Skip to main content

Part of the book series: Fluid Mechanics and Its Applications ((FMIA,volume 106))

Abstract

This chapter presents in detail several cavitation erosion testing methods commonly used in the laboratory. The vibratory cavitation apparatus (G32) is described with its two variants, the direct method using a specimen attached to the vibrating tip of the ultrasonic horn and the alternative method using a fixed specimen facing the horn tip. In the cavitating jet apparatus (G134 and its variants), a jet is discharged at high pressure and velocity in a cell whose pressure may be controlled to adjust the cavitation number. This results in a shear type cavitation whose aggressiveness may be enhanced by a proper design of the nozzle shape and piping assembly. A high-speed cavitation tunnel equipped with a radial divergent test section is also presented. This particular test section generates an unsteady cavity attached to the nozzle exit with cavitation erosion damage concentrated in the cavity closure region. Usual testing procedures together with typical erosion patterns and mass loss results obtained in such facilities are also presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Billet M (2005) The special committee on cavitation erosion on propellers and appendages on high powered/high speed ships. Paper presented at the 24th International Towing Tank Conference (ITTC), Edinburgh, UK, 4–10 Sept 2005

    Google Scholar 

  2. Grekula M, Bark G (2001) Experimental study of cavitation in a kaplan model turbine. Paper presented at the 4th International Symposium on Cavitation (CAV2001), Pasadena, CA, 20–23 Jun 2001

    Google Scholar 

  3. Farhat M, Bourdon P (1998) Extending repair intervals of hydro turbines by mitigating cavitation erosion. Paper presented at the CEA Electricity’98 Conference and Exposition, Toronto, 26–29 Apr 1998

    Google Scholar 

  4. Farhat M, Bourdon P, Lavigne P, Simoneau R (1997) The hydrodynamic aggressiveness of cavitating flows in hydro turbines. Paper presented at the ASME Fluids Engineering Division Summer Meeting, Vancouver, BC, 22–26 Jun 1997

    Google Scholar 

  5. Turbomachinery Society of Japan (2010) Guideline for prediction and evaluation of cavitation erosion in pumps. Tokyo

    Google Scholar 

  6. Hammitt FG, Chao C, Kling CL, Mitchell TM, Rogers DO (1970) Round-Robin test with vibratory cavitation and liquid impact facilities of 6061–T 6511 aluminum alloy, 316 stainless steel and commercially pure nickel. Mater Res Stand 10:16–36

    Google Scholar 

  7. Chao C, Hammitt FG, Kling CL (1968) ASTM round-robin test with vibratory cavitation and liquid impact facilities of 6061–T6 aluminum alloy, 316 stainless steel, commercially pure nickel, vol 84. The University of Michigan Report MMPP-344-3-T/01357-4-T, Ann Arbor

    Google Scholar 

  8. Light KH (2005) Development of a cavitation erosion resistant advanced material system. Master of science thesis, The University of Maine, Orono, ME

    Google Scholar 

  9. Dominguez-Cortazar MA, Franc J-P, Michel J-M (1997) The erosive axial collapse of a cavitating vortex: an experimental study. J Fluids Eng 119(3):686–691

    Article  Google Scholar 

  10. Hammitt FG (1966) Damage to solids caused by cavitation. Philos Trans R Soc of Lond Ser A Math Phys Sci 260(1110):245–255

    Article  Google Scholar 

  11. Escaler X, Avellan F, Egusquiza E (2001) Cavitation erosion prediction from inferred forces using material resistance data. Paper presented at the 4th international symposium on cavitation, Pasadena, California, 20–23 Jun 2001

    Google Scholar 

  12. March PA (1987) Evaluating the relative resistance of materials to cavitation erosion: a comparison of cavitating jet results and vibratory results. Paper presented at the ASME cavitation and multiphase flow forum, Cincinnati, 14–17 Jun 1987

    Google Scholar 

  13. Momma T, Lichtarowicz A (1995) A study of pressures and erosion produced by collapsing cavitation. Wear 186–187(Part 2):425–436. doi:10.1016/0043-1648(95)07144-x

  14. Chahine GL, Courbière P (1987) Noise and erosion of self-resonating cavitating jets. J Fluids Eng 109(4):429–435

    Article  Google Scholar 

  15. Lee MK, Kim WW, Rhee CK, Lee WJ (1999) Liquid impact erosion mechanism and theoretical impact stress analysis in tin-coated stream turbine blade materials. Metall Mater Trans A 30A:961–968

    Article  Google Scholar 

  16. Pfitsch W, Gowing S, Fry D, Donnelly M, Jessup S (2009) Development of measurement techniques for studying propeller erosion damage in severe wake fields. Paper presented at the 7th international symposium on cavitation (CAV2009), Ann Arbor, Michigan, 17–22 Aug 2009

    Google Scholar 

  17. Annual Book of ASTM Standards (2010) Section 3: metals test methods and analytical procedures, vol 03.02. Annual Book of ASTM Standards, West Conshohocken

