Skip to main content

The Upwelling Area Off Namibia, the Northern Part of the Benguela Current System

  • Chapter
  • First Online:
Remote Sensing of the African Seas

Abstract

In the area off Namibia satellite remote sensing data of the visible and infrared spectral range were used to investigate the upwelling processes and the biological response. Satellite derived Sea Surface Temperature was applied to study upwelling processes in relation to the driving trade winds. The investigations were focussed on the intensity and horizontal extent, the temporal and spatial variability including inter-annual and climate scales. Ocean colour satellite data allow investigation of the response of surface water to the nutrient input into the euphotic zone by upwelling processes. Observations in the area revealed, that the phytoplankton development starts with species absorbing light in the visible spectral range (diatoms and dinoflagellates) and may end in persistent shallow surface filaments with light scattering algae blooms. These blooms of coccolithophores identified by different in situ methods changed the water colour by strong particle scattering to milky turquoise discolorations. Further milky turquoise discolorations were identified as sulphur plumes. Low wind periods support the degradation of organic matter and the development of hydrogen sulphide in the bottom layer. After the onset of the trade winds and the offshore transport of surface water hydrogen sulphide enriched waters reaches with the near-bottom counter current the coast. Upwelling transports the water to the surface where the hydrogen sulphide will be oxidised to elemental sulphur. An algorithm was developed to identify and separate the sulphur plumes from algae blooms and other features on the basis of highly spectrally resolved satellite data from the MERIS sensor. The algorithm identified only coastal plumes as sulphur and that offshore plumes are formed by coccolithophores. The sulphur season is the boreal spring starting in February and reaching the maximum in April.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Agenbag JJ, Shannon LV (1988) A suggested physical explanation for the existence of a biological boundary at 2430S in the Benguela system. S Afr J Mar Sci 6(1):119–132

    Article  Google Scholar 

  • Bailey GW (1991) Organic carbon flux and development of oxygen deficiency on the modern Benguela continential shelf south of 22{degrees}S: spatial and temporal variability. In: Tyson R, Pearson TH (eds) Modern and Ancient Continental Shelf Anoxia, vol 58. vol 1. Geological Society, Special Publications, London, pp 171–183. doi:10.1144/gsl.sp.1991.058.01.12

    Google Scholar 

  • Barlow R, Louw D, Balarin M, Alheit J (2006) Pigment signatures of phytoplankton composition in the northern Benguela ecosystem during spring. Afr J Mar Sci 28(3–4):479–491

    Article  Google Scholar 

  • Barlow R, Sessions H, Silulwane N, Engel H, Hooker SB, Aiken J, Fishwick J, Vicente V, Morel A, Chami M, Ras J, Bernard S, Pfaff M, Brown JW, Fawcett A (2003) BENCAL Cruise Report. SeaWiFS Postlaunch Tech Report Series, vol 27. NASA Goddard Space Flight Center, Greenbelt, Maryland

    Google Scholar 

  • Barlow RG, Aiken J, Sessions HE, Lavender S, Mantel J (2001) Phytoplankton pigment, absorption and ocean colour characteristics in the southern Benguela ecosystem. S Afr J Sci 97(5–6):230–238

    Google Scholar 

  • Bartholomae CH, van der Plas AK (2007) Towards the development of environmental indices for the Namibian shelf, with particular reference to fisheries management. Afr J Mar Sci 29(1):25–35

    Article  Google Scholar 

  • Boyd AJ, Agenbag JJ (eds) (1985) Seasonal trends in the longshore distribution of surface temperatures off South-western Africa 18–34°S, and their relation to subsurface conditions and currents in the area 21–24°S. International Symposium on the Most Important Upwelling areas off Western Africa (Cape Blanco and Benguela), vol I. Instituto de Investigaciones Pesqueras, Barcelona

    Google Scholar 

  • Boyd AJ, Salat J, Maso M (1987) The seasonal intrusion of relatively saline water on the shelf off northern and central Namibia. S Afr J Mar Sci 5(1):107–120

    Article  Google Scholar 

  • Brown CW, Yoder JA (1994) Coccolithophorid blooms in the global ocean. J Geophys Res (C Oceans) 99 (C4):7467–7482

    Google Scholar 

  • Brüchert V, Endler R, Vogt T, Emeis KC (2004) Dynamics of methane and hydrogen sulphide in Namibian shelf sediments. Geophysical Research Abstracts 6

    Google Scholar 

  • Campillo-Campbell C, Gordoa A (2004) Physical and biological variability in the Namibian upwelling system: October 1997-October 2001. Deep Sea Research Part II: Topical Studies in. Oceanography 51(1–3):147–158

    Google Scholar 

  • Carr ME (2002) Estimation of potential productivity in eastern boundary currents using remote sensing. Deep-Sea Res (II Top Stud Oceanogr) 49(1–3):58–80

    Google Scholar 

  • Cockcroft AC (2001) Jasus lalandii ‘walkouts’ or mass strandings in South Africa during the 1990s: an overview. Mar Freshwat Res 52(8):1085–1094

    Article  Google Scholar 

  • Cockroft AC, Schoeman DS, Pitcher GC, Bailey GW, Van Zyl DL (1999) A mass stranding or “walkout” of West Coast rock lobster Jasus lalandii in Elands Bay, South Africa: causes, results and implicatio. In: Von Kaupel Klein JC, Schram FR (eds) The Biodiversity Crises and Crustacea. Crustacean Issues, vol 11. pp 673–688

    Google Scholar 

  • Colberg F, Reason CJC (2007) A model investigation of internal variability in the Angola Benguela Frontal Zone. J Geophys Res 112 (C7):C07008

    Google Scholar 

  • Cole J (1999) Environmental conditions, satellite imagery, and clupeoid recruitment in the northern Benguela upwelling system. Fish Oceanogr 8(1):25–38

    Article  Google Scholar 

  • Cole J, McGlade J (1998) Clupeoid population variability, the environment and satellite imagery in coastal upwelling systems. Rev Fish Biol Fish 8(4):445–471. doi:10.1023/a:1008861224731

    Article  Google Scholar 

  • Copenhagen WJ (1953) The periodic mortality of fish in the Walvis region. A phenomenon within the Benguela Current. Investigational Report, vol 14. Division of Sea Fisheries of South Africa, Cape Town, South Africa

    Google Scholar 

  • Demarcq H (2009) Trends in primary production, sea surface temperature and wind in upwelling systems (1998–2007). Prog Oceanogr 83(1–4):376–385. doi:10.1016/j.pocean.2009.07.022

    Article  Google Scholar 

  • Dohnalek DA, FitzPatrick JA (1983) The chemistry of reduced sulphur species and their removal from groundwater supplies. J Am Water Works Assn 6:298

    Google Scholar 

  • Emeis KC, Bruchert V, Currie B, Endler R, Ferdelman T, Kiessling A, Leipe T, Noli-Peard K, Struck U, Vogt T (2004) Shallow gas in shelf sediments of the Nambian coastal upwelling ecosystem. Cont Shelf Res 24(6):627–642

    Google Scholar 

  • Evans CL (1967) The toxicity of hydrogen sulphide and other sulphides. Q J Exp Psychol 52:231–248

    Google Scholar 

  • Fanning KA (1992) Nutrient provinces in the sea: concentration ratios, reaction rate ratios, and ideal covariation. J Geophys Res (C Oceans) 97(C4):5693–5712

    Google Scholar 

  • Fennel W (1999) Theory of the Benguela Upwelling System. J Phys Oceanogr 29(2):177–190

    Article  Google Scholar 

  • Garcia CAE, Garcia VMT, Dogliotti AI, Ferreira A, Romero SI, Mannino A, Souza MS, Mata MM (2011) Environmental conditions and bio-optical signature of a coccolithophorid bloom in the Patagonian shelf. J Geophys Res 116(C3):C03025

    Google Scholar 

  • Gordoa A, Masó M, Voges L (2000) Satellites and fisheries: the Namibian hake, a case study. In: Halpern D (ed) Satellites, Oceanography and Society. Elsevier Science B.V, Amsterdam, pp 193–205

