Skip to main content

Remote Sensing of African CoastalWaters Using Active Microwaves Instrument

  • Chapter
  • First Online:
Remote Sensing of the African Seas

Abstract

Active microwave instruments flown on satellites to remotely sense the ocean are the radar altimeter, the scatterometer, and the Synthetic Aperture Radar (SAR). While radar altimeter data are mainly used as input for general ocean circulation models and for wind and global wave forecast, scatterometer and SAR data are well suited to investigate singular events in the marine boundary layer and in the ocean. Examples of atmospheric and oceanic phenomena observed by scatterometers and SARs over African coastal waters are presented. Concerning atmospheric phenomena, first near-surface wind fields derived from scatterometer data acquired over a cylone in the Mozambique Channel and over a wind front west of Morocco are presented. Then SAR images showing sea surface signatures of an atmospheric front, atmospheric gravity waves and a wind jet are presented. Quantitative information on the near-surface wind field is derived from two of the four SAR images shown. Concerning oceanic phenomena, three SAR images are presented. The first two SAR images show sea surface signatures of internal waves generated in the Strait of Gibraltar and at the Atlantic shelf west of Morocco and the third one shows sea surface signatures of biogenic surface films in the upwelling region off the coast of Senegal.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    For details, see the websites: http://www.remss.com/qscat/qscat_browse.html, http://www.knmi.nl/scatterometer/qscat_prod/.

  2. 2.

    See http://www.knmi.nl/scatterometer/ascat_ear_25_prod/ascat_app.cgi.

  3. 3.

    See http://www.knmi.nl/scatterometer/oscat_50_prod/oscat_app.cgi.

  4. 4.

    At http://www.ssmi.com/qscat/scatterometer_data_daily.html?rgn=indian_west&size=large.

References

  • Abdalla S, Janssen PAFM, Bidlot JR (2010) Status of Envisat fast delivery wind wave products. Proceedings of the ESA Living Planet Symposium held in Bergen, Norway from 28 June to 2 July 2010, ESA publication SP-686

    Google Scholar 

  • Alpers W (1985) Theory of radar imaging of internal waves. Nature 314:245–247

    Article  Google Scholar 

  • Alpers W, Hennings I (1984) A theory of the imaging mechanism of underwater bottom topography by real and synthetic aperture radar. J Geophys Res 89:10529–10546

    Article  Google Scholar 

  • Alpers W, Espedal H (2004) Oils and Surfactants. Chapter 11 In: Jackson ChR, Apel JR (eds) Synthetic Aperture Radar Marine User’s Manual. National oceanic and atmospheric administration, center for satellite application and research, NOAA/NESDIS, Washington, DC, USA, ISBN 0–16-073214-X. Chapter 11:263–275

    Google Scholar 

  • Alpers W, Huang W (2011) On the discrimination of radar signatures of atmospheric gravity waves and oceanic internal waves on synthetic aperture radar images of the sea surface. IEEE T Geosci Remote 49:1114–1126

    Google Scholar 

  • Alpers W, Stilke G (1996) Observation of a nonlinear wave disturbance in the marine atmosphere by the synthetic aperture radar aboard the ERS-1 satellite. J Geophys Res 101:6513–6525

    Article  Google Scholar 

  • Alpers W, Ross DB, Rufenach CL (1981) On the detectability of ocean surface waves by real and synthetic aperture radar. J Geophys Res 86:6481–6498

    Article  Google Scholar 

  • Alpers W, Chen JP, Pi CJ, Lin II (2010) On the origin of atmospheric frontal lines off the east coast of Taiwan observed on space-borne synthetic aperture radar images. Mon Weather Rev 138:475–496. doi:10.1175/2009MWR2987.1

    Article  Google Scholar 

  • Alpers W, Brandt P, Lazar A, Dagorne D, Sow B, Faye S, Hansen MW, Rubino A, Poulain PM, Brehmer P (2013) A small-scale oceanic eddy off the coast of West Africa studied by multi-sensor satellite and surface drifter data, Remote Sens Environ 129:132–143. doi 10.1016/j.rse.2012.10.032

    Google Scholar 

  • Brandt P, Alpers W, Backhaus JO (1996) Study of the generation and propagation of internal waves in the Strait of Gibraltar using a numerical model and synthetic aperture radar images of the European ERS satellite. J Geophys Res 101:14237–14252

