Skip to main content

Photosynthesis and Hydrogen Production in Purple Non Sulfur Bacteria: Fundamental and Applied Aspects

  • Chapter
  • First Online:
Microbial BioEnergy: Hydrogen Production

Part of the book series: Advances in Photosynthesis and Respiration ((AIPH,volume 38))

Summary

Light-dependent hydrogen production by purple non sulfur bacteria (PNSB) has been studied for several decades. However the exact route that energy takes from the moment a photon is absorbed to the formation of a molecule of hydrogen is quite complex. The aim of this chapter is to review the researches carried out on the metabolic processes related to hydrogen production in PNSB, in particular stressing the issues related with the efficiency in the conversion of the energy deriving from the light in the energy-rich H2 molecule produced. The metabolic processes that bring form the light capturing to hydrogen production are described, with the relative bottlenecks and hurdles.

The information currently available on the light distribution in various kind of photobioreactors are also reviewed, mainly focusing on the photosynthetic efficiency and on the efficiency in substrate conversion to H2 obtained in laboratory and outdoor experiments.

From these data, it comes out how many different cellular processes can interact and affect photosynthetic efficiency and how complex is the route that brings from light energy to hydrogen energy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

BChl:

Bacteriochlorophyll;

Cyt bc 1 :

Cytochrome bc 1 complex;

Cyt c2 :

Cytochrome c2;

Fd:

Ferredoxin;

LH:

Light harvesting;

PE:

Photosynthetic efficiency;

PHB:

Poly-β-hydroxybutyrate;

PNSB:

Purple non sulfur bacterium/bacteria;

PSU:

Photosynthetic unit;

RC:

Reaction center;

SC:

Substrate conversion

References

  • Adessi A, De Philippis R (2012) Hydrogen production: photofermentation. In: Hallenbeck PC (ed) Microbial technologies in advanced biofuels production. Springer Science+Business Media, New York, pp 53–75

    Google Scholar 

  • Adessi A, De Philippis R (2013) Purple bacteria: electron acceptors and donors. In: Lennarz WJ, Lane MD (eds) The encyclopedia of biological chemistry, vol 3. Academic, Waltham, pp 693–699

    Google Scholar 

  • Adessi A, Torzillo G, Baccetti E, De Philippis R (2012a) Sustained outdoor H2 production with Rhodopseudomonas palustris cultures in a 50 L tubular photobioreactor. Int J Hydrog Energy 37:8840–8849

    CAS  Google Scholar 

  • Adessi A, McKinlay JB, Harwood CS, De Philippis R (2012b) A Rhodopseudomonas palustris nifA* mutant produces H2 from NH4 +-containing vegetable wastes. Int J Hydrog Energy 37:15893–15900

    CAS  Google Scholar 

  • Akkerman I, Janssen M, Rocha J, Wijffels RH (2002) Photobiological hydrogen production: photochemical efficiency and bioreactor design. Int J Hydrog Energy 27:1195–1208

    CAS  Google Scholar 

  • Asztalos E, Italiano F, Milano F, Maróti P, Trotta M (2010) Early detection of mercury contamination by fluorescence induction of photosynthetic bacteria. Photochem Photobiol Sci 9:1218–1223

    CAS  PubMed  Google Scholar 

  • Barbosa MJ, Rocha JMS, Tramper J, Wijffels RH (2001) Acetate as a carbon source for hydrogen production by photosynthetic bacteria. J Biotechnol 85:25–33

    CAS  PubMed  Google Scholar 

  • Barney BM, Igarashi RY, Dos Santos PC, Dean DR, Seefeldt LC (2004) Substrate interaction at an Iron-Sulfur face of the FeMo-cofactor during nitrogenase catalysis. J Biol Chem 279:53621–53624

    CAS  PubMed  Google Scholar 

  • Basak N, Das D (2009) Photofermentative hydrogen production using purple non-sulfur bacteria Rhodobacter sphaeroides O.U.001 in an annular photobioreactor: a case study. Biomass Bioenergy 33:911–919

    CAS  Google Scholar 

  • Blankenship RE (2002) Molecular mechanisms of photosynthesis. Blackwell Science Ltd, Oxford

    Google Scholar 

  • Boran E, Özgür E, Van der Burg J, Yücel M, Gündüz U, Eroğlu I (2010) Biological hydrogen production by Rhodobacter capsulatus in solar tubular photo bioreactor. J Clean Prod 18:S29–S35

    CAS  Google Scholar 

  • Boran E, Özgür E, Yücel M, Gündüz U, Eroğlu I (2012) Biohydrogen production by Rhodobacter capsulatus Hup- mutant in pilot solar tubular photobioreactor. Int J Hydrog Energy 37:16437–16445

    CAS  Google Scholar 

  • Bruschi M, Guerlesquin F (1988) Structure, function and evolution of bacterial ferredoxins. FEMS Microbiol Rev 54:155–176

    CAS  Google Scholar 

  • Chen CY, Chang JS (2006) Enhancing phototrophic hydrogen production by solid-carrier arrested fermentation and internal optical-fiber illumination. Process Biochem 41:2041–2049

    CAS  Google Scholar 

  • Chen CY, Saratale GD, Lee CM, Chen PC, Chang JS (2008) Phototrophic hydrogen production in photobioreactors coupled with solar energy excited optical fibers. Int J Hydrog Energy 33:6686–6695

    Google Scholar 

  • Chen CY, Liu CH, Lo YC, Chang JS (2011) Perspectives on cultivation strategies and photobioreactor designs for photo-fermentative hydrogen production. Bioresour Technol 102:8484–8492

    CAS  PubMed  Google Scholar 

  • Cogdell R, Fyfe P, Barrett S, Prince S, Freer A, Isaacs N, McGlynn P, Hunter C (1996) The purple bacterial photosynthetic unit. Photosynth Res 48:55–63

    CAS  PubMed  Google Scholar 

  • Cogdell RJ, Southall J, Gardiner AT, Law CJ, Gall A, Roszak AW, Isaacs NW (2006) How purple photosynthetic bacteria harvest solar energy. CR Chim 9:201–206

    Google Scholar 

  • Colbeau A, Kelley BC, Vignais PM (1980) Hydrogenase activity in Rhodopseudomonas capsulata: relationship with nitrogenase activity. J Bacteriol 144:141–148

    CAS  PubMed Central  PubMed  Google Scholar 

  • Dasgupta CN, Gilbert JJ, Lindblad P, Heidorn T, Borgvang SA, Skjanes K, Das D (2010) Recent trends on the development of photobiological processes and photobioreactors for the improvement of hydrogen production. Int J Hydrog Energy 35:10218–10238

    CAS  Google Scholar 

  • De Philippis R, Ena A, Guastini M, Sili C, Vincenzini M (1992) Factors affecting poly-β-hydroxybutyrate accumulation in cyanobacteria and in purple non-sulfur bacteria. FEMS Microbiol Rev 103:187–194

    Google Scholar 

  • Eady RR (1996) Structure-function relationships of alternative nitrogenases. Chem Rev 96:3013–3030

    CAS  PubMed  Google Scholar 

  • Elsen S, Dischert W, Colbeau A, Bauer CE (2000) Expression of uptake hydrogenase and molybdenum nitrogenase in Rhodobacter capsulatus is coregulated by the RegB-RegA two-component regulatory system. J Biotechnol 182:2831–2837

    CAS  Google Scholar 

  • Elsen S, Swem LR, Swem DL, Bauer CE (2004) RegB/RegA, a highly conserved redox-responding global two-component regulatory system. Microbiol Mol Biol Rev 68:263–279

    CAS  PubMed Central  PubMed  Google Scholar 

  • El-Shishtawy RMA, Kawasaki S, Morimoto M (1997) Biological H2 production using a novel light-induced and diffused photoreactor. Biotechnol Tech 11:403–407

    CAS  Google Scholar 

  • Eroglu I, Aslan K, Gunduz U, Yucel M, Turker L (1998) Continuous hydrogen production by Rhodobacter sphaeroides O.U.001. In: Zaborsky OR (ed) Biohydrogen. Plenum Press, London, pp 143–151

    Google Scholar 

  • Eroğlu I, Tabanoğlu A, Gündüz U, Eroğlu E, Yücel M (2008) Hydrogen production by Rhodobacter sphaeroides O.U.001 in a flat plate solar bioreactor. Int J Hydrog Energy 33:531–541

    Google Scholar 

  • Fox JD, He Y, Shelver D, Roberts GP, Ludden PW (1996) Characterization of the region encoding the CO-induced hydrogenase of Rhodospirillum rubrum. J Bacteriol 178:6200–6208

    CAS  PubMed Central  PubMed  Google Scholar 

  • Franchi E, Tosi C, Scolla G, Penna DG, Rodriguez F, Pedroni MP (2004) Metabolically engineered Rhodobacter sphaeroides RV strains for improved biohydrogen photoproduction combined with disposal of food wastes. Mar Biotechnol 6:552–565

    CAS  PubMed  Google Scholar 

  • Frank HA, Polívka T (2008) Energy transfer from carotenoids to bacteriochlorophylls. In: Hunter CD, Daldal F, Thurnauer MC, Beatty JT (eds) The purple phototrophic bacteria, vol 28, Advances in photosynthesis and respiration. Springer Science+Business Media, Dordrecht, pp 213–230

    Google Scholar 

  • Fromme P (1996) Structure and function of photosystem I. Curr Opin Struct Biol 6:473–484

    CAS  PubMed  Google Scholar 

  • Gabrielsen M, Gardiner AT, Cogdell RJ (2008) Peripheral complexes of purple bacteria. In: Hunter CD, Daldal F, Thurnauer MC, Beatty JT (eds) The purple phototrophic bacteria, vol 28, Advances in photosynthesis and respiration. Springer Science+Business Media, Dordrecht, pp 135–153

    Google Scholar 

  • Gadhamshetty V, Sukumaran A, Nirmalakhandan N (2011) Photoparameters in photofermentative biohydrogen production. Environ Sci Technol 41:1–51

    CAS  Google Scholar 

  • Gest H, Kamen MD (1949) Photoproduction of molecular hydrogen by Rhodospirillum rubrum. Science 109:558–559

    CAS  PubMed  Google Scholar 

  • Gilbert JJ, Ray S, Das D (2011) Hydrogen production using Rhodobacter sphaeroides (O.U.001) in a flat panel rocking photobioreactor. Int J Hydrog Energy 36:3434–3441

    CAS  Google Scholar 

  • Göbel F (1978) Quantum efficiencies of growth. In: Clayton RK, Sistrom WR (eds) Photosynthetic bacteria. Plenum Press, New York, pp 907–925

    Google Scholar 

  • Grabau C, Schatt E, Jouanneau Y, Vignais PM (1991) A new [2Fe-2S] ferredoxin from Rhodobacter capsulatus. Coexpression with a 2[4Fe-4S] ferredoxin in Escherichia coli. J Biol Chem 266:3294–3299

    CAS  PubMed  Google Scholar 

  • Guo CL, Zhu X, Liao Q, Wang YZ, Chen R, Lee DJ (2011) Enhancement of photo-hydrogen production in a biofilm photobioreactor using optical fiber with additional rough surface. Bioresour Technol 102:8507–8513

    CAS  PubMed  Google Scholar 

  • Hallenbeck PC, Benemann JR (2002) Biological hydrogen production; fundamentals and limiting processes. Int J Hydrog Energy 27:1185–1193

    CAS  Google Scholar 

  • Hankamer B, Barber J, Boekema EJ (1997) Structure and membrane organization of photosystem II in green plants. Annu Rev Plant Physiol 48:641–671

    CAS  Google Scholar 

  • Harwood CS (2008) Nitrogenase-catalyzed hydrogen production by purple nonsulfur photosynthetic bacteria. In: Demain AL, Wall JD, Harwood CS (eds) Bioenergy. Springer Science+Business Media, Dordrecht, pp 259–271

    Google Scholar 

  • Heiniger EK, Oda Y, Samanta SK, Harwood CS (2012) How posttranslational modification of nitrogenase is circumvented in Rhodopseudomonas palustris strains that produce hydrogen gas constitutively. Appl Environ Microbiol 78:1023–1032

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hoff AJ, Deisenhofer J (1997) Photophysics of photosynthesis. Structure and spectroscopy of reaction centers of purple bacteria. Phys Rep 287:1–247

    CAS  Google Scholar 

  • Hu X, Schulten K (1997) How nature harvests sunlight. Phys Today 50:28–34

    CAS  Google Scholar 

  • Hu X, Ritz T, Damjanović A, Autenrieth F, Shulten K (2002) Photosynthetic apparatus of purple bacteria. Q Rev Biophys 35:1–62

    CAS  PubMed  Google Scholar 

  • Hustede E, Steinbüchel A, Schlegel HG (1993) Relationship between the photoproduction of hydrogen and the accumulation of PHB in non-sulfur purple bacteria. Appl Microbiol Biotechnol 39:87–93

    CAS  Google Scholar 

  • Imhoff JF (1995) The anoxygenic phototrophic purple bacteria. In: Boone DR, Castenholz RW, Garrity GM (eds) Bergey’s manual of systematic bacteriology, 2nd edn. Springer, New York, pp 631–637

    Google Scholar 

  • Ismail KSK, Najafpour G, Younesi H, Mohamed AR, Kamaruddin AH (2008) Biological hydrogen production from CO: bioreactor performance. Biochem Eng J 39:468–477

    CAS  Google Scholar 

  • Jamieson SJ, Wang P, Qian P, Kirkland JY, Conroy MJ, Hunter CN, Bullough PA (2002) Projection structures of the photosynthetic reaction centre-antenna complex from Rhodospirillum rubrum at 8.5 Å resolution. EMBO 21:3927–3935

    CAS  Google Scholar 

  • Jeong HS, Jouanneau Y (2000) Enhanced nitrogenase activity in strains of Rhodobacter capsulatus that overexpress the rnf genes. J Bacteriol 182:1208–1214

    CAS  PubMed Central  PubMed  Google Scholar 

  • Joshi HM, Tabita FR (1996) A global two component signal transduction system that integrates the control of photosynthesis, carbon dioxide assimilation, and nitrogen fixation. Proc Natl Acad Sci U S A 93:14515–14520

    CAS  PubMed Central  PubMed  Google Scholar 

  • Jouanneau Y, Wong B, Vignais PM (1985) Stimulation by light of nitrogenase synthesis in cells of Rhodopseudomonas capsulata growing in N-limited continuous cultures. BBA-Bioenerg 808:149–155

    CAS  Google Scholar 

  • Jouanneau Y, Meyer C, Naud I, Klipp W (1995) Characterization of an fdxN mutant of Rhodobacter capsulatus indicates that ferredoxin I serves as electron donor to nitrogenase. Biochim Biophys Acta 1232:33–42

    PubMed  Google Scholar 

  • Kapdan IK, Kargi F (2006) Bio-hydrogen production from waste material. Enzyme Microb Technol 38:569–582

    CAS  Google Scholar 

  • Karrash S, Bullough PA, Ghosh R (1995) The 8.5 Å projection map of the light-harvesting complex I from Rhodospirillum rubrum reveals a ring composed of 16 subunits. EMBO J 14:631–638

    Google Scholar 

  • Kars G, Gündüz U (2010) Towards a super H2 producer: improvements in photofermentative biohydrogen production by genetic manipulations. Int J Hydrog Energy 35:6646–6656

    CAS  Google Scholar 

  • Kars G, Gündüz U, Rakhely G, Yücel M, Eroğlu I, Kovacs LK (2008) Improved hydrogen production by hydrogenase deficient mutant strain of Rhodobacter sphaeroides O.U.001. Int J Hydrog Energy 33:3056–3060

    CAS  Google Scholar 

  • Kars G, Gündüz U, Yücel M, Rakhely G, Kovacs K, Eroğlu I (2009) Evaluation of hydrogen production by Rhodobacter sphaeroides O.U.001 and its hupSL deficient mutant using acetate and malate as carbon sources. Int J Hydrog Energy 34:2184–2190

    CAS  Google Scholar 

  • Kawagoshi Y, Oki Y, Nakano I, Fujimoto A, Takahashi H (2010) Biohydrogen production by isolated halotolerant photosynthetic bacteria using long-wavelength light-emitting diode (LW-LED). Int J Hydrog Energy 35:13365–13369

    CAS  Google Scholar 

  • Kern M, Klipp W, Klemme HJ (1994) Increased nitrogenase dependent H2 photoproduction by hup mutants of Rhodospirillum rubrum. Appl Environ Microbiol 60:1768–1774

    CAS  PubMed Central  PubMed  Google Scholar 

  • Keskin T, Abo-Hashesh M, Hallenbeck PC (2011) Photofermentative hydrogen production from wastes. Bioresour Technol 102:8557–8568

    CAS  PubMed  Google Scholar 

  • Kim MS, Baek JS, Lee JK (2006) Comparison of H2 accumulation by Rhodobacter sphaeroides KD131 and its uptake hydrogenase and PHB synthase deficient mutant. Int J Hydrog Energy 31:121–127

    CAS  Google Scholar 

  • Klamt S, Grammel H, Straube R, Ghosh R, Gilles ED (2008) Modeling the electron transport chain of purple non-sulfur bacteria. Mol Syst Biol 4:156–174

    PubMed Central  PubMed  Google Scholar 

  • Koblízek M, Shih JD, Breitbart SI, Ratcliffe EC, Kolber ZS, Hunter CN, Niederman RA (2005) Sequential assembly of photosynthetic units in Rhodobacter sphaeroides as revealed by fast repetition rate analysis of variable bacteriochlorophyll a fluorescence. Biochim Biophys Acta 1706:220–231

    PubMed  Google Scholar 

  • Koku H, Eroğlu I, Gündüz U, Yücel M, Türker L (2002) Aspects of metabolism of hydrogen production by Rhodobacter sphaeroides. Int J Hydrog Energy 27:1315–1329

