Skip to main content

Reefs Through Time: An Evolutionary View

  • Chapter
  • First Online:
Coral Reefs at the Crossroads

Part of the book series: Coral Reefs of the World ((CORW,volume 6))

Abstract

Although reef-like structures formed in the Neoproterozoic, reefs built by metazoans did not appear until the early Paleozoic. From then until the Recent, reefs diversified, underwent extinctions many times and then diversified again. Reef-inhabiting organisms included many different groups from algae to vertebrates as well as enigmatic, extinct suprageneric taxa. Evolution of these groups continued unabated and sometimes resulted in significant changes in the communities making up reefs. These reef groups varied over geologic time with extinction events commonly marking dramatic changes in the biotas. Paleozoic reefs consisted of sponges, corals, foraminifera, algae, bryozoans, and brachiopods, among others. The major extinction event at the end of the Paleozoic eliminated these forms as reef constituents and new groups (e.g., the first scleractinian corals) appeared in the Triassic. The Mesozoic was dominated by sponges, corals, rudist bivalves, and algae, most of which were eliminated in the end-Cretaceous extinction event. The Cenozoic reef biotas included red algae, foraminifera, sponges, corals, various invertebrates, and fish.

Throughout the Phanerozoic, these biotas were eliminated by extinction events of differing magnitude. Each event corresponded to warming due to rising greenhouse gases (CO2 and CH4), and ocean acidification caused by lowered pH and anoxia of shallow waters that took severe tolls on reef organisms. These extinction events caused the decline of reef organisms and the reefs they built, resulting in decreased diversity and slower carbonate deposition. Photosymbiotic reef ecosystems failed during extinctions and these failures may have been driven, at least in part, by either the demise of the symbiosis or the extinction of symbionts.

Reefs were generally absent in post-extinction times due to different ecologies. The ancestors of the next radiation of reef organisms must have been present somewhere—perhaps in deeper water, remote seamounts or isolated shallow seas. These ancestral faunas gave rise to radiations of reef organisms following several million years of depauperate and unusual biotas. Once underway, these radiations were relatively rapid and were responses to an amelioration of the extinction conditions and an increase in ecological opportunities. They did not restore the same taxa; rather new organisms at the familial or generic levels commonly diversified in most groups.

The extinction events of the past do not bode well for the survival of modern reefs because of impending anthropogenic changes. Although humans have caused reef destruction through pollution, sedimentation, nutrient influx, and physical damage, increasing global warming and ocean acidification caused by CO2 and CH4 emissions are the principal threats to modern reef ecosystems with severe degradation or even extinction possibilities. Scientific and political will to change these inputs soon are essential to the survival of reefs, as well as other aspects of modern civilization.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    What Is Happening To Our Beautiful Land? A Pastoral Letter on Ecology. The Catholic Bishops’ Conference of the Philippines 1988. http://cbcponline.net/documents/1980s/1988-ecology.html

References

  • Adachi N, Ezaki Y, Liu J (2011) Early Ordovician shift in reef construction from microbial to metazoan reefs. Palaios 26:106–114

    Article  Google Scholar 

  • Adachi N, Liu J, Ezaki Y (2012) Early Ordovician stromatoporoid Pulchrilamina spinosa from South China: geobiological significance and implications for the early development of skeletal-dominated reefs. Paleontol Res 16:59–69

    Article  Google Scholar 

  • Alley RB, Clark PU, Huybrechts P, Joughin I (2005) Ice-sheet and sea-level changes. Science 310:456–460

    Article  CAS  Google Scholar 

  • Allwood AC, Walter MR, Burch IW, Kamber BS (2007) 3.43 billion-year-old stromatolite reef from the Pilbara Craton of Western Australia: ecosystem-scale insights to early life on Earth. Precamb Res 158:198–227

    Article  CAS  Google Scholar 

  • Baker A, Glynn P, Riegl B (2008) Climate change and coral reef bleaching: an ecological assessment of long-term impacts, recovery trends and future outlook. Estuar Coast Shelf Sci 80:435–471

    Article  Google Scholar 

  • Bambach RK (2006) Phanerozoic biodiversity mass extinctions. Annu Rev Earth Planet Sci 34:127–55

    Article  CAS  Google Scholar 

  • Barbeitos MS, Romano SL, Lasker H R (2010) Repeated loss of coloniality and symbiosis in scleractinian corals. Proc Nat Acad Sci 107:11877–11882

    Article  CAS  Google Scholar 

  • Barnosky AD (2014) Dodging Extinction. Univ California Press, Berkeley, 256 p

    Google Scholar 

  • Barnosky AD, Matzke N, Tomiya S, Wogan GOU, Swartz B, Quental T, Marshall C, McGuire JL, Lindsey EL, Maguire KC, Mersey B, Ferrer EA (2011) Has the Earth’s sixth mass extinction already arrived? Nature 471:51–57

    Article  CAS  Google Scholar 

  • Baron-Szabo RC (2003) Corals of the Theresienstein reef (Upper Turonian-Coniacian, Salzburg, Austria). Bull Biol Soc Wash 10:257–268

    Google Scholar 

  • Baron-Szabo RC (2008) Corals of the K/T-boundary: scleractinian corals of the suborders Dendrophylliina, Caryophylliina, Fungiina, Microsolenina, and Stylinina. Zootaxa 1952:1–244

    Google Scholar 

  • Beaufort L, Probert I, de Garidel-Thoron T, Bendif EM, Ruiz-Pino D, Metzl M, Goyet C, Buchet, N, Coupel P, Grelaud M, Rost B, Rickaby REM, de Vargas C. (2011) Sensitivity of coccolithophores to carbonate chemistry and ocean acidification. Nature 476:80–83

    Article  CAS  Google Scholar 

  • Beerling DJ, Lomax BH, Royer DL, Upchurch, GR Jr., Kump LR (2002) An atmospheric pCO2 reconstruction across the Cretaceous-Tertiary boundary from leaf megafossils. Proc Nat Acad Sci 99:7836–7840

    Article  CAS  Google Scholar 

  • Bellwood DR, Hughes TP, Folke C, Nystro M (2004) Confronting the coral reef crisis. Nature 429:833

    Article  CAS  Google Scholar 

  • Benton MJ (2003) When life nearly died: the greatest mass extinction of all time. Thames & Hudson, London, 336 p

    Google Scholar 

  • Bernecker M (2005) Late Triassic reefs from the northwest and south Tethys: distribution, setting, and biotic composition. Facies 51:457–468

    Article  Google Scholar 

  • Berner RA, Kothavala Z (2001) GEOCARB III: a revised model of atmospheric CO2 over Phanerozoic time. Amer J Sci 301:182–204

    Google Scholar 

  • Bishop JW, Sumner DY (2006) Molar tooth structures of the Neoarchean Monteville Formation, Transvaal Supergroup, South Africa. I: constraints on microcrystalline CaCO3 precipitation. Sedimentology 53:1049–1068

    Article  CAS  Google Scholar 

  • Blackburn TJ, Olsen PE, Bowring SA, McLean NM, Kent DV, Puffer J, McHone G, Rasbury ET, Et-Touhami M (2013) Zircon U-Pb Geochronology links the end-Triassic extinction with the Central Atlantic Magmatic Province. Science 340:941–945

    Article  CAS  Google Scholar 

  • Brayard A, Vennin E, Olivier N, Bylund KG, Jenks J, Stephen DA, Bucher H, Hofmann R, Goudemand N, Escarguel G (2011) Transient metazoan reefs in the aftermath of the end-Permian mass extinction. Nature Geosci 4:693–697

    Article  CAS  Google Scholar 

  • Brenchley PJ, Carden GAF, Marshall JD (1995) Environmental changes associated with the “first strike” of the late Ordovician mass extinction. Modern Geol 20:69–82

