Skip to main content

Part of the book series: Fluid Mechanics and Its Applications ((FMIA,volume 106))

Abstract

This chapter is devoted to the initial stage of cavitation erosion known as the incubation period. During this period, failure and material removal are negligible and the damage consists in isolated pits that result from plastic deformation for metallic samples. Typical distributions of pits with respect to their diameter are presented and the effects of various parameters such as flow velocity and material properties are discussed. The characteristic time of the erosion process is defined as the time needed for the pits to fully cover the eroded area without any overlap, and the characteristic pit size is defined as the size of those pits whose contribution to the covered surface is the largest. A new technique for estimating impulsive pressures from pitting tests is suggested. It is based on the similarity between a cavitation erosion pit and a conventional spherical nanoindentation imprint. This technique allows for the determination of the load spectrum in a wide range of pressure amplitudes by combining pitting tests on different materials of various cavitation resistances. The impulsive load associated with a pit can be deduced and correlated with pit volume.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Knapp RT (1955) Recent Investigations of the mechanics of cavitation and cavitation damage. Trans ASME 77:1045–1054

    Google Scholar 

  2. Knapp RT (1958) Accelerated field tests of cavitation intensity. Trans ASME 80:91–102

    Google Scholar 

  3. Knapp RT, Daily JW, Hammitt FG (1970) Cavitation. McGraw Hill Book Co., New York

    Google Scholar 

  4. Hammitt FG (1980) Cavitation and multiphase flow phenomena. McGraw-Hill International Book Co, New York

    Google Scholar 

  5. Franc J-P, Riondet M, Karimi A, Chahine GL (2012) Material and velocity effects on cavitation erosion pitting. Wear 274–275:248–259. doi:10.1016/j.wear.2011.09.006

    Article  Google Scholar 

  6. Jayaprakash A, Choi J-K, Chahine GL, Martin F, Donnelly M, Franc J-P, Karimi A (2012) Scaling study of cavitation pitting from cavitating jets and ultrasonic horns. Wear 296(1–2):619–629. doi:10.1016/j.wear.2012.07.025

    Article  Google Scholar 

  7. Fortes Patella R, Reboud J-L, Archer A (2000) Cavitation damage measurement by 3D laser profilometry. Wear 246(1–2):59–67. doi:10.1016/s0043-1648(00)00446-4

    Article  Google Scholar 

  8. Pieralli C, Tribillon G (1987) Traitement d’images 3D appliqué à la profilométrie optique pour l’étude du phénomène d’érosion de cavitation. J Optics (Paris) 18(1):9–18

    Article  Google Scholar 

  9. Belahadji B, Franc J-P, Michel J-M (1991) A statistical analysis of cavitation erosion pits. J Fluids Eng 113(4):700–706

    Article  Google Scholar 

  10. Ahmed SM, Hokkirigawa K, Ito Y, Oba R (1991) Scanning electron microscopy observation on the incubation period of vibratory cavitation erosion. Wear 142(2):303–314. doi:10.1016/0043-1648(91)90171-p

    Article  Google Scholar 

  11. Stinebring DR, Holl JW, Arndt REA (1980) Two aspects of cavitation damage in the incubation zone: scaling by energy considerations and leading edge damage. J Fluids Eng 102(Dec):481–485

    Article  Google Scholar 

  12. Weibull W (1951) A statistical distribution function of wide applicability. J Appl Mech-Trans ASME 18(3):293–297

    MATH  Google Scholar 

  13. Hammitt FG (1979) Cavitation erosion: the state of the art and predicting capability. Appl Mech Rev 32(6):665–675

    Google Scholar 

  14. Franc J-P, Riondet M, Karimi A, Chahine GL (2011) Impact load measurements in an erosive cavitating flow. J Fluids Eng 133(12):121301–121308

    Article  Google Scholar 

  15. Escaler X, Egusquiza E, Farhat M, Avellan F, Coussirat M (2006) Detection of cavitation in hydraulic turbines. Mech Syst Sig Process 20(4):983–1007

    Article  Google Scholar 

  16. Soyama H, Sekine Y, Saito K (2011) Evaluation of the enhanced cavitation impact energy using a PVDF transducer with an acrylic resin backing. Measurements 44:1279–1283

    Google Scholar 

  17. Xu R, Zhao R, Cui Y, Lu J, Ni X (2009) The collapse and rebound of gas-vapor cavity on metal surface. Optik 120:115–120

