Skip to main content

Viticulture and Wine Science

  • Chapter
  • First Online:
Horticulture: Plants for People and Places, Volume 1

Abstract

The grape and wine industry is commercially attractive because it includes a significant value adding chain. Its structure, size and competitiveness however make it a complex industry. The skills required to produce wine usually distinguish between those associated with the production of the fruit and those associated with processing it. This chapter first looks at the history of wine as well as the global wine industry. The basic botany of grapevines is then reviewed and the more important aspects of viticulture and vineyard management are explored. The production of wine is presented before exploring the microbiological and chemical nature of this agro transformation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alexandre H, Costello P, Remize F, Guzzo J, Guilloux-Benatier M (2004) Saccharomyces cerevisiae-Oenococcus oeni interactions in wine: current knowledge and perspectives. Intl J Food Microbiology 93:141–154

    CAS  Google Scholar 

  • Allen RG, Pereira LS, Raes D, Smith M (1998) Crop evapotranspiration—Guidelines for computing crop water requirements—FAO Irrigation and drainage paper 56. FAO—Food and Agriculture Organization of the United Nations, Rome

    Google Scholar 

  • Anconelli S, Battilani A (2000) Use of leaf temperature to evaluate grapevine (Vitis vinifera) yield and quality response to irrigation. In: Ferreira MI, Jones HG (eds) 3rd International Symposium on Irrigation of Horticultural Crops. ISHS, Lisbon

    Google Scholar 

  • ASCE (2002) The ASCE standardized reference evapotranspiration equation

    Google Scholar 

  • Barata A, Malfeito-Ferreira M, Loureiro V (2012) The microbial ecology of wine grape berries. Intl J Food Microbiol 153(3):243–259. doi:http://dx.doi.org/10.1016/j.ijfoodmicro.2011.11.025

    CAS  Google Scholar 

  • Bartowsky EJ (2009) Bacterial spoilage of wine and approaches to minimize it. Lett Appl Microbiol 48(2):149–156. doi:10.1111/j.1472–765X.2008.02505.x

    CAS  PubMed  Google Scholar 

  • Bauer K (2002) Weinbau, 7th edn. Österreichischer Agrarverlag, Leopoldsdorf

    Google Scholar 

  • Bauer R, Dicks LMT (2004) Control of malolactic fermentation in wine. A review. South Afr J Chem 25(2):74–88

    CAS  Google Scholar 

  • Beckingham C, Bright J, Creecy H, Moulds G, Quirk L, Somers A (2004) Irrigating grapevines with limited water supply. NSW Agriculture Publication, Orange

    Google Scholar 

  • Bell J-J, Henschke P (2005) Implication of nitrogen nutrition for grapes, fermentation and wine. Aust J Grape Wine Res 11:242–295

    CAS  Google Scholar 

  • Bennett JP, Jarvis PG, Creasy GL, Trought MCT (2005) Influence of defoliation on overwintering carbohydrate reserves, return bloom, and yield of mature Chardonnay grapevines. Am J Enol Vitic 56:386–393

    CAS  Google Scholar 

  • Berkowitz M (1996) World’s Earliest Wine. Archaeology 49(5). Retrieved 25 Feb 2014. http://archive.archaeology.org/9609/newsbriefs/wine.html

    Google Scholar 

  • Bindi M, Bellesi S, Orlandini S, Fibbi L, Moriondo M, Sinclair T (2005) Influence of water deficit stress on leaf area development and transpiration of Sangiovese grapevines grown in pots. Am J Enol Vitic 56(1):68–72

    Google Scholar 

  • Bindon K, Varela C, Kennedy J, Holt H, Herderich M (2013) Relationships between harvest time and wine composition in Vitis vinifera L. cv. Cabernet Sauvignon 1. Grape and wine chemistry. Food Chem 138(2–3):1696–1705. doi:10.1016/j.foodchem.2012.09.146

    CAS  PubMed  Google Scholar 

  • Blanke MM, Leyhe A (1987) Stomatal activity of the grape berry cv riesling, muller-thurgau and ehrenfelser. J Plant Physiol 127(5):451–460

    Google Scholar 

  • Boss PK, Thomas MR (2002) Association of dwarfism and floral induction with a grape ‘green revolution’ mutation. Nature 416:847–850

    CAS  PubMed  Google Scholar 

  • Burt CM, Mutziger A, Howes DJ, Solomon KH (2002) ITRC Report R 02–001. San Luis Obispo

    Google Scholar 

  • Buttrose M, Hale C, Kliewer WM (1971) Effect of temperature on the composition of‘Cabernet Sauvignon’berries. Am J Enol Vitic 22(2):71–75

    CAS  Google Scholar 

  • Buttrose MS (1969) Fruitfullness in grapevines: effects of light intensity and temperature. Bot Gaz 130:166–173

    Google Scholar 

  • Candolfi-Vasconcelos MC, Koblet W (1990) Yield, fruit quality, bud fertility and starch reserves of the wood as a function of leaf removal in Vitis vinifera—evidence of compensation and stress recovering. Vitis 29:199–221

    Google Scholar 

  • Cacho J, Castells, JE, Esteban A, Laguna, B, Sagrista N (1995) Iron, copper, and manganese influence on wine oxidation. Am J Enol and Vitic 46:380–384

    Google Scholar 

  • Capucho I, San Romão MV (1994) Effect of ethanol and fatty acids on malolactic activity ofLeuconostoc oenos. Appl Microbiol Biotechnol 42(2–3):391–395. doi:10.1007/BF00902747

    CAS  Google Scholar 

  • Carbonneau A (1976) Analyse de la croissance des feuilles du sarment de vigne: estimation de sa surface foliaire par echantillonage. Connaissance vigne vin 10:141–159

    Google Scholar 

  • Carbonneau A (2002) Gestion de l'eau dans le vignoble: theorie et pratique. Le Progres Agricole et Viticole 119(21): 455–467

    Google Scholar 

  • Carbonneau A (2004a) Le raisonement de l’adaptation de la conduite du vignoble aux facteur climatiques. Compte rendu technique Mondiaviti 2004, Bordeaux, pp 109–126

    Google Scholar 

  • Carbonneau A (2004b) Qualite potentielle du raisin: base d’un modele pratique d’evaluation. J Intl des Sci de la Vigne et du Vin 38(1):54–58

    Google Scholar 

  • Carbonneau A, Deloire A, Costanza P (2004) Le potentiel hydrique foliaire: sens des differentes modalites de mesure. J Intl des Sci de la Vigne et du Vin 38(1):15–19

    Google Scholar 

  • Carbonneau A, Deloire A, Jaillard B (2007) La vigne: Physiologie, terroir, culture. Éditions Dunod, New York

    Google Scholar 

  • Chervin C, El-Kereamy A, Roustan JP, Latche A, Lamon J, Bouzayen M (2004) Ethylene seems required for the berry development and ripening in grape, a non-climacteric fruit. Plant Sci 167(6):1301–1305. doi:10.1016/j.plantsci.2004.06.026

    CAS  Google Scholar 

  • Chone X (2001) Contribution a l’etude des terroirs de Bordeaux: Etude des deficits hydriques moderes, de l’alimentation en azote et leurs effets sur le potentiel aromatique des raisins de Vitis vinifera L. cv Sauvignon Blanc. Doctoral Thesis. Universite Victor Segalen Bordeaux 2

    Google Scholar 

  • Chone X, Treogoat O, Van Leewen C, Dubourdieu D (2000) Vine water deficit: among the 3 applications of pressure chamber, stem water potential is the most sensitive indicator. J Intl des Sciencesde la Vigne et du Vin 34(4):169–176

    Google Scholar 

  • Chone X, Van Leewen C, Dubourdieu D, Gaudillere JP (2001) Stem water potential is a sensitive indicator of grapevine water status. Ann Bot (Lond) 87:477–483

    Google Scholar 

  • Cifre J, Bota J, Escalona J, Medrano H, Flexas J (2005) Physiological tools for irrigation scheduling in grapevine (Vitis vinifera L.). An open gate to improve water-use efficiency? Agric, Ecosyst Environ 105:159–170

    Google Scholar 

  • Clarke SJ, Hardie WJ, Rogiers SY (2010) Changes in susceptibility of grape berries to splitting are related to impaired osmotic water uptake associated with losses in cell vitality. Aust J Grape Wine Res 16:469–476

    Google Scholar 

  • Clawson KL, Blad BL (1982) Infrared thermography for scheduling irrigation of corn. Agron J 74:311–316

    Google Scholar 

  • Comitini F, Ferretti R, Clementi F, Mannazzu I, Ciani M (2005) Interactions between Saccharomyces cerevisiae and malolactic bacteria: preliminary characterization of a yeast proteinaceous compound(s) active against Oenococcus oeni. J Appl Microbiol 99:105–111

    CAS  PubMed  Google Scholar 

  • Coombe BG (1973) The regulation of set and development of the grape berry. In: Wellensiek SJ (ed) Symposium on growth regulators in fruit production. St. Paul, Minnesota & Long Ashton. ISHS, Bristol, pp 261–273

    Google Scholar 

  • Coombe BG (1992) Research on development and ripening of the grape berry. Am J Enol Vitic 43 (1):101–110

    Google Scholar 

  • Davies C, Boss PK, Robinson SP (1997) Treatment of grape berries, a nonclimacteric fruit with a synthetic auxin, retards ripening and alters the expression of developmentally regulated genes. Plant Physiol 115(3):1155–1161

    CAS  PubMed Central  PubMed  Google Scholar 

  • Dimkoou E, Ugliano M, Dieval J, Vidal S, Rauhut D, Jung R (2011) Impact of headspace oxygen and closure on sulfur dioxide, color and hydrogen sulfide levels in a Riesling wine. Am J Enol Vitic 62:261–269

    Google Scholar 

  • Dokoozlian NK, Kliewer WM (1996) Influence of light on grape berry growth and composition varies during fruit development. J Am Soc Hortic Sci 121(5):869–874

    Google Scholar 

  • dos Santos TP, Lopez CM, Rodrigues ML, de Souza CR, Maroco JP, Pereira JS, Silva JR, Chaves MM (2003) Partial rootzone drying: effects on growth and fruit quality of field grown grapevines (Vitis vinifera). Funct Plant Biol 30(6):663–671

    Google Scholar 

  • Dry PR, Loveys BR, During H (2000a) Partial root drying of the rootzone of grape. I. Transient changes in the shoot growth and gas exchange. Vitis 39(1):3–7

    Google Scholar 

  • Dry PR, Loveys BR, During H (2000b) Partial root drying of the rootzone of grape. II. Changes in the pattern of rootdevelopment. Vitis 39(1):9–12

    Google Scholar 

  • du Toit M, Engelbrecht L, Lerm E, Krieger-Weber S (2011) Lactobacillus: the next generation of malolactic fermentation starter cultures—an overview. Food Bioprocess Technol 4(6):876–906. doi:10.1007/s11947–010–0448–8

    Google Scholar 

  • Dunn GM, Martin SR (2007) A functional association in Vitis vinifera L. cv. Cabernet Sauvignon between the extent of primary branching and the number of flowers formed per inflorescence. Aust J Grape Wine Res 13:95–100

    Google Scholar 

  • Elmer PAG, Michailides TJ (2004) Epidemiology of Botrytis cinerea in orchard and vine crops. In: Elad Y, Williamson B, Tudzynski P, Delen N (eds) Botrytis: Biology, Pathol Control. Springer, p 243–272

    Google Scholar 

  • English JT, Kaps ML, Moore JF, Hill J, Nakova M (1993) Leaf removal for control of Botrytis bunch rot of wine grapes in the mid western United States. Plant Dis 77(12):1224–1227

    Google Scholar 

  • Farquhar GD, Ehleringer J, Hubick KT (1989) Carbon isotope discremination and photosynthesis. Annu Rev Plant Physiol Plant Mol Biol 40:503–537

    CAS  Google Scholar 

  • Field SK, Smith JP, Holzapfel BP, Hardie WJ, Emery RJ (2009) Grapevine response to soil temperature: xylem cytokinins and carbohydrate reserve mobilisation from budbreak to anthesis. Am J Enol Vitic 60:164–172

    CAS  Google Scholar 

  • Fillion L, Ageorges A, Picaud S, Coutos-Thévenot P, Lemoine R, Romieu C, Delrot S (1999) Cloning and expression of a hexose transporter gene expressed during the ripening of grape berry. Plant Physiol 120:1083–1093

    CAS  PubMed Central  PubMed  Google Scholar 

  • Fleet GH (2003) Yeast interactions and wine flavour. Int J Food Microbiol 86:11–22

    CAS  PubMed  Google Scholar 

  • Flexas J, Escalona JM, Medrano H (1998) Down-regulation of photosynthesis by drought under field conditions in grapevine leaves. Australian. J Plant Physiol 25:893–900

    Google Scholar 

  • Fournand D, Vicens A, Sidhoum L, Souquet J-M, Moutounet M, Cheynier V (2006) Accumulation and extractability of grape skin tannins and anthocyanins at different advanced physiological stages. J Agric Food Chem 54(19):7331–7338. doi:10.1021/jf061467h

    CAS  PubMed  Google Scholar 

  • Fugelsang KC, Edwards CG (2007) Wine microbiology practical applications and procedures, 2nd edn. Springer, New York

    Google Scholar 

  • Gadoury DM, Seem RC, Pearson RC, Wilcox WF, Dunst RM (2001) Effects of powdery mildew on vine growth, yield, and quality of concord grapes. Plant Dis 85(2):137–140

    Google Scholar 

  • Gaudillere JP, Pieri P, Van Leewen C (2004) La composition isotopique du carbone des sucres, un outil de mesure de la contrainte hydrique pendant la maturation du raisin. Compte rendu technique Modiaviti, Bordeaux, pp 133–138

    Google Scholar 

  • Gaudillere JP, Van Leeuwen C, Ollat N (2002) Carbon isotope composition of sugars in grapevine, an integrated indicator of vineyard water status. J Exp Bot 53(369):757–763

    CAS  PubMed  Google Scholar 

  • Gindro K, Alonso-Villaverde V, Voinesco F, Spring JL, Viret O, Dubuis PH (2012) Susceptibility to downy mildew in grape clusters: new microscopical and biochemical insights. Plant Physiol Biochem 52:140–146

    CAS  PubMed  Google Scholar 

  • Goldhamer D, Fereres E, Cohen M, Girona J, Mata M (2000) Comparison of continuous and discrete plant based monitoring for detecting tree water deficit and barriers to grower adoption for irrigation management. Acta Hortic 537:431–445

    Google Scholar 

  • Gómez del Campo M, Ruiz C, Sotés V, Lissarrague JR (1999) Water consumption in grapevines: influence of leaf area and irrigation. In: Rühl EH, Schmid J (eds) Ist ISHS workshop on water relations of grapevines, acta horticulturae 493. Acta Horticulturae, Stuttgart

    Google Scholar 

  • Goodwin I, Jerie PH (1992) Regulated deficit irrigation: from concept to practice. Aust N Z Wine Ind J 4:258–261

    Google Scholar 

  • Greenspan MD, Shackel KA, Matthews MA (1994) Developmental changes in the diurnal water budget of the grape berry exposed to water deficits. Plant, Cell and Environment 17:811–820

    Google Scholar 

  • Guisard Y (2004) Modelling of grapevine canopy—concepts and study of leaf area modelling. The University of Queensland, Gatton

    Google Scholar 

  • Hall A, Jones GV (2009) Effect of potential atmospheric warming on temperature based indices describing Australian wine grape growing conditions. Aust J Grape Wine Res 15(2):97–119

    Google Scholar 

  • Hannah L, Roehrdanz PR, Ikegami AV, Shaw MR, Tabor G, Zhi L, Marquet PA (2013) Climate change, wine and conservation. Proc Natl Acad Sci 110(17):6907–6912

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hardie WJ, Considine JA (1976) Response of grapes to water deficit stress in particullar stages of development. Am J Enol Vitic 27:55–61

    Google Scholar 

  • Hardie WJ, Martin SR (1989) A strategy for vine growth regulation by soil water management. In: Williams PJ, Davidson DM, Lee TH (eds) 7th Australian wine industry technical conference. Australian Wine Industry Technical Conference, Adelaide, pp 51–57

    Google Scholar 

  • Harris JM, Kriedemann PE, Possingham JV (1968) Anatomical aspects of grape berry development. Vitis 7:106–119

    Google Scholar 

  • Henick-Kling T (1995) Control of malo-lactic fermentation in wine: energetics, flavour modification and methods of starter culture preparation. J Appl Bacteriol Symp Suppl 79:29–37

    Google Scholar 

  • Huang Z, Ough CS (1991) Amino-acid profiles of commercial grape juices and wines. Am J Enol Vitic 42(3):261–267

    CAS  Google Scholar 

  • Iland P, Grbin P, Grinbergs M, Schmidtke L, Soden A (2007) Microbiological analysis of grapes and wine: techniques and concepts. Patrick Iland Wine Promotions Pty. Ltd., Campbelltown

    Google Scholar 

  • IPCC (2007) Climate change: the physical science basis. Contribution of working group i to the fourth assessment report of the international panel on climate change. Cambridge University Press, Cambridge

    Google Scholar 

  • Jackson R, Jackson RS (2009) Wine tasting: a professional handbook. Academic Press, California

    Google Scholar 

  • Jones GV, White MA, Cooper OR, Storchmann K (2005) Climate change and global wine quality. Clim Change 73:319–343

    Google Scholar 

  • Jussier D, Morneau AD, de-Orduña RM (2006) Effect of simultaneous inoculation with yeast and bacteria on fermentation kinetics and key wine parameters of cool-climate chardonnay. Appl Environ Microbiol 72(1):221–227

    CAS  PubMed Central  PubMed  Google Scholar 

  • Keller M (2010) The science of grapevines: anatomy and physiology. Elsevier, Amsterdam

    Google Scholar 

  • Keller M, Pool RM, Henick-Kling T (1999) Excessive nitrogen supply and shoot trimming can impair colour development in Pinot Noir grapes and wine. Aust J Grape Wine Res 5:49–55

    Google Scholar 

  • Keller M, Smith JP, Bondada BR (2006) Ripening berries remain hydraulically connected to the shoot. J Exp Bot 57(11):2577–2587

    CAS  PubMed  Google Scholar 

  • Kliewer W (1968) Changes in the concentration of free amino acids in grape berries during maturation. Am J Enol Vitic 19(3):166–174

    CAS  Google Scholar 

  • Kliewer W (1971) Effect of day temperature and light intensity on concentration of malic and tartaric acids in Vitis vinifera L. grapes. J Amer Soc Hort Sci 96(3):372–377

    CAS  Google Scholar 

  • Kliewer W, Antcliff A (1970) Influence of defoliation, leaf darkening, and cluster shading on the growth and composition of Sultana grapes. Am J Enol Vitic 21(1):26–36

    Google Scholar 

  • Kriedemann PE, Goodwin I (2004) Regulated deficit irrigation and partial root zone drying, vol 4. CSIRO Land and Water (Irrigation Insights), Canberra

    Google Scholar 

  • Lang A, Thorpe MR (1989) Xylem, phloem and transpiration flows in a grape: application of a technique for measuring the volume of attached fruits to high resolution using Archimedes’ principle. J Exp Bot 40(219):1069–1078

    Google Scholar 

  • Larsen JT, Nielsen J-C, Kramp B, Richelieu M, Bjerring P, Rilsager MJ, Arneborg N, Edwards CG (2003) Impact of different strains of Saccharomyces cerevisiae on malolactic fermentation by Oenococcus oeni. Am J Enol Vitic 54(4):246–251

    Google Scholar 

  • Latorre BA, Torres R (2012) Prevalence of isolates of Botrytis cinerea resistant to multiple fungicides in Chilean vineyards. Crop Prot 40:49–52

    CAS  Google Scholar 

  • Lebon E, Dumas V, Pieri P, Scultz HR (2003) Modelling the seasonal dynamics of the soil water balance of vineyards. Funct Plant Biol 30:699–710

    Google Scholar 

  • Leroch M, Kretschmer M, Hahn M (2011) Fungicide resistance phenotypes of Botrytis cinerea isolates from commercial vineyards in south west Germany. J Phytopathol 159(1):63–65

    CAS  Google Scholar 

  • Lonvaud-Funel A (1999) Lactic acid bacteria in the quality improvement and depreciation of wine. Antonie Van Leeuwenhoek 76:317–331

    CAS  PubMed  Google Scholar 

  • Lopes C (1999) Relationship between leaf water potential and photosynthetic activity of filed grapevines under a mediterranean environment. In: Rühl EH, Schmid J (eds) 1st ISHS workshop on water relations of grapevines, acta horticulturae 493. International Society for Horticultural Science, Stuttgart

    Google Scholar 

  • Lopes C, Vicente-Paulo J, Pacheco C, Tavares S, Barraso J, Rodrigues ML, Chaves MM (1999) Relationship between leaf water potential and photosynthetic activity of field grapevines grown under different soil water regimes. 11eme Journees GESCO—Groupe d’Etude des Systemes de Conduite de la Vigne, Sicily, pp 211–217

    Google Scholar 

  • Lopes P, Silva M, Pons A, Tominga T, Lavigne V, Saucier C, Darriet P, Teissedre P, Duboudieu D (2009) Impact of dissolved oxygen at bottling and transmitted through closures on the composition and sensory properties of a Sauvignon blanc wine during bottle storage. J Agric Food Chem 57:10261–10270

    CAS  PubMed  Google Scholar 

  • Lorenz DH, Eichhorn KW, Bleiholder H, Klose R, Meier U, Weber E (1995) Phenological growth stages of the grapevine (Vitis vinifera L. spp vinifera)—codes and descriptions according to the extended BBCH scale (translated from German by P. May). Aust J Grape Wine Res 1(2):91–103

    Google Scholar 

  • Loveys B (2000) Development of methods for the control of vine vigour and water use optimisation based on the concept of partial rootzone drying. GWRDC

    Google Scholar 

  • Loveys B (2005) When to water? Assessment of plant based measurements to indicate irrigation requirements. Final report to the Grape and Wine Research and Development Corporation. CSIRO Plant Industry

    Google Scholar 

  • Low L, O’Neill B, Ford C, Godden J, Gishen M, Colby C (2008) Economic evaluation of alternative technologies for tartrate stabilisation of wines. Intl J Food Sci Technol 43:1201–1216

    Google Scholar 

  • Lu P, Yunusa IAM, Walker RR, Muller WJ (2003) Regulation of canopy conductance and transpiration and their modelling in irrigated grapevines. Funct Plant Biol 30:689–698

    Google Scholar 

  • Lund ST, Bohlmann J (2006) The molecular basis for wine grape quality—a volatile subject. Science 311(5762):804–805. doi:10.1126/science.1118962

    CAS  PubMed  Google Scholar 

  • Magarey RD, Coffey BE, Emmett RW (1993) Anthracnose of grapevines, a review. Plant Protect Q 8:106–110

    Google Scholar 

  • Malfeito-Ferreira M (2011) Yeasts and wine off-flavours: a technological perspective. Ann Microbiol 61(1):95–102. doi:10.1007/s13213-010-0098-0

    CAS  Google Scholar 

  • Marais J, Calitz F, Haasbroek P (2001) Relationship between microclimatic data, aroma component concentrations and wine quality parameters in the prediction of Sauvignon blanc wine quality. S Afr J Enol Vitic 22(1):22–26

    CAS  Google Scholar 

  • Marschner P (2012) Mineral nutrition of higher plants, 3rd edn. Academic Press, London

    Google Scholar 

  • Matthews MA, Anderson MM, Schultz HR (1987) Phenologic and growth-responses to early and late season water deficits in cabernet franc. Vitis 26(3):147–160

    Google Scholar 

  • May P (2004) Flowering and fruitset in grapevines. Lythrum Press, Adelaide

    Google Scholar 

  • McCarthy MG (1999) Weight loss from ripening berries of Shiraz grapevines (Vitis vinifera L. cv. Shiraz). Aust J Grape Wine Res 5:10–16

    Google Scholar 

  • Medrano H, Escalona JM, Bota J, Gulias J, Flexas J (2002) Regulation of photosynthesis of C3 plants in response to progressive drought: stomatal conductance as a reference parameter. Ann Bot (Lond) 89:895–905

    CAS  Google Scholar 

  • Mengel K, Kirkby EA (2001) Principles of plant nutrition, 5th edn. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Mullins MG, Bouquet A, Williams LE (1992) Biology of the grapevine. Biology of the grapevine. Cambridge University, Cambridge

    Google Scholar 

  • Nair NG, Nadtotchei A (1987) Sclerotia of Botrytis as a source of primary inoculum for bunch rot of grapes in New South Wales, Australia. J Phytopathol-Phytopathol Z 119(1):42–51

    CAS  Google Scholar 

  • Naor A, Gal Y, Bravdo B (1997) Crop load affects assimilation rate, stomatal conductance, stem water potential and water relations of field grown sauvignon blanc grapevines. J Exp Bot 48(314):1675–1680

    CAS  Google Scholar 

  • Nicholas P (2004) Soil, irrigation and nutrition. Grape production series, vol 2. Winetitles, Adelaide

    Google Scholar 

  • Ojeda H (2007) Irrigation qualitative de precision au vignoble. Infowine 12:1–11. www.infowine.comOjeda H, Deloire A, Carbonneau A, Ageorges A, Romieu C (1999) Berry development of grapevines: relations between the growth of berries and their DNA content indicate cell multiplication and enlargement. Vitis 38(4):145–150

    Google Scholar 

  • Penman HL (1948) Natural evaporation from open water, bare soil and grass. Proc Royal Soc Lond A 194:120–145

    Google Scholar 

  • Pereira GE, Gaudillere JP, Pieri P, Hilbert G, Maucourt M, Deborde C, Moing A, Rolin D (2006) Microclimate influence on mineral and metabolic profiles of grape berries. J Agric Food Chem 54(18):6765–6775. doi:10.1021/jf061013k

    CAS  PubMed  Google Scholar 

  • Petrie PR, Clingeleffer PR (2005) Effects of temperature and light (before and after budburst)on inflorescence morphology and flower number of Chardonnay grapevines (Vitis vinifera L.). Aust J Grape Wine Res 11:59–65

    Google Scholar 

  • Pitman AJ, Perkins SE (2008) Regional projections of future seasonal and annual changes in rainfall and temperature over Australia based on skill-selected AR4 models. Earth Interact 12:1–50

    Google Scholar 

  • Poni S, Bernizzoni F, Briola G, Cenni A (2004) Effects of early leaf removal on cluster morphology, shoot efficiency and grape quality in two Vitis vinifera cultivars. In: Williams LE (ed) VII International symposium on grapevine physiology and biotechnology. Acta Horticulturae 689, California, pp 217–226

    Google Scholar 

  • Poni S, Intrieri C, Rebucci B, Magnanini E, Filippetti I (2001) A custom-built simple system for conditioning and measurement of in situ whole-cluster transpiration. Vitis 40(2):55–58

    Google Scholar 

  • Possingham J, Chambers T, Radler F, Grncarevic M (1967) Cuticular transpiration and wax structure and composition of leaves and fruit of Vitis Vinifera. Aust J Biol Sci 20(6):1149–1154. doi:http://dx.doi.org/10.1071/BI9671149

    Google Scholar 

  • Powell C, Zandycke SV, Degré R (2005) The microbiology of malolactic fermentation. In: Morenzoni R (ed) Malolactic fermentation in wine understanding the science and the practice. Lallemond Inc, Montreal, pp 5:1–5:11

    Google Scholar 

  • Pratt C (1971) Reproductive anatomy in cultivated grapes—a review. Am J Enol Vitic 22:9–109

    Google Scholar 

  • Quereix A, Dewar RC, Gaudillere JP, Dayau S, Valancogne C (2001) Sink feedback regulation of photosynthesis in vines: measurements and model. J Exp Bot 52(365):2313–2322

    CAS  PubMed  Google Scholar 

  • Reynolds AG, Wardle DA (1989) Influence of fruit microclimate on monoterpene levels of gewurztraminer. Am J Enol Vitic 40(3):149–154

    CAS  Google Scholar 

  • Ribéreau-Gayon P, Glories Y, Maujean A, Dubourdieu D (2006) Handbook of Enology: the chemistry of wine stabilisation and treatments, vol 2. Wiley, Hoboken

    Google Scholar 

  • Riou C, Lebon E (2000) Application d’un modele de bilan hydrique hydrique, et de la mesure de couvert au diagnostic du stress hydrique de la vigne a la parcelle. Bulletin OIV 73:755–764

    Google Scholar 

  • Robinson JB (1992) Grapevine nutrition. In: Coombe BG, Dry P (eds) Viticulture 2 practices. Australian Industrial Publishers PTY LTD, Adelaide

    Google Scholar 

  • Robinson SP, Davies C (2000) Molecular biology of grape berry ripening. Aust J Grape Wine Res 6(2):175–188. doi:10.1111/j.1755–0238.2000.tb00177.x

    CAS  Google Scholar 

  • Rogiers S, Greer D, Dimos N (2006a) Vascular transport into Shiraz berries. In: Oag D, DeGaris K, Partridge S, Dundon C, Francis M, Johnstone R, Hamilton R (eds) Finishing the job—optimal ripening of Cabernet Sauvignon and Shiraz. Australian Society of Viticulture and Oenology, Mildura, pp 26–29

    Google Scholar 

  • Rogiers SY, Clarke SJ (2013) Nocturnal and daytime stomatal conductance respond to root-zone temperature in ‘Shiraz’ grapevines. Ann Bot (Lond) 111(3):433–444. doi:10.1093/aob/mcs298

    CAS  Google Scholar 

  • Rogiers SY, Greer DH, Hatfield JM, Orchard BA, Keller M (2006b) Mineral sinks within ripening berries (Vitis vinifera L.). Vitis 45(3):115–123

    CAS  Google Scholar 

  • Rogiers SY, Greer DH, Hatfield JM, Orchard BA, Keller M (2006c) Solute transport into Shiraz berries during development and late-ripening shrinkage. Am J Enol Vitic 57(1):73–80

    CAS  Google Scholar 

  • Rogiers SY, Hardie WJ, Smith JP (2011a) Stomatal density of grapevine leaves (Vitis vinifera L.) responds to soil temperature and atmospheric carbon dioxide. Aust J Grape Wine Res 17:147–152

    Google Scholar 

  • Rogiers SY, Hatfield JM, Jaudzems VG, White RG, Keller M (2004) Grape berry cv. shiraz epicuticular wax and transpiration during ripening and preharvest weight loss. Am J Enol Vitic 55(2):121–127

    Google Scholar 

  • Rogiers SY, Smith JA, White R, Keller M, Holzapfel BP, Virgona JM (2001) Vascular function in berries of Vitis vinifera (L) cv. Shiraz. Aust J Grape Wine Res 7(1):47–51. doi:10.1111/j.1755–0238.2001.tb00193.x

    Google Scholar 

  • Rogiers SY, Smith JP, Holzapfel B, Hardie J (2011b) Soil temperature moderates grapevine carbohydrate reserves after budbreak and conditions fruit set responses to photoassimilatory stress. Funct Plant Biol 38:319–329

    Google Scholar 

  • Rosi I, Fia G, Canuti V (2003) Influence of different pH values and inoculation time on the growth and malolactic activity of a strain of Oenococcus oeni. Aust J Grape Wine Res 9(3):194–199. doi:10.1111/j.1755–0238.2003.tb00270.x

    CAS  Google Scholar 

  • Rosslenbroich HJ, Stuebler D (2000) Botrytis cinerea—history of chemical control and novel fungicides for its management. Crop Prot 19(8–10):557–561

    CAS  Google Scholar 

  • Sanchez LA, Dokoozlian N (2005) Bud microclimate and fruitfulness in Vitis vinifera L. Am J Enol Vitic 56:319–329

    Google Scholar 

  • Savocchia S, Steel CC, Stodart BJ, Somers A (2007) Pathogenicity of Botryosphaeria species isolated from declining grapevines in sub tropical regions of Eastern Australia. Vitis 46(1):27–32

    Google Scholar 

  • Schmidtke LM (2003) Microbial growth—a winemakers choice. Aust N Z Grapegrow Winemak Annual Technical Issue(473a):45–49

    Google Scholar 

  • Schmidtke LM, Blackman JW, Saliba AJ (2010) Red wine composition and sensory analysis with different inoculation times for malolactic fermentation. Aust N Z Grapegrow Winemak June(557a):46–52

    Google Scholar 

  • Scholander PF, Hammel HT, Bradstreet ED, Hemmingen EA (1965) Negative hydrostatic pressure can be measured in plants. Science 148(3668):339–346

    CAS  PubMed  Google Scholar 

  • Schultz H, Jones GV (2010) Climate induced historic and future changes in viticulture. J Wine Res 21(2–3):137–145

    Google Scholar 

  • Schultz H, Stoll M (2010) Some critical issues in environmental physiology of grapevines: future challenges and current limitations. Aust J Grape Wine Res 16:4–24

    CAS  Google Scholar 

  • Scollary G, Pásti G, Kállay M, Blackman J, Clark A (2012) Astringency response of red wines: potential role of molecular assembly. Trends Food Sci Technol 27:25–36

    CAS  Google Scholar 

  • Sepulveda RG, Kliewer WM (1983) Estimation of leaf area of two grapevine cultivars (Vitis vinifera L.) using laminae linear measurements and fresh weight. Am J Enology Vitic 34(4):221–226

    Google Scholar 

  • Silveira MG, Baumgartner M, Rombouts FM, Abee T (2004) Effect of adaptation to ethanol on cytoplasmic and membrane protein profiles of Oenococcus oeni. Appl Environ Microbiol 70(5):2748–2755. doi:10.1128/aem.70.5.2748–2755.2004

    CAS  PubMed Central  PubMed  Google Scholar 

  • Silvestre J, Ferreira MI, Valancogne M (1999) Evapotranspiration and water relations from a vineyard in central Portugal during spring-summer periods. In: Rühl EH, Schmid J (eds) 1st ISHS workshop on water relations of grapevines, ISHS acta horticulturae 493. Acta Horticulturae, Stuttgart

    Google Scholar 

  • Sims A, Eastridge J, Bates R (1995) Changes in phenols, color, and sensory characteristics of muscadine wines by pre- and post-fermentation additions of PVPP, casein, and gelatin. Am J Enol Vitic 46 (2):155–158

    CAS  Google Scholar 

  • Sipiora MJ, Lissarrague JR (1999) Diurnal changes in vine water status and gas exchange parameters of Vitis vinifera L. cv Tempranillo grapevines as influenced by irrigation and pruning level. In: Rühl EH, Schmid J (eds) 1st ISHS workshop on water relations of grapevines, ISHS acta horticulturae 493. Acta Horticulturae, Stuttgart

    Google Scholar 

  • Smart R, Robinson M (1998) Sunlight into Wine. Winetitles, Adelaide

    Google Scholar 

  • Smith FW, Loneragan JF (1997) Interpretation of plant analysis: concepts and principles. In: Reuter DJ, Robinson JB (eds) Plant analysis: an interpretation manual, 2nd edn. CSIRO Publishing, Melbourne, pp 1–33

    Google Scholar 

  • Smith JP, Holzapfel BP (2009) Cumulative responses of semillon grapevines to late season perturbation of carbohydrate reserve status. Am J Enol Vitic 60(4):461–470

    CAS  Google Scholar 

  • Srinivasan C, Mullins MG (1981) Physiology of flowering in the grapevine, a review. Am J Enol Vitic 32:47–63

    CAS  Google Scholar 

  • Steel CC, Blackman JW, Schmidtke LM (2013) Grapevine bunch rots: impacts on wine composition, quality, and potential procedures for the removal of wine faults. J Agric Food Chem 61(22):5189–5206. doi:10.1021/jf400641r

    CAS  PubMed  Google Scholar 

  • Steffen W, Hughes L, Karoly D (2013) The critical decade: extreme weather. Climate Commission Secretariat, Canberra

    Google Scholar 

  • Stummer BE, Francis IL, Markides AJ, Scott ES (2003) The effect of powdery mildew infection of grape berries on juice and wine composition and on sensory properties of Chardonnay wines. Aust J Grape Wine Res 9(1):28–39

    CAS  Google Scholar 

  • Suklje K, Lisjak K, Cesnik HB, Janes L, Du Toit W, Coetzee Z, Vanzo A, Deloire A (2012) Classification of grape berries according to diameter and total soluble solids to study the effect of light and temperature on methoxypyrazine, glutathione, and hydroxycinnamate evolution during ripening of Sauvignon blanc (Vitis vinifera L.). J Agric Food Chem 60(37):9454–9461. doi:10.1021/jf3020766

    CAS  PubMed  Google Scholar 

  • Swanepoel JJ, Archer E (1988) The ontogeny and development of Vitis vinifera L. cv. Chenin blanc inflorescence in relation to phenological stages. Vitis 27:133–141

    Google Scholar 

  • Terrier N, Glissant D, Grimplet J, Barrieu F, Abbal P, Couture C, Ageorges A, Atanassova R, Leon C, Renaudin JP, Dedaldechamp F, Romieu C, Delrot S, Hamdi S (2005) Isogene specific oligo arrays reveal multifaceted changes in gene expression during grape berry (Vitis vinifera L.) development. Planta 222(5):832–847. doi:10.1007/s00425–005-0017-y

    CAS  PubMed  Google Scholar 

  • Thibon C, Dubourdieu D, Darriet P, Tominaga T (2009) Impact of noble rot on the aroma precursor of 3-sulfanylhexanol content in Vitis vinifera L. cv Sauvignon blanc and Semillon grape juice. Food Chem 114(4):1359–1364. doi:10.1016/j.foodchem.2008.11.016

    CAS  Google Scholar 

  • Tilbrook J, Tyerman SD (2009) Hydraulic connection of grape berries to the vine: varietal differences in water conductance into and out of berries, and potential for backflow. Funct Plant Biol 36:541–550

    Google Scholar 

  • Tyerman SD, Tilbrook J, Pardo C, Kotula L, Sullivan W, Steudle E (2004) Direct measurement of hydraulic properties in developing berries of Vitis vinifera L. cv Shiraz and Chardonnay. Aust J Grape Wine Res 10:170–181

    Google Scholar 

  • Valamoti SM, Mangafa M, Koukouli-Chrysanthaki C, Malamidou D (2007) Grape-pressings from northern Greece: the earliest wine in the Aegean? Antiquity 81(311):54–61

    Google Scholar 

  • van Zyl J (1984) Response of Colombard grapevines to irrigation as regards to quality aspects and growth. Afr J Enol Vitic 5:19–28

    Google Scholar 

  • Vasconcelos MC, Greven M, Winefield CS, Trought MCT, Raw V (2009) The flowering process of Vitis vinifera: a review. Am J Enol Vitic 60(4):411–434

    CAS  Google Scholar 

  • Wardlaw IF (1990) Tansley review no 27– the control of carbon partitioning in plants. New Phytol 116(3):341–381. doi:10.1111/j.1469–8137.1990.tb00524.x

    CAS  Google Scholar 

  • Waring RH, Cleary BD (1967) Plant moisture stress: evaluation by pressure bomb. Science 155(3767):1248–1254

    CAS  PubMed  Google Scholar 

  • Waters E, Alexander G, Muhlack R, Pocock K, Colby C, O’Neill B, Høj P, Jones P (1995) Preventing protein haze in bottled white wine. Aust J Grape Wine Res 11:215–225

    Google Scholar 

  • Watt AM, Dunn G, May P, Crawford SA, Barlow EWR (2008) Development of inflorescence primordia in Vitis vinifera L. cv. Chardonnay from hot and cool climates. Aust J Grape Wine Res 14:46–53

    Google Scholar 

  • Webb LB, Wheaton A, Barlow EWR (2011) Observed trends in grapevine maturity in Australia. Global Change Biol 17(8):2707–2719

    Google Scholar 

  • Wermelinger B (1991) Nitrogen dynamics in grapevine, physiology and modeling. Paper presented at the International Symposium on Nitrogen in Grapes and Wine, Seatle

    Google Scholar 

  • White MA, Diffenbaugh NS, Jones GV, Pal JS, Giorgi F (2006) Extreme heat reduces and shifts United States premium wine production in the 21st century. Proc Natl Acad Sci 103(30):11217–11222

    CAS  PubMed Central  PubMed  Google Scholar 

  • Williams LE, Araujo F (2002) Correlations among predawn leaf, midday leaf, and midday stem water potential and their correlations with other measures of soil and plant water status in Vitis vinifera. J Am Soc Hortic Sci 127(3), 448–454

    Google Scholar 

  • Williams LE, Baeza P (2007) Relationships among ambient temperature and vapor pressure deficit and leaf and stem water potentials of fully irrigated, field grown grapevines. Am J Enol Vitic 58(2):173–181

    Google Scholar 

  • Wolf TK, Dry PR, Iland PG, Botting D, Dick J, Kennedy U, Ristic R (2003) Response of Shiraz grapevines to five different training systems in the Barossa Valley, Australia. Aust J Grape Wine Res 9(2):82–95. doi:10.1111/j.1755–0238.2003.tb00257.x

    Google Scholar 

  • Yuste J, Gutierrez I, Rubio JA, Albuquerque MV (2004) Reponse des potentiels hydriques de la feuille et du xyleme comme indicateurs de l’etat hydrique de la vigne, cepage Tempranillo, soumis a differents regimes hydrique dans la valle du Douro. J Intl Sci de la Vigne et du Vin 38(1):21–26

    Google Scholar 

  • Yuste J, Rubio JA, Peláez HZ, Ruiz C, Lissarrague JR (1999) Predawn leafwater potential and soil water content in vertical trellis under irrigated and non irrigated conditions in Tempranillo grapevines. (International Society for Horticultural Science) Acta Hortic 493:309–321

    Google Scholar 

  • Zapata C, Deléens E, Chaillou S, Magné C (2004) Mobilisation and distribution of starch and total N in two grapevine cultivars differing in their susceptibility to shedding. Funct Plant Biol 31:1127–1135

    CAS  Google Scholar 

  • Zhang D, Lovitt RW (2006) Strategies for enhanced malolactic fermentation in wine and cider maturation. J Chem Technol Biotechnol 81(7):1130–1140

    CAS  Google Scholar 

  • Zhang XY, Wang X-L, Wang X-F, Xia GH, Pan Q-H, Fan RC, Wu F-Q, Yu XC, Zhang DP (2006) A shift of phloem unloading from symplasmic to apoplasmic pathway is involved in developmental onset of ripening in grape berry. Plant Physiol 142:220–232

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zoecklein BW, Wolf TK, Duncan NW, Judge JM, Cook MK (1992) Effects of fruit zone leaf removal on yield, fruit composition, and fruit rot incidence of chardonnay and white riesling (vitis-vinifera l) grapes. Am J Enol Vitic 43(2):139–148

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yann Guisard .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Guisard, Y. et al. (2014). Viticulture and Wine Science. In: Dixon, G., Aldous, D. (eds) Horticulture: Plants for People and Places, Volume 1. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-8578-5_7

Download citation

Publish with us

Policies and ethics