    Article  Google Scholar 

  • Cheng CM, Alpers W (2010) Investigation of trapped atmospheric gravity waves over the South China Sea using Envisat synthetic aperture radar images. Int J Remote Sens 31:4725–4743

    Article  Google Scholar 

  • Da Silva JCB, New AL, Magalhaes JM (2009) Internal solitary waves in the Mozambique Channel: Observations and interpretation. J Geophys Res 114(C05001). doi:10.1029/2008JC005125

    Google Scholar 

  • Doyle JD, Durran DR (2002) The dynamics of mountain-wave induced rotors. J Atmos Sci 59:186–201

    Article  Google Scholar 

  • Evans DL, Alpers W, Cazenave A, Elachi C, Farr T, Glackin D, Holt B, Jones L, Liu WT, McCandless W, Menard Y, Moore R, Njokua E (2005) Seasat—A 25-year legacy of success. Remote Sensing of. Environment 94:384–404. doi:10.1016/j.rse.2004.09.011

    Google Scholar 

  • Hersbach H (2008) CMOD5.N: A C-band geophysical model function for equivalent neutral wind. ECMWF Technical Memorandum No 554. http://www.ecmwf.int/publications/library/ecpublications/_pdf/tm/501-600/tm554.pdf

  • Hersbach H, Stoffelen A, de Haan S (2007) Ocean wind field and their variability derived from SAR. Earth Obs Quart 59:8–12

    Google Scholar 

  • Horstmann J, Koch W (2005) Comparison of SAR wind field retrieval algorithms to a numerical model utilizing ENVISAT ASAR data. IEEE J Oceanic Eng 30:508–515

    Article  Google Scholar 

  • Keller WC, Wismann V, Alpers W (1989) Tower-based measurements of the ocean C-band radar backscattering cross section. J Geophys Res 94:924–930

    Article  Google Scholar 

  • Kozlov IE, Kudryavtsev VN, Johannessen JA, Chapron B, Dailidiene I, Myasoedov AG (2012) ASAR imaging for coastal upwelling in the Baltic Sea. Adv Space Res. doi:10.1016/j.asr.2011.08

    Google Scholar 

  • Monaldo F, Kerbaol V (2003) The SAR measurement of ocean surface winds: an overview. Proc. 2nd workshop on Coastal and Marine applications of SAR, Svalbard (Norway), 8–12 September 2003, 15–32

    Google Scholar 

  • Monaldo FM, Thompson DR, Beal RC, Pichel WG, Clemente-Colon P (2001) Comparison of SAR derived wind speed with model predictions and ocean buoy measurements. IEEE T Geosci Remote 39:2587–2600

    Article  Google Scholar 

  • Mouche A, Dagestad KF, Collard F, Guitton G, Chapron B, Johannessen J, Kerbaol V, Hansen MW (2012) On the use of Doppler shift for sea surface wind retrieval from SAR. IEEE T Geosci Remote 50:2901–2909

    Article  Google Scholar 

  • Quilfen Y, Chapron B, Elfouhaily T, Katsaros K, Tournadre J (1998) Observation of tropical cyclones by high-resolution scatterometry. J Geophys Res 103:7767–7786

    Article  Google Scholar 

  • Ricciardulli L, Wentz F (2011) Reprocessed QuikSCAT (V04) wind vectors with Ku-2011 Geophysical model function. Remote Sensing Systems Technical Report 043011[2]. http://www.ssmi.com/qscat/qscat_Ku2011_tech_report.pdf

  • Stoffelen A, Anderson D (1997) Scatterometer data interpretation: Estimation and validation of the transfer function CMOD4. J Geophys Res 102:5767–5780

    Article  Google Scholar 

  • Valenzuela GR (1978) Theories for the interaction of electromagnetic and oceanic waves: a review. Bound Lay Meteorol 13:61–85

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Werner Alpers .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Alpers, W. (2014). Remote Sensing of African CoastalWaters Using Active Microwaves Instrument. In: Barale, V., Gade, M. (eds) Remote Sensing of the African Seas. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-8008-7_4

Download citation

Publish with us

Policies and ethics