    Article  Google Scholar 

  18. Tabor D (1951) The hardness of metals. Clarendon Press, Oxford

    Google Scholar 

  19. Fischer-Cripps AC (2004) Nanoindentation. Mechanical Engineering Series. Springer, New-York

    Google Scholar 

  20. Elmustafa AA (2007) Pile-up/sink-in of rate-sensitive nanoindentation creeping solids. Modell Simul Mater Sci Eng 15(7):823

    Article  Google Scholar 

  21. Momma T, Lichtarowicz A (1995) A study of pressures and erosion produced by collapsing cavitation. Wear 186–187 (Part 2):425–436. doi:10.1016/0043-1648(95)07144-x

  22. Ahn J-H, Kwon D (2001) Derivation of plastic stress–strain relationship from ball indentations: examination of strain definition and pileup effect. J Mater Res 16(11):3170–3178. doi:10.1557/JMR 2001.0437

    Article  Google Scholar 

  23. Jeon EC, Kim JY, Baik MK, Kim SH, Park JS, Kwon D (2006) Optimum definition of true strain beneath a spherical indenter for deriving indentation flow curves. Mater Sci Eng A 419:196–201

    Article  Google Scholar 

  24. Sneddon IN (1965) The relation between load and penetration in the axisymmetric Boussinesq problem for a punch of arbitrary profile. Int J Eng Sci 3(1):47–57. doi:10.1016/0020-7225(65)90019-4

    Article  MATH  MathSciNet  Google Scholar 

  25. Oliver WC, Pharr GM (1992) An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J Mater Res 7(6):1564–1583

    Article  Google Scholar 

  26. Francis HA (1976) Phenomenological analysis of plastic spherical indentation. J Eng Mater Technol 98(3):272–281

    Article  MathSciNet  Google Scholar 

  27. Hollomon JH (1945) Tensile deformation. Trans AIME 162:268

    Google Scholar 

  28. Hollomon JH, Lubahn JD (1946) Plastic flow of metals. Phys Rev 70:775

    Article  Google Scholar 

  29. Ramberg W, Osgood WR (1943) Description of stress-strain curves by three parameters. National Advisory Committee for Aeronautics, Washington

    Google Scholar 

  30. Lee WS, Sue WC, Lin CF, Wu CJ (2000) The strain rate and temperature dependence of the dynamic impact properties of 7075 aluminum alloy. J Mater Process Technol 100:116–122

    Article  Google Scholar 

  31. Okada T, Iwai Y, Hattori S, Tanimura N (1995) Relation between impact load and the damage produced by cavitation bubble collapse. Wear 184(2):231–239. doi:10.1016/0043-1648(94)06581-0

    Article  Google Scholar 

  32. Lee MK, Hong SM, Kim GH, Kim KH, Rhee CK, Kim WW (2006) Numerical correlation of the cavitation bubble collapse load and frequency with the pitting damage of flame quenched Cu-9Al-4.5Ni-4.5Fe alloy. Mater Sci Eng A (Struct Mater Prop Microstruct Process) 425 (1–2):15–21. doi:10.1016/j.msea.2006.03.039

  33. Hattori S, Takinami, M., Otani, T. (2009) Comparison of cavitation erosion rate with liquid impingement erosion rate. Paper presented at the 7th international symposium on cavitation, Ann Arbor, Michigan, USA, August 17-22, 2009

    Google Scholar 

  34. Soyama H, Lichtarowicz A, Momma T, Williams EJ (1998) A new calibration method for dynamically loaded transducers and its application to cavitation impact measurement. J Fluids Eng 120(4):712–718

    Article  Google Scholar 

  35. Franc J-P, Michel J-M (1997) Cavitation erosion research in France: the state of the art. J Mar Sci Technol 2:233–244

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jean-Pierre Franc , Georges L. Chahine or Ayat Karimi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Franc, JP., Chahine, G.L., Karimi, A. (2014). Pitting and Incubation Period . In: Kim, KH., Chahine, G., Franc, JP., Karimi, A. (eds) Advanced Experimental and Numerical Techniques for Cavitation Erosion Prediction. Fluid Mechanics and Its Applications, vol 106. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-8539-6_3

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-8539-6_3

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-017-8538-9

  • Online ISBN: 978-94-017-8539-6

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics