Skip to main content

Metal Oxide Based Biosensors for the Detection of Dangerous Biological Compounds

  • Conference paper
  • First Online:
Nanomaterials for Security

Abstract

In this report an application of some metal oxide nanostructures as a biosensor platform for the detection of dangerous biological compounds (Bovine leucosis, Salmonella) have been discussed. The attention is paid to the TiO2 nanoparticles and ZnO nanorods deposited on the flat surface. The changes in photoluminescense signal from nanostructured surface were applied as biosensor response to detect the analytes. The detection range of TiO2 based biosensor for Bovine leucosis antibodies was in the range of 2–10 \(\upmu\) g/ml. The detection range of ZnO based biosensor for Salmonella antigens was 102–106 cells/ml. The obtained results provide a good basis for the use of optical properties of metal oxide based semiconductor nanostructures in biosensor technology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ming-Chung Wu, Sápi A, Avila A, Szabó M, Hiltunen J, Huuhtanen M, Tóth G, Kukovecz Á, Kónya Z, Keiski R, Su W-F, Jantunen H, Kordás K (2011) Enhanced photocatalytic activity of TiO2 nanofibers and their flexible composite films: decomposition of organic dyes and efficient H2 generation from ethanol–water mixtures. Nano Res 4(4):360–369

    Article  Google Scholar 

  2. Comini E, Baratto C, Faglia G, Ferroni M, Vomiero A, Sberveglieri G (2009) Quasi-one dimensional metal oxide semiconductors: preparation, characterization and application as chemical sensors. Prog Mater Sci 54:1–67

    Article  Google Scholar 

  3. Alla T, Mikhael B, Roman V, Volodymyr K, Valentyn S, Nikolay S, Rositza Y (2016) Optical biosensors based on ZnO nanostructures: advantages and perspectives. A review. Sensors and Actuators B 229:664–677

    Article  Google Scholar 

  4. Qiu J, Zhang Sh, Zhao H (2011) Recent applications of TiO2 nanomaterials in chemical sensing in aqueous media. Sens Actuators B 160:875–890

    Article  Google Scholar 

  5. Plugaru R, Cremades A, Piqueras J (2004) The effect of annealing in different atmospheres on the luminescence of polycrystalline TiO2. J Phys Condens Matter 16:S261–S268. PII: S0953-8984(04), 67008-1

    Google Scholar 

  6. Holford TRJ, Davis F, Higson SPJ (2012) Recent trends in antibody based sensors. Biosens Bioelectron 34:12–24

    Article  Google Scholar 

  7. Viswanathan S, Rani Ch, Ja-an Annie Ho (2012) Electrochemical immunosensor for multiplexed detection of food-borne pathogens using nanocrystal bioconjugates and MWCNT screen-printed electrode. Talanta 94:315–319

    Article  Google Scholar 

  8. Brandão D, Liébana S, Campoy S, Cortés P, Alegret S, Pividori MI (2013) Electrochemical magneto-immunosensing of Salmonella based on nano and micro-sized magnetic particles. J Phys Conf Ser 421:012020. doi:10.1088/1742-6596/421/1/012020

    Google Scholar 

  9. Stevanovic A, Büttner M, Zhang Zh, Yates JT Jr (2012) Photoluminescence of TiO2: effect of UV light and adsorbed molecules on surface band structure. J Am Chem Soc 134:324–332

    Article  Google Scholar 

  10. Drbohlavova J, Chomoucka J, Hrdy R, Prasek J, Janu L, Ryvolova M, Adam V, Kizek R, Halasova T, Hubalek J (2012) Effect of nucleic acid and albumin on luminescence properties of deposited TiO2 quantum dots. Int J Electrochem Sci 7:1424–1432

    Google Scholar 

  11. Si P, Ding S, Yuan J, Lou XW, Kim DH (2011) Hierarchically structured one-dimensional TiO2 for protein immobilization, direct electrochemistry, and mediator-free glucose sensing. ACS Nano 5(9):7617–7626

    Article  Google Scholar 

  12. Setaro A, Lettieri S, Diamare D, Maddalena P, Malagù C, Carotta MC, Martinelli G (2008) Nanograined anatase titania-based optochemical gas detection. New J Phys 10:053030

    Article  Google Scholar 

  13. Mun K-Sh, Alvarez SD, Choi W-Yo, Sailor MJ (2010) A stable, label-free optical interferometric biosensor based on TiO2. ACS NANO 4(4):2070–2076

    Article  Google Scholar 

  14. Rodionov VE, Shnidko IN, Zolotovsky A, Kruchinin SP (2013) Electroluminescence of Y2O3:Eu and Y2O3:Sm films. Mater Sci 31:232–239

    Google Scholar 

  15. Balida V, Ferrer JF (1977) Expression of the bovine leukemia virus and its internal antigen in blood lymphocytes. Proc Soc Exp Biol Med 156:388–391

    Article  Google Scholar 

  16. Matthews R (1979) Classification and nomenclature of viruses. Int Virol 12:128–296

    Google Scholar 

  17. Wu M-Ch, Sápi A, Avila A, Szabó M, Hiltunen J, Huuhtanen M, Tóth G, Kukovecz Á, Kónya Z, Keiski R, Su W-F, Jantunen H, Kordás K (2011) Enhanced photocatalytic activity of TiO2 nanofibers and their flexible composite films: decomposition of organic dyes and efficient H2 generation from ethanol–water mixtures. Nano Res 4(4):360–369

    Article  Google Scholar 

  18. Comini E, Baratto C, Faglia G, Ferroni M, Vomiero A, Sberveglieri G (2009) Quasi-one dimensional metal oxide semiconductors: preparation, characterization and application as chemical sensors. Prog Mater Sci 54:1–67

    Article  Google Scholar 

  19. Chen X, Mao SS (2007) Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications. Chem Rev 107(7):2891–2959

    Article  Google Scholar 

  20. Qiu J, Zhang Sh, Zhao H (2011) Recent applications of TiO2 nanomaterials in chemical sensing in aqueous media. Sens Actuators B 160:875–890

    Article  Google Scholar 

  21. Plugaru R, Cremades A, Piqueras J (2004) The effect of annealing in different atmospheres on the luminescence of polycrystalline TiO2. J Phys Condens Matter 16:S261–S268. PII: S0953-8984(04) 67008-1

    Google Scholar 

  22. Preclíková J, Galá P, Trojánek F, Daniš S, Rezek B, Gregora I, Němcová Y, Malý P (2010) Nanocrystalline titanium dioxide films: influence of ambient conditions on surface- and volume-related photoluminescence. J Appl Phys 108:113502

    Article  ADS  Google Scholar 

  23. Stevanovic A, Büttner M, Zhang Zh, Yates JT Jr (2012) Photoluminescence of TiO2: effect of UV light and adsorbed molecules on surface band structure. J Am Chem Soc 134:324–332

    Article  Google Scholar 

  24. Drbohlavova J, Chomoucka J, Hrdy R, Prasek J, Janu L, Ryvolova M, Adam V, Kizek R, Halasova T, Hubalek J (2012) Effect of nucleic acid and albumin on luminescence properties of deposited TiO2 quantum dots. Int J Electrochem Sci 7:1424–1432

    Google Scholar 

  25. Si P, Ding S, Yuan J, Lou XW, Kim DH (2011) Hierarchically structured one-dimensional TiO2 for protein immobilization, direct electrochemistry, and mediator-free glucose sensing. ACS Nano 5(9):7617–7626

    Article  Google Scholar 

  26. Mercado C, Seeley Z, Bandyopadhyay A, Bose S, McHale JL (2011) Photoluminescence of dense nanocrystalline titanium dioxide thin films: effect of doping and thickness and relation to gas sensing. ACS Appl Mater Interfaces 3:2281–2288

    Article  Google Scholar 

  27. Nair PB, Justinvictor VB, Daniel GP, Joy K, Ramakrishnan V, Thomas PV (2011) Effect of RF power and sputtering pressure on the structural and optical properties of TiO2 thin films prepared by RF magnetron sputtering. Appl Surf Sci 257:10869–10875

    Article  ADS  Google Scholar 

  28. Li X, Gao C, Wang J, Lu B, Chen W, Song J, Zhang Sh, Zhang Zh, Pan X, Xie E (2012) TiO2 films with rich bulk oxygen vacancies prepared by electrospinning for dye-sensitized solar cells. J Power Sources 214:244–250

    Article  Google Scholar 

  29. Viter R et al (2012) Novel immune TiO2 photoluminescence biosensors for leucosis detection. Procedia Eng 47:338–341

    Article  Google Scholar 

  30. Smyntyna V et al (2012) ZnO nanorods room temperature photoluminescence biosensors for salmonella detection. In: Frontiers in optics, Rochester. Laser Science, vol XXVIII, 14–18 Oct 2012

    Google Scholar 

  31. Viter R et al (2014) Application of room temperature photoluminescence from ZnO nanorods for salmonella detection. IEEE Sens J 14(6):2028–2034

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V Tereshchenko .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Tereshchenko, A.V., Smyntyna, V.A., Konup, I.P., Geveliuk, S.A., Starodub, M.F. (2016). Metal Oxide Based Biosensors for the Detection of Dangerous Biological Compounds. In: Bonča, J., Kruchinin, S. (eds) Nanomaterials for Security. NATO Science for Peace and Security Series A: Chemistry and Biology. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-7593-9_22

Download citation

Publish with us

Policies and ethics