    Google Scholar 

  • Brunton FR, Copper P, Dixon OA (1997) Silurian reef-building episodes. Proc 8th Int Coral Reef Symp 2:1643–1650

    Google Scholar 

  • Budd AF (2000) Diversity and extinction in the Cenozoic history of Caribbean reefs. Coral Reefs 19:25–35

    Article  Google Scholar 

  • Burgess SD, Bowring SA, Fleming TH, Elliot, DH (2015) High-precision geochronology links the Ferrar large igneous province with early-Jurassic ocean anoxia and biotic crisis. Earth Planet Sci Let 415:90–99

    Article  CAS  Google Scholar 

  • Butterfield NJ (2015) Early evolution of the Eukaryota. Palaeontol 58:5–17

    Article  Google Scholar 

  • Butterfield NJ, Rainbird RH (1998) Diverse organic-walled fossils including possible dinoflagellates from the early Neoproterozoic of Arctic Canada. Geol 26:963–966

    Article  Google Scholar 

  • Carpenter KE, Abrar M, Aeby G, Aronson RB, Banks S, Bruckner A, Chiriboga A, Cortes J, Delbeek JC, DeVantier L, Edgar GJ, Edwards AJ, Fenner D, Guzman HM, Hoeksema BW, Hodgson G, Johan O, Licuanan WY, Livingstone SR, Lovell ER, Moore JA, Obura DO, Ochavillo D, Polidoro BA, Precht WF, Quibilan MC, Reboton C, Richards ZT, Rogers AD, Sanciangco J, Sheppard A, Sheppard C, Smith J, Stuart S, Turak E, Veron JEN, Wallace C, Weil E, Wood E (2008) One-third of reef-building corals face elevated extinction risk from climate change and local impacts. Science 321:560–563

    Article  CAS  Google Scholar 

  • Caruthers AH, Smith PL, Gröcke DR (2014) The Pliensbachian-Toarcian (Early Jurassic) extinction: a North American perspective. Geol Soc Amer Spec Papers 505:225–243

    Article  Google Scholar 

  • Chenet A-L, Quidelleur X, Fluteau F, Courtillot V (2007) 40K/40Ar dating of the main Deccan large igneous province: further evidence of KTB age and short duration. Earth Planet Sci Lett 263:1–15

    Article  CAS  Google Scholar 

  • Clarkson MO, Kasemann SA, Wood RA, Lenton TM, Daines SJ, Richoz S, Ohnemueller F, Meixner A, Poulton SW, Tipper ET (2015) Ocean acidification and the Permo-Triassic mass extinction. Science 348:229–232

    Article  CAS  Google Scholar 

  • Colin PL (1987) Physiography of Enewetak Atoll. In Devaney DM (ed) The natural history of Enewetak Atoll. The natural history of Enewetak Atoll. Oak Ridge, Tenn: U.S. Dept. of Energy, Off Energy Research, Off Health Environ Res, Ecol Res Div, pp. 27–38

    Google Scholar 

  • Colin PL (2009) Marine environments of Palau. Indo-Pacific Press, San Diego 414 p

    Google Scholar 

  • Copper P (1994) Ancient reef ecosystem expansion and collapse. Coral Reefs 13:3–11

    Article  Google Scholar 

  • Copper P (2001) Evolution, radiations, and extinctions in Proterozoic to Mid-Paleozoic reefs. In: Stanley GD Jr. (ed) The history and sedimentology of ancient reef systems. Kluwer Academic/Plenum Pub, New York, pp. 89–119

    Chapter  Google Scholar 

  • Copper P (2002a) Reef development at the Frasnian/Famennian mass extinction boundary. Palaeogeogr Palaeoclim Palaeoecol 181:27–65

    Google Scholar 

  • Copper P (2002b) Silurian and Devonian reefs: 80 million years of global greenhouse between two ice ages. SEPM Spec Publ 72:181–238

    Google Scholar 

  • Copper P (2011) 100 million years of reef prosperity and collapse: Ordovician to Devonian interval. Paleontol Soc Papers 17:15–32

    Google Scholar 

  • Copper P, Scotese CR (2003) Megareefs in Middle Devonian supergreenhouse climates. Geol Soc Amer Spec Pap 370:209–230

    Google Scholar 

  • Courtillot VE, Renne PR (2003) On the ages of flood basalt events. C. R. Geoscience 335:113–140

    Article  Google Scholar 

  • Cowen R (1983) Algal symbiosis and its recognition in the fossil record. In: Tevesz MJS, McCall PL (eds) Biotic interactions in Recent and fossil benthic communities. Plenum Press, New York, pp. 432–478

    Google Scholar 

  • Cowen R (1988) The role of algal symbiosis in reefs through time. Palaios 3:221–227

    Article  Google Scholar 

  • Dana JD (1872) Corals and coral islands. Dodd Mead Pub, New York, 349 p

    Book  Google Scholar 

  • Darwin, C (1842) The geology of the voyage of the Beagle. Part 1. The structure and distribution of coral reefs. Smith Elder Co, London 214 p

    Google Scholar 

  • Davies PJ, Hopley D (1983) Growth fabrics and growth rates of Holocene reefs in the Great Barrier Reef. BMR J of Austral Geol Geophys 8:237–251

    Google Scholar 

  • Dixon DL, Abrego D, Hay ME (2014) chemically mediated behavior of recruiting corals and fishes: a tipping point that may limit reef recovery. Science 345:892–897

    Article  CAS  Google Scholar 

  • Dixon DL, Hay ME (2012) Corals chemically cue mutualistic fishes to remove competing seaweeds. Science 338:804–807

    Article  CAS  Google Scholar 

  • Dullo W-C (2005) Coral growth and reef growth: a brief review. Coral Reefs 51:953–958

    Google Scholar 

  • Ehrlich P, Ehrlich AH (2012) Can a collapse of global civilization be avoided? Proc. Royal Soc B 280: doi: 10.1098/rspb.2012.2845

    Google Scholar 

  • Elias RJ, Young GA, Lee D-J, Bae B-Y (2013) Coral biogeography in the Late Ordovician (Cincinnatian) of Laurentia. In: Harper DAT, Servais T. (eds) Early Palaeozoic biogeography and palaeogeography. Geol Soc London Mem 38:97–115.

    Google Scholar 

  • Erwin DH (2006) Extinction: how life on earth nearly ended 250 million years ago. Princeton Univ Press, Princeton, 320 p

    Google Scholar 

  • Fagerstrom JA (1987) The evolution of reef communities. Wiley, New York, 600 p

    Google Scholar 

  • Fautin DG, Buddemeier RW (2004) Adaptive bleaching: a general phenomenon. Hydrobiol 530/531:459–467

    Google Scholar 

  • Fine M, Tchernov D (2007) Scleractinian coral species survive and recover from decalcification. Science 315:1811

    Article  CAS  Google Scholar 

  • Finnegan S, Heimc NA, Petersc SE, Fischera WW (2012) Climate change and the selective signature of the Late Ordovician mass extinction. Proc Nat Acad Sci 109:6829–6834

    Article  CAS  Google Scholar 

  • Fletcher BJ, Brentnall SJ, Anderson CW, Berner RA, Beerling DJ (2008) Atmospheric carbon dioxide linked with Mesozoic and early Cenozoic climate change. Nature Geosci 1:43–48

    Article  CAS  Google Scholar 

  • Flügel, E. (2002) Triassic reef patterns. In Kiessling, W, Flügel, E and Golonka, J (eds) Phanerozoic reef patterns. Tulsa, SEPM (Society for Sedimentary Geology) Special Publication 72:391–463

    Google Scholar 

  • Flügel E, Senowbari-Daryan B (2001) Triassic reefs of the Tethys. In: Stanley GD Jr. (ed) The history and sedimentology of ancient reef systems. Kluwer Academic/Plenum Pub, New York, pp. 217–249