    CAS  Google Scholar 

  • Koku H, Eroğlu I, Gündüz U, Yücel M, Türker L (2003) Kinetics of biological hydrogen production by the photosynthetic bacterium Rhodobacter sphaeroides O.U. 001. Int J Hydrog Energy 28:381–388

    CAS  Google Scholar 

  • Kondo T, Arakawa M, Hirai T, Wakayama T, Hara M, Miyake J (2002a) Enhancement of hydrogen production by a photosynthetic bacterium mutant with reduced pigment. J Biosci Bioeng 93:145–150

    CAS  PubMed  Google Scholar 

  • Kondo T, Arakawa M, Wakayama T, Miyake J (2002b) Hydrogen production by combining two types of photosynthetic bacteria with different characteristics. Int J Hydrog Energy 27:1303–1308

    CAS  Google Scholar 

  • Larimer FW, Chain P, Hauser L, Lamerdin J, Malfatti S, Do L, Land ML, Pelletier DA, Beatty JT, Lang AS, Tabita FR, Gibson JL, Hanson TE, Bobst C, Torres y Torres JL, Peres C, Harrison FH, Gibson J, Harwood CS (2004) Complete genome sequence of the metabolic versatile photosynthetic bacterium Rhodopseudomonas palustris. Nat Biotechnol 22:55–61

    CAS  PubMed  Google Scholar 

  • Liao Q, Wamg YJ, Wang YZ, Zhu X, Tian X, Li J (2010) Formation and hydrogen production of photosynthetic bacterial biofilm under various illumination conditions. Bioresour Technol 101:5315–5324

    CAS  PubMed  Google Scholar 

  • Loach PA, Parker-Loach PS (2008) Structure-function relationships in bacterial light-harvesting complexes investigated by reconstitution techniques. In: Hunter CD, Daldal F, Thurnauer MC, Beatty JT (eds) The purple phototrophic bacteria, vol 28, Advances in photosynthesis and respiration. Springer Science+Business Media, Dordrecht, pp 181–198

    Google Scholar 

  • Maróti P (2008) Kinetics and yields of bacteriochlorophyll fluorescence: redox and conformation changes in reaction center of Rhodobacter sphaeroides. Eur Biophys J 37:1175–1184

    PubMed  Google Scholar 

  • McKinlay JB, Harwood CS (2010) Carbon dioxide fixation as a central redox cofactor recycling mechanism in bacteria. Proc Natl Acad Sci U S A 107:11669–11675

    CAS  PubMed Central  PubMed  Google Scholar 

  • McKinlay JB, Harwood CS (2011) Calvin cycle flux, pathway constraints, and substrate oxidation state together determine the H2 biofuel yield in photoheterotrophic bacteria. mBio 2:e00323-10

    Google Scholar 

  • Miyake J (1998) The science of biohydrogen. In: Zaborsky OR (ed) Biohydrogen. Plenum Press, London, pp 7–18

    Google Scholar 

  • Miyake J, Kawamura S (1987) Efficiency of light energy conversion to hydrogen by the photosynthetic bacterium Rhodobacter sphaeroides. Int J Hydrog Energy 12:147–149

    CAS  Google Scholar 

  • Miyake J, Wakayama T, Schnackenberg J, Arai T, Asada Y (1999) Simulation of the daily sunlight illumination pattern for bacterial photo-hydrogen production. J Biosci Bioeng 88:659–663

    CAS  PubMed  Google Scholar 

  • Moreno-Vivian C, Hennecke S, Pühler S, Klipp W (1989) Open reading frame 5 (ORF5), encoding a ferredoxin-like protein, and nifQ are cotranscribed with nifE, nifN, nifX, and ORF4 in Rhodobacter capsulatus. J Bacteriol 171:2591–2598

    CAS  PubMed Central  PubMed  Google Scholar 

  • Naud I, Meyer C, David L, Breton J, Gaillard J, Jouanneau Y (1996) Identification of residues of Rhodobacter capsulatus ferredoxin I important for its interaction with nitrogenase. Eur J Biochem 237:399–405

    CAS  PubMed  Google Scholar 

  • Oda Y, Samanta SK, Rey FE, Wu L, Liu X, Yan T, Zhou J, Harwood CS (2005) Functional genomic analysis of three nitrogenase isozymes in the photosynthetic bacterium Rhodopseudomonas palustris. J Bacteriol 187:7784–7794

    CAS  PubMed Central  PubMed  Google Scholar 

  • Oda Y, Larimer FW, Chain PS, Malfatti S, Shin MV, Vergez LM, Hauser L, Land ML, Braatsch S, Beatty JT, Pelletier DA, Schaefer AL, Harwood CS (2008) Multiple genome sequences reveal adaptations of a phototrophic bacterium to sediment microenvironments. Proc Natl Acad Sci U S A 105:18543–18548

    CAS  PubMed Central  PubMed  Google Scholar 

  • Okamura MY, Feher G (1992) Proton transfer in reaction centers from photosynthetic bacteria. Annu Rev Biochem 61:861–896

    CAS  PubMed  Google Scholar 

  • Okamura MY, Feher G (1995) Proton-coupled electron transfer reactions of QB in reaction centers from photosynthetic bacteria. In: Blankenship RE, Madigan MT, Bauer CE (eds) Anoxygenic photosynthetic bacteria, vol 2, Advances in photosynthesis and respiration. Springer Science+Business Media, Dordrecht, pp 577–593

    Google Scholar 

  • Okamura MY, Paddock ML, Graige MS, Feher G (2000) Proton and electron transfer in bacterial reaction centers. Biochim Biophys Acta 1458:148–163

    CAS  PubMed  Google Scholar 

  • Ooshima H, Takakuwa S, Katsuda T, Okuda M, Shirasawa T, Azuma M, Kato J (1998) Production of hydrogen by a hydrogenase deficient mutant of Rhodobacter capsulatus. J Ferment Bioeng 85:470–475

    CAS  Google Scholar 

  • Otzuki T, Uchiyama S, Fujiki K, Fukunaga S (1998) Hydrogen production by a floating-type photobioreactor. In: Zaborsky OR (ed) Biohydrogen. Plenum Press, London, pp 369–374

    Google Scholar 

  • Öztürk Y, Yücel M, Daldal F, Mandacı S, Gündüz U, Türker L, Eroğlu I (2006) Hydrogen production by using Rhodobacter capsulatus mutants with genetically modified electron transfer chains. Int J Hydrog Energy 31:1545–1552

    Google Scholar 

  • Paddock ML, Feher G, Okamura MY (2003) Proton transfer pathways and mechanism in bacterial reaction centers. FEBS Lett 555:45–50

    CAS  PubMed  Google Scholar 

  • Qian Y, Tabita FR (1996) A global signal transduction system regulates aerobic and anaerobic CO2 fixation in Rhodobacter sphaeroides. J Bacteriol 178:12–18

    CAS  PubMed Central  PubMed  Google Scholar 

  • Reddy CSK, Ghai R, Rashmi V, Kalia C (2003) Polyhydroxyalkanoates: an overview. Bioresour Technol 87:137–146

    CAS  PubMed  Google Scholar 

  • Redwood MD, Paterson-Beedle M, Macaskie LE (2009) Integrating dark and light bio-hydrogen production strategies: towards the hydrogen economy. Rev Environ Sci Biotechnol 8:149–185

    CAS  Google Scholar 

  • Rees DC, Howard JB (2000) Nitrogenase: standing at the crossroads. Curr Opin Chem Biol 4:559–566

    CAS  PubMed  Google Scholar 

  • Rey FE, Heiniger EK, Harwood CS (2007) Redirection of metabolism for biological hydrogen production. Appl Environ Microbiol 73:1665–1671

    CAS  PubMed Central  PubMed  Google Scholar 

  • Robert B (2008) Spectroscopic properties of antenna complexes from purple bacteria. In: Hunter CD, Daldal F, Thurnauer MC, Beatty JT (eds) The purple phototrophic bacteria, vol 28, Advances in photosynthesis and respiration. Springer, Dordrecht, pp 199–212

    Google Scholar 

  • Sasikala C, Ramana CV (1995) Biotechnological potentials of anoxygenic phototrophic bacteria: II. Biopolyesters, biopesticide, biofuel and biofertilizer. Adv Appl Microbiol 41:227–278

    CAS  PubMed  Google Scholar 

  • Sasikala K, Ramana CV, Raghuveer Rao P, Subrahmanyam M (1990) Effect of gas phase on the photoproduction of hydrogen and substrate conversion efficiency in the photosynthetic bacterium Rhodobacter sphaeroides O.U. 001. Int J Hydrog Energy 15:795–797

    CAS  Google Scholar 

  • Schatt E, Jouanneau Y, Vignais PM (1989) Molecular cloning and sequence analysis of the structural gene of ferredoxin I from the photosynthetic bacterium Rhodobacter capsulatus. J Bacteriol 171:6218–6226

    CAS  PubMed Central  PubMed  Google Scholar 

  • Seefeldt LC, Hoffman BM, Dean DR (2009) Mechanism of Mo-dependent nitrogenase. Annu Rev Biochem 78:701–722

