Skip to main content

Estimation of Canopy Cover, Gap Fraction and Leaf Area Index with Airborne Laser Scanning

  • Chapter
  • First Online:
Forestry Applications of Airborne Laser Scanning

Part of the book series: Managing Forest Ecosystems ((MAFE,volume 27))

Abstract

Forest canopy cover and gap fraction are commonly used metrics in forest ecology. Airborne laser scanning is capable of measuring both very accurately, but slightly different estimation methods should be used as these metrics are defined differently. In canopy cover estimation the proportion of vertical gaps between the crowns is needed for a specific area. Canopy gap fraction includes all gaps observed from a single point with some angular view range. Canopy cover can be estimated with high accuracy as the fraction of first echoes above a specified height threshold, because only the large gaps are considered. In gap fraction estimation also last echoes should be used so that the effect of the smaller gaps within the crowns is considered. Leaf area index can be estimated from the gap fraction using a logarithmic model with a single coefficient representing leaf orientation. However, sensor effects have a strong influence on the estimates, and therefore validation with high-quality field data is recommended.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alexander C, Moeslund JE, Bøcher PK, Arge L, Svenning JC (2013) Airborne laser scanner (LiDAR) proxies for understory light conditions. Remote Sens Environ 134:152–161

    Article  Google Scholar 

  • Anderson MC (1964) Studies of the woodland light climate: I. The photographic computation of light conditions. J Ecol 52:27–41

    Article  Google Scholar 

  • Anderson RC, Loucks OL, Swain AM (1969) Herbaceous response to canopy cover, light intensity, and throughfall precipitation in coniferous forests. Ecology 50:255–263

    Article  Google Scholar 

  • Bater C, Wulder M, Coops N, Nelson R, Hilker T, Næsset E (2011) Stability of sample-based scanning-LiDAR-derived vegetation metrics for forest monitoring. IEEE Trans Geosci Remote Sens 49:2385–2392

    Article  Google Scholar 

  • Chen JM (1996) Optically-based methods for measuring seasonal variation of leaf area index in boreal conifer stands. Agric For Meteorol 80:135–163

    Article  Google Scholar 

  • Chen JM, Black TA (1992) Defining leaf area index for non-flat leaves. Plant Cell Environ 15:421–429

    Article  Google Scholar 

  • Chen JM, Govind A, Sonnentag O, Zhang Y, Barr A, Amiro B (2006) Leaf area index measurements at Fluxnet-Canada forest sites. Agric For Meteorol 140:257–268

    Article  Google Scholar 

  • Danson FM, Armitage RP, Gaulton R, Gunawan OT, Ramirez FA (2012) Field trials of a full-waveform terrestrial laser scanner to measure forest canopy dynamics. Abstract. In: Proceedings of Silvilaser 2012, Vancouver, Canada

    Google Scholar 

  • Eysn L, Hollaus M, Schadauer K, Pfeifer N (2012) Forest delineation based on airborne LIDAR data. Remote Sens 4:762–783

    Article  Google Scholar 

  • FAO (2004) Global forest resources assessment update 2005. Terms and definitions (Final version). Forest resources assessment programme working paper 83/E, Rome, Italy

    Google Scholar 

  • Gatziolis D (2012) Comparison of lidar- and photointerpretation-based estimates of canopy cover. In: McWilliams W, Roesch FA (eds) Monitoring across borders: 2010 joint meeting of the Forest Inventory and Analysis (FIA) symposium and the southern mensurationists. e-Gen. Technical report SRS-157. U.S. Department of Agriculture, Forest Service, Southern Research Station, Asheville, NC, pp 231–235

    Google Scholar 

  • GOFC-GOLD (2009) Reducing greenhouse gas emissions from deforestation and degradation in developing countries: a sourcebook of methods and procedures for monitoring, measuring and reporting, GOFC-GOLD Report version COP14-2, GOFC-GOLD Project Office, Natural Resources Canada, Alberta, Canada

    Google Scholar 

  • Gregoire T, Valentine H (2007) Sampling strategies for natural resources and the environment, vol 3, Applied environmental statistics. Chapman & Hall/CRC, Boca Raton, 474 p

    Google Scholar 

  • Gschwantner T, Schadauer K, Vidal C, Lanz A, Tomppo E, di Cosmo L, Robert N, Duursma DE, Lawrence M (2009) Common tree definitions for national forest inventories in Europe. Silva Fenn 43:303–321