    Google Scholar 

  • Grindley JR, Sapeika N (1969) The cause of mussel poisoning in South Africa. S Afr Med J 43:275–279

    Google Scholar 

  • Hagen E, Feistel R, Agenbag JJ, Ohde T (2001) Seasonal and interannual changes in Intense Benguela Upwelling (1982–1999). Oceanol Acta 24(6):557–568

    Article  Google Scholar 

  • Hardman-Mountford NJ, Richardson AJ, Agenbag JJ, Hagen E, Nykjaer L, Shillington FA, Villacastin C (2003) Ocean climate of the South East Atlantic observed from satellite data and wind models. Prog Oceanogr 59(2–3):181–221

    Article  Google Scholar 

  • Heymans JJ, Shannon LJ, Jarre A (2004) Changes in the northern Benguela ecosystem over three decades: 1970s, 1980s, and 1990s. Ecol Model 172(2–4):175–195

    Article  Google Scholar 

  • Hill JM (1984) The acute toxicity of hydrogen sulphide—a literature review and application to storm sewage discharges. Report ER, vol 675-M. Water Research Centre, Medmenham, United Kingdom

    Google Scholar 

  • Holligan PM, Charalampopoulou A, Hutson R (2010) Seasonal distributions of the coccolithophore, Emiliania huxleyi, and of particulate inorganic carbon in surface waters of the Scotia Sea. J Mar Syst 82(4):195–205

    Article  Google Scholar 

  • Horstman DA (1981) Reported Red-Water Outbreaks and Their Effects on Fauna of the West and South coasts of South Africa, 1959–1980. Fish Bull S Afr 15(1):71–88

    Google Scholar 

  • Humborg C, Ittekkot V, Cociasu A, Bodungen BV (1997) Effect of Danube River dam on Black Sea biogeochemistry and ecosystem structure. Nature 386(6623):385–388

    Article  Google Scholar 

  • Iglesias-Rodriguez MD, Brown CW, Doney SC, Kleypas J, Kolber D, Kolber Z, Hayes PK, Falkowski PG (2002) Representing key phytoplankton functional groups in ocean carbon cycle models: Coccolithophorids. Global Biogeochemical Cycles 16 (4):[np]

    Google Scholar 

  • Jørgensen BB (1990) A thiosulfate shunt in the sulfur cycle of marine sediments. Science (Wash) 249(4965):152–154

    Article  Google Scholar 

  • Lutjeharms JRE, Meeuwis JM (1987) The extent and variability of South-east Atlantic upwelling. S Afr J Marine Sci/Suid-Afrikaanse Tydskrif vir Seewetenskap 5:51–61

    Google Scholar 

  • Lutjeharms JRE, Shillington FA, Duncombe Rae CM (1991) Observations of extreme upwelling filaments in the Southeast Atlantic Ocean. Sci (Wash) 253(5021):774–776

    Article  Google Scholar 

  • Lutjeharms JRE, Stockton PL (1987) Kinematics of the upwelling front off southern Africa. S Afr J Marine Sci/Suid-Afrikaanse Tydskrif vir Seewetenskap 5:35–49

    Google Scholar 

  • Matthews SG, Pitcher GC (1996) Worst recorded marine mortality on the South African coast. Harmful and Toxic Algal Blooms. UNESCO, Paris (France)

    Google Scholar 

  • Millero FJ, Hubinger S, Fernandez M, Garnett S (1987) Oxidation of H2S in seawater as a function of temperature, pH and ionic strength. Environ Sci Technol 21:439–443

    Article  Google Scholar 

  • Mitchell-Innes BA, Winter A (1987) Coccolithophores: a major phytoplankton component in mature upwelled waters off the Cape Peninsula, South Africa in March, 1983. Marine biology. Heidelberg 95(1):25–30

    Google Scholar 

  • Mohrholz V, Bartholomae CH, van der Plas AK, Lass HU (2008) The seasonal variability of the northern Benguela undercurrent and its relation to the oxygen budget on the shelf. Cont Shelf Res 28(3):424–441

    Article  Google Scholar 

  • Monteiro PMS, Van der Plas A, Mohrholz V, Mabille E, Pascall A, Joubert W (2006) Variability of natural hypoxia and methane in a coastal upwelling system: oceanic physics or shelf biology? Geophys Res Lett 33 (16):[np]

    Google Scholar 

  • Nanninga HJ, Tyrrell T (1996) Importance of light for the formation of algal blooms by Emiliania huxleyi. Marine ecology progress series Oldendorf 136(1–3):195–203

    Google Scholar 

  • Nelson G, Hutchings L (1983) The Benguela upwelling area. Prog Oceanogr 12:333–356

    Article  Google Scholar 

  • Ohde T, Siegel H, Reißmann J, Gerth M (2007) Identification and investigation of sulphur plumes along the Namibian coast using the MERIS sensor. Cont Shelf Res 27(6):744–756

    Article  Google Scholar 

  • Painter SC, Poulton AJ, Allen JT, Pidcock R, Balch WM (2010) The COPAS’08 expedition to the Patagonian Shelf: physical and environmental conditions during the 2008 coccolithophore bloom. Cont Shelf Res 30(18):1907–1923

    Article  Google Scholar 

  • Pardo PC, Padín XA, Gilcoto M, Farina-Busto L, Pérez FF (2011) Evolution of upwelling systems coupled to the long-term variability in sea surface temperature and Ekman transport. Clim Res 48(2–3):231–246

    Article  Google Scholar 

  • Pitcher GC, Agenbag JJ, Calder DA, Horstman DA, Jury MR, Taunton-Clark J (1995) Red tides in relation to the meteorology of the southern Benguela upwelling system. In: Lassus P, Arzul G, Erard E, Gentien P, Marcaillou C (eds) Harmful marine algal blooms. Technique et Documentation, Lavoisier Intercept Ltd, Paris, pp 657–662

    Google Scholar 

  • Pitcher GC, Figueiras FG, Hickey BM, Moita MT (2010) The physical oceanography of upwelling systems and the development of harmful algal blooms. Progress In Oceanography 85(1–2):5–32

    Article  Google Scholar 

  • Riegman R, Stolte W, Noordeloos AAM, Slezak D (2000) Nutrient uptake and alkaline phosphatase (EC 3:1:3:1) activity of Emiliania huxleyi (Prymnesiophyceae) during growth under N and P limitation in continuous cultures. J Phycol 36(1):87–96

    Article  Google Scholar 

  • Rost B, Riebesell U (2004) Coccolithophores and the biological pump: responses to environmental changes. In: Thierstein HR, YoungJR (eds) Coccolithophores—From Molecular Processes to Global Impact. Springer Verlag, New York, 99–125

    Google Scholar 

  • Shannon LV (1985) The Benguela Ecosystem, Part I., Evolution of the Benguela, physical features and processes. Oceanogr Mar Biol Annu Rev 23:105–182

    Google Scholar 

  • Shannon LV, Agenbag JJ, Buys MEL (1987) Large- and meso-scale features of the Angola-Benguela. S Afr J Mar Sci 5:11–34

    Article  Google Scholar 

  • Shelton PA, Hutchings L (1990) Ocean stability and anchovy spawning in the southern Benguela Current region. Fish Bull 88(2):323

    Google Scholar 

  • Shutler JD, Grant MG, Miller PI, Rushton E, Anderson K (2010) Coccolithophore bloom detection in the north east Atlantic using SeaWiFS: algorithm description, application and sensitivity analysis. Remote Sens Environ 114(5):1008–1016

    Article  Google Scholar 

  • Siegel H, Gerth M (2008) Optical remote sensing applications in the enclosed Baltic Sea. In: V.Barale MG (ed) Remote Sensing of European Seas. Springer Science + Business Media B.V., pp 91–102

    Book  Google Scholar 

  • Siegel H, Gerth M, Ohde T (2004) Optical in situ measurements of a coccolithophoride bloom in the SE Atlantic Ocean off Namibia identified and followed by satellite ocean colour data. In: Ocean Optics Conference, Fremantle

    Google Scholar 

  • Siegel H, Ohde T, Gerth M, Lavik G, Leipe T (2007) Identification of coccolithophore blooms in the SE Atlantic Ocean off Namibia by satellites and in situ methods. Cont Shelf Res 27(2):258–274

    Article  Google Scholar 

  • Silió-Calzada A, Bricaud A, Uitz J, Gentili B (2008) Estimation of new primary production in the Benguela upwelling area, using ENVISAT satellite data and a model dependent on the phytoplankton community size structure. J Geophys Res 113 (C11):C11023

    Google Scholar 

  • Thierstein HR, Young JR (2004) Coccolithophores. From Molecular Processes to Global Impact, Springer, pp 565

    Google Scholar 

  • Townsend DW, Keller MD, Holligan PM, Ackleson SG, Balch WM (1994) Blooms of the coccolithophore Emiliania huxleyi with respect to hydrography in the Gulf of Maine. Cont Shelf Res 14(9):979–1000

    Article  Google Scholar 

  • Train RE (1979) Quality Criteria for Water. Castle House Publ. Ltd, London

    Google Scholar 

  • Tyrrell T, Merico A (2004) Emiliania huxleyi: bloom observations and the conditions that induce them. In: Thierstein HR, Young JR (eds) Coccolithophores. From molecular processes to global impact. Springer, New York, pp 75–97

    Google Scholar 

  • Tyrrell T, Schneider B, Charalampopoulou A, Riebesell U (2008) Coccolithophores and calcite saturation state in the Baltic and Black Seas. Biogeosciences 5(2):485–494

    Article  Google Scholar 

  • Tyrrell T, Taylor AH (1996) A modelling study of Emiliania huxleyi in the NE atlantic. J Mar Syst 9(1–2):83–112

    Article  Google Scholar 

  • Veitch JA, Florenchie P, Shillington FA (2006) Seasonal and interannual fluctuations of the Angola-Benguela Frontal Zone (ABFZ) using 4.5 km resolution satellite imagery from 1982 to 1999. Int J Remote Sens 27(5–6):987–998. doi:10.1080/01431160500127914

    Article  Google Scholar 

  • Weeks SJ, Currie B, Bakun A (2002) Satellite imaging: Massive emissions of toxic gas in the Atlantic. Nature 415(6871):493–494

    Article  Google Scholar 

  • Weeks SJ, Currie B, Bakun A, Peard KR (2004a) Hydrogen sulphide eruptions in the Atlantic Ocean off southern Africa: implications of a new view based on SeaWiFS satellite imagery. Deep Sea Res (I Oceanogr Res Pap) 51(2):153–172

    Google Scholar 

  • Weeks SJ, Pitcher GC, Bernard S (2004b) Satellite Monitoring of the Evolution of a Coccolithophorid Bloom in the Southern Benguela Upwelling System. Oceanography [Oceanography] 17(1):83–89

    Google Scholar 

  • Widdel F (1988) Microbiology and ecology of sulfate-and sulfur-reducing bacteria. In: Zehnder AJB (ed) Biology of anaerobic microorganisms. Wiley, New York, pp 469–585

    Google Scholar 

  • Williamson R, Field JG, Shillington FA, Jarre A, Potgieter A (2011) A Bayesian approach for estimating vertical chlorophyll profiles from satellite remote sensing: proof-of-concept. ICES J Mar Sci 68(4):792–799. doi:10.1093/icesjms/fsq169

    Article  Google Scholar 

Download references

Acknowledgments

The MODIS data were received from NASA MODIS Rapid Response Project at the NASA Goddard Space Flight Center; the SeaWiFS data from the SeaWiFS project of NASA; and the MERIS data from ESA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Herbert Siegel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Siegel, H., Ohde, T., Gerth, M. (2014). The Upwelling Area Off Namibia, the Northern Part of the Benguela Current System. In: Barale, V., Gade, M. (eds) Remote Sensing of the African Seas. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-8008-7_9

Download citation

Publish with us

Policies and ethics