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sener MK, Schulten K (2008) From atomic-level structure to supramolecular organization in the photosynthetic unit of purple bacteria. In: Hunter CD, Daldal F, Thurnauer MC, Beatty JT (eds) The purple phototrophic bacteria, vol 28, Advances in photosynthesis and respiration. Springer, Dordrecht, pp 275–294

    Google Scholar 

  • Shapleigh JP (2008) Dissimilatory and assimilatory nitrate reduction in the purple photosynthetic bacteria. In: Hunter CD, Daldal F, Thurnauer MC, Beatty JT (eds) The purple phototrophic bacteria, vol 28, Advances in photosynthesis and respiration. Springer, Dordrecht/London, pp 623–642

    Google Scholar 

  • Sheuring S, Rigaud JL, Sturgis JN (2004) Variable LH2 stoichiometry and core clustering in native membranes of Rhodospirillum photometricum. EMBO J 23:4127–4413

    Google Scholar 

  • Sheuring S, Lévy D, Rigaud JL (2005) Watching the components of photosynthetic bacterial membranes and their in situ organization by atomic force microscopy. Biochim Biophys Acta 1712:109–127

    Google Scholar 

  • Shinkarev VP, Wraight CA (1993) Electron and proton transfer in the acceptor quinone complex of reaction centers of phototrophic bacteria. In: Deisenhofer J, Norris JR (eds) The photosynthetic reaction center, vol 1. Academic, San Diego, pp 193–255

    Google Scholar 

  • Steinborn B, Oelze J (1989) Nitrogenase and photosynthetic activities of chemostat cultures of Rhodobacter capsulatus 37b4 grown under different illuminations. Arch Microbiol 152:100–104

    CAS  Google Scholar 

  • Swem LR, Gong X, Yu CA, Bauer CE (2006) Identification of a ubiquinone-binding site that affects autophosphorylation of the sensor kinase RegB. J Biol Chem 281:6768–6775

    CAS  PubMed Central  PubMed  Google Scholar 

  • Takaichi S (2008) Distribution and biosynthesis of carotenoids. In: Hunter CD, Daldal F, Thurnauer MC, Beatty JT (eds) The purple phototrophic bacteria, vol 28, Advances in photosynthesis and respiration. Springer, Dordrecht/London, pp 97–117

    Google Scholar 

  • Tian X, Liao Q, Zhu X, Wang Y, Zhang P, Li H, Wang H (2010) Characteristics of a biofilm photobioreactor as applied to photo-hydrogen production. Bioresour Technol 101:977–983

    CAS  PubMed  Google Scholar 

  • Tredici MR (1999) Bioreactors, photo. In: Flickinger MC, Drew SW (eds) Encyclopedia of bioprocess technology: fermentation, biocatalysis, and bioseparation, vol 1. Wiley, New York, pp 395–419

    Google Scholar 

  • Uyar B, Eroğlu I, Yücel M, Gündüz U, Türker L (2007) Effect of light intensity, wavelength and illumination protocol on hydrogen production in photobioreactors. Int J Hydrog Energy 32:4670–4677

    CAS  Google Scholar 

  • Vasilyeva L, Miyake M, Khatipov E, Wakayama T, Sekine M, Hara M, Nakada E, Asada Y, Miyake J (1999) Enhanced hydrogen production by a mutant of Rhodobacter sphaeroides having an altered light-harvesting system. J Biosci Bioeng 87:619–624

    CAS  PubMed  Google Scholar 

  • Vignais PM, Billoud B (2007) Occurrence, classification, and biological function of hydrogenases: an overview. Chem Rev 107:4206–4272

    CAS  PubMed  Google Scholar 

  • Vignais PM, Colbeau A, Willison JC, Jouanneau Y (1985) Hydrogenase, nitrogenase, and hydrogen metabolism in the photosynthetic bacteria. Adv Microb Physiol 26:155–234

    CAS  PubMed  Google Scholar 

  • Vincenzini M, Marchini A, Ena A, De Philippis R (1997) H2 and poly-β-hydroxybutyrate, two alternative chemicals from purple non sulfur bacteria. Biotechnol Lett 19:759–762

    CAS  Google Scholar 

  • Vonshak A, Richmond A (1985) Problems in developing the biotechonology of algal biomass production. Plant Soil 89:129–135

    Google Scholar 

  • Wakayama T, Miyake J (2002) Light shade bands for the improvement of solar hydrogen production efficiency by Rhodobacter sphaeroides RV. Int J Hydrog Energy 27:1495–1500

    CAS  Google Scholar 

  • Walz T, Ghosh R (1997) Two-dimensional crystallization of the light-harvesting I-reaction center photounit from Rhodospirillum rubrum. J Mol Biol 256:107–111

    Google Scholar 

  • Walz T, Jamieson SJ, Bowers CM, Bullogh PA, Hunter CN (1998) Projection structures of three photosynthetic complexes from Rhodobacter sphaeroides: LH2 at 6 Å, LH1 and RC-LH1 at 25 Å. J Mol Biol 282:833–845

    CAS  PubMed  Google Scholar 

  • Wang YZ, Liao Q, Zhu X, Chen R, Guo CL, Zhou J (2013) Bioconversion characteristics of R. palustris CQK 01 entrapped in a photobioreactor for hydrogen production. Bioresour Technol 135:331–338

    CAS  PubMed  Google Scholar 

  • Williams JC, Allen JP (2008) Directed modification of reaction centers from purple bacteria. In: Hunter CD, Daldal F, Thurnauer MC, Beatty JT (eds) The purple phototrophic bacteria, vol 28, Advances in photosynthesis and respiration. Springer, Dordrecht/London, pp 337–353

    Google Scholar 

  • Willison JC, Pierrard J, Hübner P (1993) Sequence and transcript analysis of the nitrogenase structural gene operon nifHDK of Rhodobacter capsulatus: evidence of an intramolecular processing of nifHDK mRNA. Gene 133:39–46

    CAS  PubMed  Google Scholar 

  • Wraight CA (2004) Proton and electron transfer in the acceptor quinone complex of bacterial photosynthetic reaction centers. Front Biosci 9:309–327

    CAS  PubMed  Google Scholar 

  • Wraight CA (2005) Intraprotein proton transfer – Concept and realities from the bacterial photosynthetic reaction center. In: Wilkström M (ed) Biophysical and structural aspects of bioenergetics. Royal Society of Chemistry, Cambridge, pp 273–313

    Google Scholar 

  • Xie GJ, Liu BF, Ding J, Xing DF, Ren HY, Guo WG, Ren NQ (2012) Enhanced photo-H2 production by Rhodopseudomonas faecalis RLD-53 immobilization on activated carbon fibers. Biomass Bioenergy 44:122–129

    CAS  Google Scholar 

  • Zannoni D (1995) Aerobic and anaerobic electron transport chains in anoxygenic phototrophic bacteria. In: Blankenship RE, Madigan MT, Bauer CE (eds) Anoxygenic photosynthetic bacteria, vol 2, Advances in photosynthesis and respiration. Springer Science+Business Media, Dordrecht, pp 949–971

    Google Scholar 

  • Zannoni D, Schoepp-Cothenet B, Hosler J (2008) Respiration and respiratory complexes. In: Hunter CD, Daldal F, Thurnauer MC, Beatty JT (eds) The purple phototrophic bacteria, vol 28, Advances in photosynthesis and respiration. Springer, Springer Science+Business Media, Dordrecht, pp 537–561

    Google Scholar 

  • Zhang C, Zhu X, Liao Q, Wang Y, Li J, Ding Y, Wang H (2010) Performance of a groove-type photobioreactor for hydrogen production by immobilized photosynthetic bacteria. Int J Hydrog Energy 35:5284–5292

    CAS  Google Scholar 

  • Zuber H, Brunhisolz RA (1991) Structure and function of antenna polypeptides and chlorophyll-protein complexes: principles and variability. In: Sheer H (ed) Chlorophylls. CRC Press, Boca Raton, pp 627–703

    Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the Italian Ministry of Agricultural, Food and Forest Politics (MIPAAF; project IMERA), the Italian Ministry of the Environment (MATTM; project PIRODE), the Italian Ministry of the University and Research (MIUR) and the Italian National Research Council (CNR) (EFOR project) that partially supported the researches carried out in their lab and mentioned in this chapter. The Authors would also like to mention the contribution to the development of their researches on biological hydrogen given by the activities carried out by RDP in the frame of the IEA-HIA (International Energy Agency – Hydrogen Implementation Agreement), Annex 21 “Bioinspired and biological hydrogen”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roberto De Philippis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Adessi, A., De Philippis, R. (2014). Photosynthesis and Hydrogen Production in Purple Non Sulfur Bacteria: Fundamental and Applied Aspects. In: Zannoni, D., De Philippis, R. (eds) Microbial BioEnergy: Hydrogen Production. Advances in Photosynthesis and Respiration, vol 38. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-8554-9_12

Download citation

Publish with us

Policies and ethics