    Article  Google Scholar 

  • Holmgren J, Nilsson M, Olsson H (2003) Simulating the effects of lidar scanning angle for estimation of mean tree height and canopy closure. Can J Remote Sens 29:623–632

    Article  Google Scholar 

  • Holmgren J, Johansson F, Olofsson K, Olsson H, Glimskär A (2008) Estimation of crown coverage using airborne laser scanner. In: Hill RA, Rosette J, Suárez J (eds) Proceedings of SilviLaser 2008: 8th international conference on LiDAR applications in forest assessment and inventory, 17–19 September. Heriot-Watt University, Edinburgh, pp 50–57

    Google Scholar 

  • Hopkinson C (2007) The influence of flying altitude, beam divergence, and pulse repetition frequency on laser pulse return intensity and canopy frequency distribution. Can J Remote Sens 33:312–324

    Article  Google Scholar 

  • Hopkinson C, Chasmer L (2009) Testing LiDAR models of fractional cover across multiple forest ecotones. Remote Sens Environ 113:275–288

    Article  Google Scholar 

  • Hyyppä J, Kelle O, Lehikoinen M, Inkinen M (2001) A segmentation-based method to retrieve stem volume estimates from 3-dimensional tree height models produced by laser scanner. IEEE Trans Geosci Remote Sens 39:969–975

    Article  Google Scholar 

  • Jennings SB, Brown ND, Sheil D (1999) Assessing forest canopies and understorey illumination: canopy closure, canopy cover and other measures. Forestry 72:59–74

    Article  Google Scholar 

  • Jensen JJ, Humes KS, Vierling LA, Hudak AT (2008) Discrete return lidar-based prediction of leaf area index in two conifer forests. Remote Sens Environ 112:3947–3957

    Article  Google Scholar 

  • Jonckheere I, Nackaerts K, Muys B, Coppin P (2005) Assessment of automatic gap fraction estimation of forests from digital hemispherical photography. Agric For Meteorol 132:96–114

    Article  Google Scholar 

  • Korhonen L (2011) Estimation of boreal forest canopy cover with ground measurements, statistical models and remote sensing. Dissertationes Forestales, 56 p

    Google Scholar 

  • Korhonen L, Heikkinen J (2009) Automated analysis of in situ canopy images for the estimation of forest canopy cover. For Sci 55:323–334

    Google Scholar 

  • Korhonen L, Korhonen KT, Rautiainen M, Stenberg P (2006) Estimation of forest canopy cover: a comparison of field measurement techniques. Silva Fenn 40:577–588

    Google Scholar 

  • Korhonen L, Kaartinen H, Kukko A, Solberg S, Astrup R (2010) Estimating vertical canopy cover with terrestrial and airborne laser scanning. In: Proceedings of Silvilaser 2010, 14–17 September, Freiburg, Germany

    Google Scholar 

  • Korhonen L, Korpela I, Heiskanen J, Maltamo M (2011) Airborne discrete-return LiDAR data in the estimation of vertical canopy cover, angular canopy closure and leaf area index. Remote Sens Environ 115:1065–1080

    Article  Google Scholar 

  • Korpela I, Ørka HO, Heikkinen V, Tokola T, Hyyppä J (2010) Range- and AGC normalization of LIDAR intensity data for vegetation classification. ISPRS J Photogramm Remote Sens 65:369–379

    Article  Google Scholar 

  • Korpela I, Hovi A, Morsdorf F (2012) Understory trees in airborne LiDAR data – selective mapping due to transmission losses and echo-triggering mechanisms. Remote Sens Environ 119:92–104

    Article  Google Scholar 

  • Korpela I, Hovi A, Korhonen L (2013) Backscattering of individual LiDAR pulses from forest canopies explained by photogrammetrically derived vegetation structure. ISPRS J Photogramm Remote Sens 83:81–93

    Article  Google Scholar 

  • Lang ARG (1987) Simplified estimate of leaf area index from transmittance of the sun’s beam. Agric For Meteorol 41:179–186

    Article  Google Scholar 

  • Lang M, Kurvits V (2007) Restoration of tree crown shape for canopy cover estimation. For Stud 46:23–34

    Google Scholar 

  • Lang M, Kuusk A, Mõttus M, Rautiainen M, Nilson T (2010) Canopy gap fraction estimation from digital hemispherical images using sky radiance models and a linear conversion method. Agric For Meteorol 150:20–29

    Article  Google Scholar 

  • Lee AC, Lucas RM (2007) A LiDAR-derived canopy density model for tree stem and crown mapping in Australian forests. Remote Sens Environ 111:493–518

    Article  Google Scholar 

  • LI-COR Inc (1992) LAI-2000 plant canopy analyzer instruction/operating manual

    Google Scholar 

  • Lovell JJ, Jupp DLP, Culvenor DS, Coops NC (2003) Using airborne and ground-based ranging lidar to measure canopy structure in Australian forests. Can J Remote Sens 29:607–622

    Article  Google Scholar 

  • Majasalmi T, Rautiainen M, Stenberg P, Rita H (2012) Optimizing the sampling scheme for LAI-2000 measurements in a boreal forest. Agric For Meteorol 154–155:38–43

    Article  Google Scholar 

  • Majasalmi T, Rautiainen M, Stenberg P, Lukes P (2013) An assessment of ground reference methods for estimating LAI of boreal forests. For Ecol Manag 292:10–18

    Article  Google Scholar 

  • McLane AJ, McDermid GJ, Wulder MA (2009) Processing discrete-return profiling lidar data to estimate canopy closure for large-area forest mapping and management. Can J Remote Sens 35:217–229

    Article  Google Scholar 

  • Miller JB (1967) A formula for average foliage density. Aust J Bot 15:141–144

    Article  Google Scholar 

  • Morsdorf F, Kötz B, Meier E, Itten KI, Allgöwer B (2006) Estimation of LAI and fractional cover from small footprint airborne laser scanning data based on gap fraction. Remote Sens Environ 104:50–61

    Article  Google Scholar 

  • Næsset E (2004) Effects of different flying altitudes on biophysical stand properties estimated from canopy height and density measured with a small-footprint airborne scanning laser. Remote Sens Environ 91:243–255

    Article  Google Scholar 

  • Næsset E (2009) Effects of different sensors, flying altitudes, and pulse repetition frequencies on forest canopy metrics and biophysical stand properties derived from small-footprint airborne laser data. Remote Sens Environ 113:148–159

    Article  Google Scholar 

  • Newnham G, Goodwin N, Armston J, Muir J, Culvenor D (2012) Comparing time-of-flight and phase-shift terrestrial laser scanners for characterising topography and vegetation density in a forest environment. In: Proceedings of Silvilaser 2012, Vancouver, Canada. 6 p

    Google Scholar 

  • Ozanne CMP, Anhuf D, Boulter SL, Keller M, Kitching RL, Körner C, Meinzer FC, Mitchell AW, Nakashizuka T, Silva Dias PL, Stork NE, Wright SJ, Yoshimura M (2003) Biodiversity meets the atmosphere: a global view of forest canopies. Science 301:183–186

    Article  CAS  PubMed  Google Scholar 

  • Peduzzi A, Wynne RH, Thomas VA, Nelson RF, Reis JJ, Sanford M (2012) Combined use of airborne lidar and DBInSAR data to estimate LAI in temperate mixed forests. Remote Sens 4:1758–1780

    Article  Google Scholar 

  • Pisek J, Lang M, Nilson T, Korhonen L, Karu H (2011) Comparison of methods for measuring gap size distribution and canopy nonrandomness at Järvselja RAMI (RAdiation transfer Model Intercomparison) test sites. Agric For Meteorol 151:365–377

    Article  Google Scholar 

  • Pueschel P, Buddenbaum H, Hill J (2012) An efficient approach to standardizing the processing of hemispherical images for the estimation of forest structural attributes. Agric For Meteorol 160:1–13

    Article  Google Scholar 

  • Rautiainen M, Stenberg P, Nilson T (2005) Estimating canopy cover in Scots pine stands. Silva Fenn 39:137–142

    Google Scholar 

  • Riaño D, Valladares F, Condés S, Chuvieco E (2004) Estimation of leaf area index and covered ground from airborne laser scanner (Lidar) in two contrasting forests. Agric For Meteorol 124:269–275

    Article  Google Scholar 

  • Richardson J, Moskal LM, Kim S (2009) Modeling approaches to estimate effective leaf area index from aerial discrete-return LiDAR. Agric For Meteorol 149:1152–1160

    Article  Google Scholar 

  • Running S, Coughlan JC (1988) A general model of forest ecosystem processes for regional applications: 1. Hydrologic balance, canopy gas exchange and primary production processes. Ecol Model 42:125–154

    Article  CAS  Google Scholar 

  • Ryu Y, Nilson T, Kobayashi H, Sonnentag O, Law BE, Baldocchi DD (2010) On the correct estimation of effective leaf area index: does it reveal information on clumping effects? Agric For Meteorol 150:463–472

    Article  Google Scholar 

  • Sarvas R (1953) Measurement of the crown closure of the stand. Commun Inst For Fenn 41(6): 1–13

    Google Scholar 

  • Smith AMS, Falkowski MJ, Hudak AT, Evans JS, Robinson AP, Steele CM (2009) A cross-comparison of field, spectral, and lidar estimates of forest canopy cover. Can J Remote Sens 35:447–459

    Article  Google Scholar 

  • Solberg S (2010) Mapping gap fraction, LAI and defoliation using various ALS penetration metrics. Int J Remote Sens 31:1227–1244

    Article  Google Scholar 

  • Solberg S, Næsset E, Hanssen KH, Christiansen E (2006) Mapping defoliation during a severe insect attack on Scots pine using airborne laser scanning. Remote Sens Environ 102:364–376

    Article  Google Scholar 

  • Solberg S, Brunner A, Hanssen KH, Lange H, Næsset E, Rautiainen M, Stenberg P (2009) Mapping LAI in a Norway spruce forest using laser scanning. Remote Sens Environ 113:2317–2327

    Article  Google Scholar 

  • Solberg S, Næsset E, Lange H (2010) Comparing canopy penetration of repeated ALS acquisitions. In: Proceedings of Silvilaser 2010, Freiburg, Germany

    Google Scholar 

  • Stancioiu PT, O’Hara KL (2006) Regeneration growth in different light environments of mixed species, multiaged, mountainous forests of Romania. Eur J For Res 125:151–162

    Article  Google Scholar 

  • Stenberg P (1996) Correcting LAI-2000 estimates for the clumping of needles in shoots of conifers. Agric For Meteorol 79:1–8

    Article  Google Scholar 

  • Turner DP, Acker SA, Means JE, Garman SL (2000) Assessing alternative allometric algorithms for estimating leaf area of Douglas-fir trees and stands. For Ecol Manag 126:61–76

    Article  Google Scholar 

  • Turner DP, Ollinger SV, Kimball JS (2004) Integrating remote sensing and ecosystem process models for landscape- to regional-scale analysis of the carbon cycle. Bioscience 54:573–584

    Article  Google Scholar 

  • UNFCCC (2003) The second report on the adequacy of the global observing systems for climate in support of the UNFCCC, GCOS-82, WMO/TD No. 1143, Geneva, Switzerland.

    Google Scholar 

  • Wagner W (2010) Radiometric calibration of small-footprint full-waveform airborne laser scanner measurements: basic physical concepts. ISPRS J Photogramm Remote Sens 65:505–513

    Article  Google Scholar 

  • Weiss M, Baret F, Smith GJ, Jonckheere I, Coppin P (2004) Review of methods for in situ leaf area index (LAI) determination. Part II. Estimation of LAI, errors and sampling. Agric For Meteorol 121:37–53

    Article  Google Scholar 

  • Zhang Y, Chen JM, Miller JR (2005) Determining digital hemispherical photograph exposure for leaf area index estimation. Agric For Meteorol 133:166–181

    Article  Google Scholar 

  • Zhao K, Popescu S (2009) Lidar-based mapping of leaf area index and its use for validating GLOBCARBON satellite LAI product in a temperate forest of the southern USA. Remote Sens Environ 113:1628–1645

    Article  Google Scholar 

  • Zhao F, Yang X, Schull MA, Román-Colón MO, Yaoa T, Wang Z, Zhang Q, Jupp DLB, Lovell JL, Culvenor DS, Newnham GJ, Richardson AD, Ni-Meister W, Schaaf CL, Woodcock CE, Strahler AH (2011) Measuring effective leaf area index, foliage profile, and stand height in New England forest stands using a full-waveform ground-based lidar. Remote Sens Environ 115:2954–2964

    Article  Google Scholar 

Download references

Acknowledgements

This study was supported by the strategic funding of the University of Eastern Finland. Ilkka Korpela provided the data for Table 20.1. We are thankful to Valerie Thomas, Svein Solberg, and Erik Næsset for their useful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lauri Korhonen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Korhonen, L., Morsdorf, F. (2014). Estimation of Canopy Cover, Gap Fraction and Leaf Area Index with Airborne Laser Scanning. In: Maltamo, M., Næsset, E., Vauhkonen, J. (eds) Forestry Applications of Airborne Laser Scanning. Managing Forest Ecosystems, vol 27. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-8663-8_20

Download citation

Publish with us

Policies and ethics