    Google Scholar 

  18. Designation: G 32-09: Standard Test Method for Cavitation Erosion Using Vibratory Apparatus. Annual Book of ASTM Standards (2010) Section 3: Metals test methods and analytical procedures, vol 03.02. West Conshohocken, pp 94–109

    Google Scholar 

  19. Hansson I, Mørch KA (1980) The dynamics of cavity clusters in ultrasonic (vibratory) cavitation erosion. J Appl Phys 51(9):4651–4658

    Article  Google Scholar 

  20. Designation: G134-95: standard test method for erosion of solid materials by a cavitating liquid Jet. Annual Book of ASTM Standards (2010) Section 3: metals test methods and analytical procedures, vol 03.02, West Conshohocken, pp 558–571

    Google Scholar 

  21. Crow SC, Champagne FH (1971) Orderly structure in jet turbulence. J Fluid Mech 48(03):547–591. doi:10.1017/S0022112071001745

    Article  Google Scholar 

  22. Johnson VE, Chahine GL, Lindenmuth WT, Conn AF, Frederick GS, Giacchino GJ (1984) Cavitating and structured jets for mechanical bits to increase drilling rate. Part I: theory and concepts. J Energy Res Technol 106(2):282–288

    Article  Google Scholar 

  23. Johnson VE, Chahine GL, Lindenmuth WT, Conn AF, Frederick GS, Giacchino GJ (1984) Cavitating and structured jets for mechanical bits to increase drilling rate. Part II: experimental results. J Energy Res Technol 106(2):289–294

    Article  Google Scholar 

  24. Chahine GL, Genoux PF (1983) Collapse of a cavitating vortex ring. J Fluids Eng 105(4):400–405

    Article  Google Scholar 

  25. Hattori S, Sun B-H, Hammitt FG, Okada T (1985) An application of bubble collapse pulse height spectra to venturi cavitation erosion of 1100-0 aluminum. Wear 103(2):119–131. doi:10.1016/0043-1648(85)90128-0

    Article  Google Scholar 

  26. Franc J-P, Michel J-M (1997) Cavitation erosion research in France: the state of the art. J Mar Sci Technol 2:233–244

    Article  Google Scholar 

  27. Okada T, Hammitt FG (1981) Cavitation erosion in vibratory and venturi facilities. Wear 69(1):55–69

    Article  Google Scholar 

  28. Steller J, Krella A, Koronowicz J, Janicki W (2005) Towards quantitative assessment of material resistance to cavitation erosion. Wear 258(1–4):604–613. doi:10.1016/j.wear.2004.02.015

    Article  Google Scholar 

  29. Krella A (2011) An experimental parameter of cavitation erosion resistance for tin coatings. Wear 270(3–4):252–257. doi:10.1016/j.wear.2010.10.065

    Article  Google Scholar 

  30. Krella A (2005) Influence of cavitation intensity on X6CrNiTi18-10 stainless steel performance in the incubation period. Wear 258(11–12):1723–1731. doi:10.1016/j.wear.2004.11.025

    Article  Google Scholar 

  31. Krella A, Czyzniewski A (2006) Cavitation erosion resistance of Cr–N coating deposited on stainless steel. Wear 260(11–12):1324–1332. doi:10.1016/j.wear.2005.09.018

    Article  Google Scholar 

  32. Krella A, Czyzniewski A (2008) Cavitation erosion resistance of nanocrystalline tin coating deposited on stainless steel. Wear 265(7–8):963–970. doi:10.1016/j.wear.2008.02.004

    Article  Google Scholar 

  33. Krella A, Czyzniewski A (2009) Cavitation resistance of Cr–N coatings deposited on austenitic stainless steel at various temperatures. Wear 266(7–8):800–809. doi:10.1016/j.wear.2008.11.002

    Article  Google Scholar 

  34. Krella A, Czyzniewski A (2007) Influence of the substrate hardness on the cavitation erosion resistance of tin coating. Wear 263(1–6):395–401. doi:10.1016/j.wear.2007.02.003

    Article  Google Scholar 

  35. Coleman SL, Scott VD, McEnaney B, Angell B, Stokes KR (1995) Comparison of tunnel and jet methods for cavitation erosion testing. Wear 184(1):73–81. doi:10.1016/0043-1648(94)06563-2

    Article  Google Scholar 

  36. Franc J-P (2009) Incubation time and cavitation erosion rate of work-hardening materials. J Fluids Eng 131(2):021303

    Article  Google Scholar 

  37. Franc J-P, Riondet M, Karimi A, Chahine GL (2011) Impact load measurements in an erosive cavitating flow. J Fluids Eng 133(12):121301–121308

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Georges L. Chahine , Jean-Pierre Franc or Ayat Karimi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Chahine, G.L., Franc, JP., Karimi, A. (2014). Laboratory Testing Methods of Cavitation Erosion. In: Kim, KH., Chahine, G., Franc, JP., Karimi, A. (eds) Advanced Experimental and Numerical Techniques for Cavitation Erosion Prediction. Fluid Mechanics and Its Applications, vol 106. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-8539-6_2

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-8539-6_2

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-017-8538-9

  • Online ISBN: 978-94-017-8539-6

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics