rabl A, Benoist A, Dron D, Peuportier B, Spadaro JV, Zoughaib A (2007) How to account for CO2 emissions from biomass in an LCA. Int J Life Cycle Assess 12(5):281

    Google Scholar 

  • Reap J, Bras B, Newcomb PJ, Carmichael C (2003) Improving life cycle assessment by including spatial, dynamic and place-based modeling. Paper no DETC2003/DFM-48140. In: ASME 2003 International design engineering technical conferences and computers and information in engineering conference, Chicago, Illinois, 2–6 September

    Google Scholar 

  • Reap J, Roman F, Duncan S, Bras B (2008a) A survey of unresolved problems in life cycle assessment, Part 1: goal and scope and inventory analysis. Int J Life Cycle Assess 13(4):290–300

    Google Scholar 

  • Reap J, Roman F, Duncan S, Bras B (2008b) A survey of unresolved problems in life cycle assessment, Part 2: impact assessment and interpretation. Int J Life Cycle Assess 13(5):374–388

    Google Scholar 

  • Reimann K, Finkbeiner M, Horvath A, Matsuno Y (2010) Evaluation of environmental life cycle approaches for policy and decision making support in micro and macro level applications. Institute for Environment and Sustainability, Joint Research Centre, European Commission

    Google Scholar 

  • Reinhard J, Zah R (2009) Global environmental consequences of increased biodiesel consumption in Switzerland—consequential life cycle assessment. J Clean Prod 17:46–56

    Google Scholar 

  • Risku-Norja H, Mäenpää I (2007) MFA model to assess economic and environmental consequences of food production and consumption. Ecolog Econ 60(4):700–711. doi:10.1016/j.ecolecon.2006.05.001

    Google Scholar 

  • Rosenbaum RK, Bachmann TM, Gold LS, Huijbregts MAJ, Jolliet O, Juraske R, Koehler A, Larsen HF, MacLeod M, Margni M, McKone TE, Payet J, Schuhmacher M, van de Meent D, Hauschild MZ (2008) USEtox-the UNEP-SETAC toxicity model: recommended characterisation factors for human toxicity and freshwater ecotoxicity in life cycle impact assessment. Int J Life Cycle Assess 13(7):532–546

    CAS  Google Scholar 

  • Rosenbaum R, Huijbregts MJ, Henderson A, Margni M, McKone T, Meent D, Hauschild M, Shaked S, Li D, Gold L, Jolliet O (2011) USEtox human exposure and toxicity factors for comparative assessment of toxic emissions in life cycle analysis: sensitivity to key chemical properties. Int J Life Cycle Assess 16(8):710–727. doi:10.1007/s11367-011-0316-4

    CAS  Google Scholar 

  • Rosenbaum RK, Owsianiak M, Hauschild MZ, Vijver MG, Heijungs R, Peijnenburg WJGM, Golsteijn L, Zelm Rv, Musters G, Hendriks AJ, Huijbregts MAJ, Fantke P, Juraske R, Anton A, Itoiz ES, Kounina A, Humbert S, Jolliet O, Margni M, Sala S, Marinov D, Pennington D (2012) Recommended assessment framework, method and characterisation factors for ecotoxicity and human toxicity: phase 1 (report and model+factors). LC-IMPACT, vol Version 3. Worpackage 2, DTU

    Google Scholar 

  • Rugani B, Panasiuk D, Benetto E (2012) An input–output based framework to evaluate human labour in life cycle assessment. Int J Life Cycle Assess 17(6):795–812. doi:10.1007/s11367-012-0403-1

    Google Scholar 

  • Saad R, Margni M, Koellner T, Wittstock B, Deschenes L (2011) Assessment of land use impacts on soil ecological functions: development of spatially differentiated characterization factors within a Canadian context. Int J Life Cycle Assess 16(3):198–211. doi:10.1007/s11367-011-0258-x

    Google Scholar 

  • Sanchez ST, Woods J, Akhurst M, Brander M, O’Hare M, Dawson TP, Edwards R, Liska AJ, Malpas R (2012) Accounting for indirect land-use change in the life cycle assessment of biofuel supply chains. J R Soc Interface 9(71):1105–1119. doi:10.1098/rsif.2011.0769

    Google Scholar 

  • Schenck RC (2001) Land use and biodiversity indicators for life cycle impact assessment. Int J Life Cycle Assess 6(2):114–117

