Skip to main content

The Complex Role of Genes in Diseases and Traits in Late Life: An Example of the Apolipoprotein E Polymorphism

  • Chapter
  • First Online:
Biodemography of Aging

Abstract

Decades of studies of candidate genes show that they are not linked to aging-related traits in a straightforward manner. Recent genome-wide association studies (GWAS) have reached fundamentally the same conclusion by showing that traits in late life are likely controlled by a relatively large number of common genetic variants. Further, GWAS often show that the associations are of tiny effect. The primary reason for complex actions of genes on age-related traits characteristic of modern societies is the elusive role of evolution in these traits. Therefore, the complexity of gene actions on traits in late life appears to be inherent. The complexity of gene actions on traits in late life can well explain why many genetic signals appear to be weak. In this chapter, we consider several examples of complex modes of gene actions, including genetic tradeoffs, antagonistic genetic effects on the same traits at different ages, and variable genetic effects on lifespan. The analyses focus on the APOE common polymorphism.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alexander, D. M., Williams, L. M., Gatt, J. M., Dobson-Stone, C., Kuan, S. A., Todd, E. G., Schofield, P. R., Cooper, N. J., & Gordon, E. (2007). The contribution of apolipoprotein e alleles on cognitive performance and dynamic neural activity over six decades. Biological Psychology, 75, 229–238.

    Article  Google Scholar 

  • Bergman, A., Atzmon, G., Ye, K., MacCarthy, T., & Barzilai, N. (2007). Buffering mechanisms in aging: A systems approach toward uncovering the genetic component of aging. PLoS Computational Biology, 3, e170.

    Article  Google Scholar 

  • Cupples, L. A., Heard-Costa, N., Lee, M., & Atwood, L. D. (2009). Genetics analysis workshop 16 problem 2: The Framingham heart study data. BMC Proceedings, 3(Suppl 7), S3.

    Article  Google Scholar 

  • Dawber, T. R. (1980). The Framingham study: The epidemiology of atherosclerotic disease. Cambridge, MA: Harvard University Press.

    Book  Google Scholar 

  • De Benedictis, G., Carotenuto, L., Carrieri, G., De Luca, M., Falcone, E., Rose, G., Yashin, A. I., Bonafe, M., & Franceschi, C. (1998). Age-related changes of the 3′apob-vntr genotype pool in ageing cohorts. Annals of Human Genetics, 62, 115–122.

    Article  Google Scholar 

  • Di Rienzo, A., & Hudson, R. R. (2005). An evolutionary framework for common diseases: The ancestral-susceptibility model. Trends in Genetics, 21, 596–601.

    Article  Google Scholar 

  • Finch, C. E., & Tanzi, R. E. (1997). Genetics of aging. Science, 278, 407–411.

    Article  Google Scholar 

  • Gail, M. H., & Johnson, N. L. (1989). Proceedings of the American statistical association: Sesquicentennial invited papers session. Alexandria: American Statistical Association.

    Google Scholar 

  • Govindaraju, D. R., Cupples, L. A., Kannel, W. B., O'Donnell, C. J., Atwood, L. D., D'Agostino, R. B., Sr., Fox, C. S., Larson, M., Levy, D., Murabito, J., Vasan, R. S., Splansky, G. L., Wolf, P. A., & Benjamin, E. J. (2008). Genetics of the Framingham heart study population. Advances in Genetics, 62, 33–65.

    Google Scholar 

  • Ilveskoski, E., Perola, M., Lehtimaki, T., Laippala, P., Savolainen, V., Pajarinen, J., Penttila, A., Lalu, K. H., Mannikko, A., Liesto, K. K., Koivula, T., & Karhunen, P. J. (1999). Age-dependent association of apolipoprotein e genotype with coronary and aortic atherosclerosis in middle-aged men: An autopsy study. Circulation, 100, 608–613.

    Article  Google Scholar 

  • Kulminski, A. M., Culminskaya, I., Ukraintseva, S. V., Arbeev, K. G., Land, K. C., & Yashin, A. I. (2010). Beta2-adrenergic receptor gene polymorphisms as systemic determinants of healthy aging in an evolutionary context. Mechanisms of Ageing and Development, 131, 338–345.

    Article  Google Scholar 

  • Kulminski, A. M., Culminskaya, I., Ukraintseva, S. V., Arbeev, K. G., Arbeeva, L., Wu, D., & Yashin, A. I. (2011). Trade-off in the effects of the apolipoprotein E polymorphism on the ages at onset of CVD and cancer influences human lifespan. Aging Cell, 10(3), 533–541. doi:10.1111/j.1474-9726.2011.00689.x.

    Article  Google Scholar 

  • Kulminski, A. M., Culminskaya, I., Arbeev, K. G., Ukraintseva, S. V., Arbeeva, L., & Yashin, A. I. (2013). Trade-off in the effect of the APOE gene on the ages at onset of cardiocascular disease and cancer across ages, gender, and human generations. Rejuvenation Research, 16(1), 28–34. doi:10.1089/rej.2012.1362.

    Article  Google Scholar 

  • Lahoz, C., Schaefer, E. J., Cupples, L. A., Wilson, P. W., Levy, D., Osgood, D., Parpos, S., Pedro-Botet, J., Daly, J. A., & Ordovas, J. M. (2001). Apolipoprotein e genotype and cardiovascular disease in the Framingham heart study. Atherosclerosis, 154, 529–537.

    Google Scholar 

  • Lee, E. W., Wei, L. J., Amato, D. A., & Leurgans, S. (1992). Cox-type regression-analysis for large numbers of small-groups of correlated failure time observations. In Survival analysis: State of the art (Vol. 211, pp. 237–247). Dordrecht: Springer.

    Chapter  Google Scholar 

  • Martin, G. M. (2007). Modalities of gene action predicted by the classical evolutionary biological theory of aging. The Annals of the New York Academy of Sciences, 1100, 14–20.

    Google Scholar 

  • Myers, R. H., Schaefer, E. J., Wilson, P. W., D'Agostino, R., Ordovas, J. M., Espino, A., Au, R., White, R. F., Knoefel, J. E., Cobb, J. L., McNulty, K. A., Beiser, A., & Wolf, P. A. (1996). Apolipoprotein e epsilon4 association with dementia in a population-based study: The Framingham study. Neurology, 46, 673–677.

    Article  Google Scholar 

  • Schnebel, E. M., & Grossfield, J. (1988). Antagonistic pleiotropy – An interspecific drosophila-comparison. Evolution, 42, 306–311.

    Article  Google Scholar 

  • Splansky, G. L., Corey, D., Yang, Q., Atwood, L. D., Cupples, L. A., Benjamin, E. J., D'Agostino, R. B., Sr., Fox, C. S., Larson, M. G., Murabito, J. M., O'Donnell, C. J., Vasan, R. S., Wolf, P. A., & Levy, D. (2007). The third generation cohort of the national heart, lung, and blood institute’s Framingham heart study: Design, recruitment, and initial examination. American Journal of Epidemiology, 165, 1328–1335.

    Article  Google Scholar 

  • Stranger, B. E., Stahl, E. A., & Raj, T. (2011). Progress and promise of genome-wide association studies for human complex trait genetics. Genetics, 187, 367–383.

    Article  Google Scholar 

  • Summers, K., & Crespi, B. J. (2010). Xmrks the spot: Life history tradeoffs, sexual selection and the evolutionary ecology of oncogenesis. Molecular Ecology, 19, 3022–3024.

    Article  Google Scholar 

  • Teslovich, T. M., Musunuru, K., Smith, A. V., Edmondson, A. C., Stylianou, I. M., Koseki, M., Pirruccello, J. P., Ripatti, S., Chasman, D. I., Willer, C. J., Johansen, C. T., Fouchier, S. W., Isaacs, A., Peloso, G. M., Barbalic, M., Ricketts, S. L., Bis, J. C., Aulchenko, Y. S., Thorleifsson, G., Feitosa, M. F., Chambers, J., Orho-Melander, M., Melander, O., Johnson, T., Li, X., Guo, X., Li, M., Shin Cho, Y., Jin Go, M., Jin Kim, Y., Lee, J. Y., Park, T., Kim, K., Sim, X., Twee-Hee Ong, R., Croteau-Chonka, D. C., Lange, L. A., Smith, J. D., Song, K., Hua Zhao, J., Yuan, X., Luan, J., Lamina, C., Ziegler, A., Zhang, W., Zee, R. Y., Wright, A. F., Witteman, J. C., Wilson, J. F., Willemsen, G., Wichmann, H. E., Whitfield, J. B., Waterworth, D. M., Wareham, N. J., Waeber, G., Vollenweider, P., Voight, B. F., Vitart, V., Uitterlinden, A. G., Uda, M., Tuomilehto, J., Thompson, J. R., Tanaka, T., Surakka, I., Stringham, H. M., Spector, T. D., Soranzo, N., Smit, J. H., Sinisalo, J., Silander, K., Sijbrands, E. J., Scuteri, A., Scott, J., Schlessinger, D., Sanna, S., Salomaa, V., Saharinen, J., Sabatti, C., Ruokonen, A., Rudan, I., Rose, L. M., Roberts, R., Rieder, M., Psaty, B. M., Pramstaller, P. P., Pichler, I., Perola, M., Penninx, B. W., Pedersen, N. L., Pattaro, C., Parker, A. N., Pare, G., Oostra, B. A., O'Donnell, C. J., Nieminen, M. S., Nickerson, D. A., Montgomery, G. W., Meitinger, T., McPherson, R., McCarthy, M. I., McArdle, W., Masson, D., Martin, N. G., Marroni, F., Mangino, M., Magnusson, P. K., Lucas, G., Luben, R., Loos, R. J., Lokki, M. L., Lettre, G., Langenberg, C., Launer, L. J., Lakatta, E. G., Laaksonen, R., Kyvik, K. O., Kronenberg, F., Konig, I. R., Khaw, K. T., Kaprio, J., Kaplan, L. M., Johansson, A., Jarvelin, M. R., Janssens, A. C., Ingelsson, E., Igl, W., Kees Hovingh, G., Hottenga, J. J., Hofman, A., Hicks, A. A., Hengstenberg, C., Heid, I. M., Hayward, C., Havulinna, A. S., Hastie, N. D., Harris, T. B., Haritunians, T., Hall, A. S., Gyllensten, U., Guiducci, C., Groop, L. C., Gonzalez, E., Gieger, C., Freimer, N. B., Ferrucci, L., Erdmann, J., Elliott, P., Ejebe, K. G., Doring, A., Dominiczak, A. F., Demissie, S., Deloukas, P., de Geus, E. J., de Faire, U., Crawford, G., Collins, F. S., Chen, Y. D., Caulfield, M. J., Campbell, H., Burtt, N. P., Bonnycastle, L. L., Boomsma, D. I., Boekholdt, S. M., Bergman, R. N., Barroso, I., Bandinelli, S., Ballantyne, C. M., Assimes, T. L., Quertermous, T., Altshuler, D., Seielstad, M., Wong, T. Y., Tai, E. S., Feranil, A. B., Kuzawa, C. W., Adair, L. S., Taylor, H. A., Jr., Borecki, I. B., Gabriel, S. B., Wilson, J. G., Holm, H., Thorsteinsdottir, U., Gudnason, V., Krauss, R. M., Mohlke, K. L., Ordovas, J. M., Munroe, P. B., Kooner, J. S., Tall, A. R., Hegele, R. A., Kastelein, J. J., Schadt, E. E., Rotter, J. I., Boerwinkle, E., Strachan, D. P., Mooser, V., Stefansson, K., Reilly, M. P., Samani, N. J., Schunkert, H., Cupples, L. A., Sandhu, M. S., Ridker, P. M., Rader, D. J., van Duijn, C. M., Peltonen, L., Abecasis, G. R., Boehnke, M., & Kathiresan, S. (2010). Biological, clinical and population relevance of 95 loci for blood lipids. Nature, 466, 707–713.

    Article  Google Scholar 

  • Ukraintseva S. V. (2005). “Bad” in the young – “good” in the old: Is this consistent with the antagonistic pleiotropy concept? In Martin G (Ed.), How is the evolutionary biological theory of aging holding up against mounting attacks? American Aging Association, 2012. http://www.americanaging.org/news/AGE%20George%20Martin%20Discussion%20April%202005.pdf

  • Vijg, J., & Suh, Y. (2005). Genetics of longevity and aging. Annual Review of Medicine, 56, 193–212.

    Article  Google Scholar 

  • Williams, G. C. (1957). Pleiotropy, natural-selection, and the evolution of senescence. Evolution, 11, 398–411.

    Article  Google Scholar 

  • Williams, P. D., & Day, T. (2003). Antagonistic pleiotropy, mortality source interactions, and the evolutionary theory of senescence. Evolution, 57, 1478–1488.

    Article  Google Scholar 

  • Yashin, A. I., Ukraintseva, S. V., De Benedictis, G., Anisimov, V. N., Butov, A. A., Arbeev, K., Jdanov, D. A., Boiko, S. I., Begun, A. S., Bonafe, M., & Franceschi, C. (2001). Have the oldest old adults ever been frail in the past? A hypothesis that explains modern trends in survival. The Journals of Gerontology. Series A, Biological Sciences and Medical Sciences, 56, B432–B442.

    Article  Google Scholar 

Download references

Acknowledgements

This chapter was partly supported by the National Institute on Aging of the National Institutes of Health under Award Numbers R01AG030198, R01AG032319, R01AG030612, R01AG046860, and P01AG043352. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health. The Framingham Heart Study (FHS) is conducted and supported by the National Heart, Lung, and Blood Institute (NHLBI) in collaboration with Boston University (Contract No. N01-HC-25195). This chapter was not prepared in collaboration with investigators of the FHS and does not necessarily reflect the opinions or views of the FHS, Boston University, or NHLBI. Funding for SHARe Affymetrix genotyping was provided by NHLBI Contract N02-HL-64278. SHARe Illumina genotyping was provided under an agreement between Illumina and Boston University. This work was prepared using a limited access dataset obtained from the NHLBI and the Framingham SHARe data obtained through dbGaP.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander M. Kulminski .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Kulminski, A.M., Yashin, A.I., Culminskaya, I., Land, K.C., Ukraintseva, S.V. (2016). The Complex Role of Genes in Diseases and Traits in Late Life: An Example of the Apolipoprotein E Polymorphism. In: Biodemography of Aging. The Springer Series on Demographic Methods and Population Analysis, vol 40. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-7587-8_9

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-7587-8_9

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-017-7585-4

  • Online ISBN: 978-94-017-7587-8

  • eBook Packages: Social SciencesSocial Sciences (R0)

Publish with us

Policies and ethics