    Google Scholar 

  • Schettkat R (2009) Analyzing rebound effects. Schumpeter discussion papers, No 2009-002. Schumpeter school of business and economics, University of Wuppertal, Wuppertal

    Google Scholar 

  • Schleisner L (2000) Life cycle assessment of a wind farm and related externalities. Renew Energy 20(3):279–288. doi:http://dx.doi.org/10.1016/S0960-1481(99)00123-8

    CAS  Google Scholar 

  • Schmidt JH, Weidema BP (2008) Shift in the marginal supply of vegetable oil. Int J Life Cycle Assess 13(3):235–239

    Google Scholar 

  • Schneider L, Berger M, Finkbeiner M (2011a) The anthropogenic stock extended abiotic depletion potential (AADP) as a new parameterisation to model the depletion of abiotic resources. Int J Life Cycle Assess 16(9):929–936

    Google Scholar 

  • Schneider L, Berger M, Finkbeiner M (2011b) Economic material availability as a new area of protection for life cycle sustainability assessment. In: SETAC Europe 21st Annual Meeting, 15–19 May, Milano

    Google Scholar 

  • Schneider L, Berger M, Finkeiner M (2012) Measuring material scarcity—limited availability despite sufficient reserves. Paper presented at the European Commission Joint Research Centre Workshop: Security of supply and scarcity of raw materials: a methodological framework for supply chain sustainability assessment, November 13–14, Ranco

    Google Scholar 

  • Schneider L, Berger M, Schüler-Hainsch E, Knöfel S, Ruhland K, Mosig J, Bach V, Finkbeiner M (2013) The economic resource scarcity potential (ESP) for evaluating resource use based on life cycle assessment. Int J Life Cycle Assess, published online, DOI 10.1007/s11367-013-0666-1

    Google Scholar 

  • Seager TP, Linkov I (2008) Coupling multicriteria decision analysis and life cycle assessment for nanomaterials. J Ind Ecol 12(3):282–285. doi:10.1111/j.1530-9290.2008.00048.x

    Google Scholar 

  • Shiklomanov IA (2003) World water resources at the beginning of the 21st century. International hydrology series. Cambridge University Press, Cambridge

    Google Scholar 

  • Sioutas C, Delfino RJ, Singh M (2005) Exposure assessment for atmospheric ultrafine particles (UFPs) and implications in epidemiologic research. Environ Health Perspectives 113(8):947–955

    Google Scholar 

  • Smallwood KS, Thelander CG, Morrison ML, Rugge LM (2007) Burrowing owl mortality in the Altamont Pass Wind Resource Area. J Wildlife Management 71(5):1513–1524. doi:10.2193/2006-307

    Google Scholar 

  • Som C, Berges M, Chaudhry Q, Dusinska M, Fernandes TF, Olsen SI, Nowack B (2010) The importance of life cycle concepts for the development of safe nanoproducts. Toxicology 269(2–3):160–169. doi:10.1016/j.tox.2009.12.012

    CAS  Google Scholar 

  • Sonnemann G, Schuhmacher M, Castells F (2003) Uncertainty assessment by a Monte Carlo simulation in a life cycle inventory of electricity produced by a waste incinerator. J Clean Prod 11(3):279–292

    Google Scholar 

  • Souza D, Flynn D, de Clerck F, Rosenbaum R, de Melo LH, Koellner T (2013) Land use impacts on biodiversity in LCA: proposal of characterization factors based on functional diversity. Int J Life Cycle Assess 18:1231–1242. doi: 10.1007/s11367-013-0578-0

    Google Scholar 

  • Spadaro JV (2004) RiskPoll: a model for estimating public health and environmental impacts of air pollution. Center for energy efficiency and systems, http://www.ces.mines-paristech.fr/english/themes/impact/software/RiskPoll%20Overview.pdf. Accessed 28 May 2013

  • Spielmann M, Haan P, Scholz RW (2008) Environmental rebound effects of high-speed transport technologies: a case study of climate change rebound effects of a future underground maglev train system. J Clean Prod 16(13):1388–1398

    Google Scholar 

  • Steen B (1999) A systematic approach to environmental priority strategies in product development (EPS). Version 2000—Models and data of the default method. CPM report 1999:5. Centre for Environmental Assessment of Products and Material Systems, Chalmers University of Technology, Environmental Systems Analysis

    Google Scholar 

  • Strømman AH, Hertwich E (2004) Hybrid life cycle assessment of large scale hydrogen production facilities. Working papers no3/2004. Norwegian University of Science and Technology (NTNU), Industrial Ecology Programme (IndEcol), Trondheim

    Google Scholar 

  • Suh S, Lenzen M, Treloar GJ, Hondo H, Horvath A, Huppes G, Jolliet O, Klann U, Krewitt W, Moriguchi Y, Munksgaard J, Norris GA (2004) Critical review system boundary selection in life-cycle inventories using hybrid approaches. Environ Sci Technol 38(3):657–664

    CAS  Google Scholar 

  • Suh S, Nakamura S (2007) Editorials five years in the area of input-output and hybrid LCA. Int J Life Cycle Assess 12(6):351–352

    Google Scholar 

  • Swarr T, Hunkeler D, Klöpffer W, Pesonen HL, Ciroth A, Brent AC, Pagan R (2011) Environmental life cycle costing—a code of practice. Int J Life Cycle Assess 16:389–391

    Google Scholar 

  • Thomassen MA, Dalgaard R, Heijungs R, de Boer I (2008) Attributional and consequential LCA of milk production. Int J Life Cycle Assess 13(4):339–349

    CAS  Google Scholar 

  • Thomassen M, Dolman M, van Calker KJ, de Boer J (2009) Relating life cycle assessment indicators to gross value added for Dutch dairy farms. Ecolog Econ 68(8–9):2278–2284

    Google Scholar 

  • Tukker A (2002) Risk analysis, life cycle assessment—The common challenge of dealing with the precautionary frame (based on the toxicity controversy in Sweden and The Netherlands). Risk Anal 22(5):821–832

    Google Scholar 

  • Udo de Haes H A (1993) Applications of life cycle assessment: expectations, drawbacks and perspectives. J Clean Prod 1(3–4):131–137

    Google Scholar 

  • UNEP/SETAC (2009) Guidelines for social life cycle assessment of products. Druk in deweer, Belgium

    Google Scholar 

  • UNEP/SETAC (2011a) Global guidance principles for life cycle assessment databases. A basis for greener processes and products. UNEP/SETAC Life Cycle Initiative, Paris

    Google Scholar 

  • UNEP/SETAC (2011b) Towards a life cycle sustainability—making informed choices on products. Druk in de weer, Belgium

    Google Scholar 

  • UNEP—United Nations Environment Programme (2010a) Assessing the environmental impacts of consumption and production; priority products and materials. A report of the working group on the environmental impacts of products and materials to the international panel for sustainable resource management

    Google Scholar 

  • UNEP—United Nations Environment Programme (2010b) Connecting the dots—Biodiversity, adaptation, food security and livelihoods

    Google Scholar 

  • UN—United Nations (1992) Convention on biological diversity. Secretariat of the Convention on biological diversity, http://www.cbd.int/doc/legal/cbd-en.pdf. Accessed 28 May

  • UN—United Nations (2011) Convention to combat desertification: a visual synthesis. UNCCD, http://www.unccd.int/Lists/SiteDocumentLibrary/Publications/Desertification-EN.pdf. Accessed 29 May 2013

  • US EPA (2012) Endocrine disrupter screening programme (EDSP). United States Environmental Protection Agency

    Google Scholar 

  • US Green Building Council (2008) Getting LCA into LEED: a backgrounder on the first LCA pilot credit for LEED

    Google Scholar 

  • van der Voet E, de Bruyn S, Tukker A (2009) Environmental impact of the use of natural resources and products. Leiden

    Google Scholar 

  • van der Voet E, Lifset RJ, Luo L (2010) Life-cycle assessment of biofuels, convergence and divergence. Biofuels 1(3):435–449

    Google Scholar 

  • van Kempen EEMM, Kruize H, Boshuizen HC, Ameling CB, Staatsen BAM, de Hollander AEM (2002) The association between noise exposure and blood pressure and ischemic heart disease: a meta-analysis. Environ Health Perspectives 110(3):307–317

    Google Scholar 

  • van Zelm R, Huijbregts MAJ, den Hollander HA, van Jaarsveld HA, Sauter FJ, Struijs J, van Wijnen HJ, van deMD (2008) European characterization factors for human health damage of PM10 and ozone in life cycle impact assessment. Atmos Environ 42(3):441–453

    CAS  Google Scholar 

  • Vandenberg LN, Colborn T, Hayes TB, Heindel JJ, David R. Jacobs, Lee D-H, Shioda T, Soto AM, Saal FSv, Welshons WV, Zoeller RT, Myers JP (2012) Hormones and endocrine-disrupting chemicals: low-dose effects and nonmonotonic dose responses. Endocr Rev 33(3):378–455

    CAS  Google Scholar 

  • Varun, Bhat IK, Prakash R (2009) LCA of renewable energy for electricity generation systems—a review. Renew Sust Energy Rev 13(5):1067–1073. doi:http://dx.doi.org/10.1016/j.rser.2008.08.004

  • VDI (2013) http://www.vdi.de/technik/fachthemen/energie-und-umwelt/fachbereiche/ressourcenmanagement/themen/richtlinienwerk-zur-ressourceneffizienz-zre/. Accessed 7 January 2013

  • Vogtländer JG, Lindeijer E, Witte JPM, Hendriks C (2004) Characterizing the change of land use based on flora: application for EIA and LCA. J Clean Prod 12(1):47–57

    Google Scholar 

  • Watson RT, Rosswall T, Steiner A, Töpfer K, Arico S, Bridgewater P (2005) Ecosystems and human well-being: biodiversity sysnthesis. In: Watson RT, Rosswall T, Steiner A, Töpfer K, Arico S, Bridgewater P (eds) Ecosystems. World Resources Institute, Washington. doi:10.1196/annals.1439.003

    Google Scholar 

  • Watts BD (2010) Wind and waterbirds—Establishing sustainable mortality limits within the Atlantic flyway. Williamsburg

    Google Scholar 

  • Weidema BP, Wesnæs M (1997) Data quality management for life cycle inventories—an example of using data quality indicators. J Clean Prod 4(3–1):167–174

    Google Scholar 

  • Weidema BP, Wesnaes M, Hermansen J, Kristensen T, Halberg N (2008) Environmental improvement potentials of meat and dairy products (EUR 23491 EN). European Commission, Joint research centre (JRC), Institute for prospective technological studies (IPTS), Sevilla

    Google Scholar 

  • Werner F, Richter K (2000) Economic allocation in LCA—a case study about aluminumg window frames. Int J Life Cycle Assess 5(2):79–83

    Google Scholar 

  • Wischmeier W, Smith D (1978) Predicting rainfall erosion losses—a guide to conservation planning. EPA, http://topsoil.nserl.purdue.edu/usle/AH_537.pdf. Accessed 29 May 2013

  • Wong CS, Green DR, Cretney WJ (1974) Quantitative tar and plastic waste distributions in the Pacific ocean. Nature 247(4):30–32

    CAS  Google Scholar 

  • Wötzel K (2007) Ökobilanzierung der Altfahrzeugverwertung am Fallbeispiel eines Mittelklassefahrzeuges und Entwicklung einer Allokationsmethodik. Technische Universität Braunschweig, Braunschweig

    Google Scholar 

  • WRI/WBCSD (2004) The greenhouse gas protocol—a corporate accounting and reporting standard. USA

    Google Scholar 

  • Yee KF, Tan KT, Abdullah AZ, Lee KT (2009) Life cycle assessment of palm biodiesel: revealing facts and benefits for sustainability. Appl Energy 86(Supplement 1):189–196

    Google Scholar 

  • Zhai P, Williams ED (2010) Dynamic hybrid life cycle assessment of energy and carbon of multicrystalline silicon photovoltaic systems. Environ Sci Technol 44(20):7950–7955

    CAS  Google Scholar 

Download references

Acknowledgements

We appreciate the support of the German Research Foundation DFG for funding some of the research presented here as part of the Collaborative Research Center ‘Sustainable Manufacturing’ (SFB 1026).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthias Finkbeiner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Finkbeiner, M. et al. (2014). Challenges in Life Cycle Assessment: An Overview of Current Gaps and Research Needs. In: Klöpffer, W. (eds) Background and Future Prospects in Life Cycle Assessment. LCA Compendium – The Complete World of Life Cycle Assessment. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-8697-3_7

Download citation

Publish with us

Policies and ethics