    Chapter  Google Scholar 

  • Flügel E, Stanley GD Jr (1984) Reorganization, development and evolution of post-Permian reefs and reef organisms. Palaeontogr America 54:177–186

    Google Scholar 

  • Fraser NM, Bottjer DG, Fischer AG (2004) Dissecting “Lithiotis” bivalves: implications for the Early Jurassic reef eclipse. Palaios 19:51–67

    Article  Google Scholar 

  • Gili E, Masse J-P, Skelton PW (1994) Rudists as gregarious sediment-dwellers, not reef-builders, on Cretaceous carbonate platforms. Palaeogeogr Palaeoclimatol Palaeoecol 118:245–267

    Article  Google Scholar 

  • Glynn P (1996) Coral reef bleaching: facts, hypotheses and implications. Glob Change Biol 2:495–509

    Article  Google Scholar 

  • Graham NAJ, Nash KL (2013) The importance of structural complexity in coral reef ecosystems. Coral Reefs 32:315–326

    Article  Google Scholar 

  • Graham NAJ, Wilson KS, Jennings SK, Polunin S, Bijoux JP, Robinson J (2006) Dynamic fragility of oceanic coral reef ecosystems. Proc Nat Acad Sci 103:8425–8429

    Article  CAS  Google Scholar 

  • Grotzinger JP (1990) Geochemical model for Proterozoic stromatolite decline. Amer J Sci 290A:80–103

    Google Scholar 

  • Grotzinger JP (1994) Trends in Precambrian carbonate sediments and their implication for the understanding of the evolution of life. In: Bengtson S (ed) Early life on Earth. Columbia Univ Press, New York, pp. 245–258

    Google Scholar 

  • Grotzinger JP, James NP (2012) Precambrian carbonates: evolution of understanding. In: Grotzinger JP, James NP (eds) Carbonate sedimentation and diagenesis in the evolving Precambrian world. SEPM Spec Publ 67:3–22

    Google Scholar 

  • Grotzinger JP, Knoll AH (1995) Anomalous carbonate precipitates: is the Precambrian the key to the Permian? Palaios 10:578–596

    Article  CAS  Google Scholar 

  • Grotzinger JP, Watters WA, Knoll AH (2000) Calcified metazoans in thrombolite-stromatolite reefs of the terminal Proterozoic Nama Group, Namibia. Paleobiol 26: 334–359

    Article  Google Scholar 

  • Groves JR, Yue W (2009) Foraminiferal diversification during the late Paleozoic ice age. Paleobiol 3:367–392

    Article  Google Scholar 

  • Hallock P (1997) Reefs and reef limestones in Earth history. In: Birkeland C (ed) Life and death of coral reefs. Chapman Hall, New York, pp. 13–42

    Chapter  Google Scholar 

  • Hallock P, Schlager W (1986) Nutrient excess and the demise of coral reefs and carbonate platforms. Palaios 1:389–398

    Article  Google Scholar 

  • He WH, Shi GR, Twitchett RJ, Zhang Y, Zhang K-X, Song H- J, Yue M-L, Wu S-B, Wu H-T, Yang T-L, Xiao Y-F. (2014) Late Permian marine ecosystem collapse began in deeper waters: evidence from brachiopod diversity and body size changes. Geobiol [doi: 10.1111/gbi.12119]

    Google Scholar 

  • Hodges MS, Stanley GD Jr (2015) North American coral recovery after the end-Triassic mass extinction, New York Canyon, Nevada, USA. GSA Today 25:4–9

    Article  Google Scholar 

  • Hoegh-Guldberg O (2014) Coral reefs in the Anthropocene: persistence or the end of the line? Waters CN, Zalasiewicz JA, Williams M, Ellis MA, Snelling AM (eds) A stratigraphical basis for the Anthropocene. Geol Soc London Spec Publ 395:167–183

    Google Scholar 

  • Hoegh-Guldberg O, Mumby PJ, Hooten AJ, Steneck RS, Greenfield P, Gomez E, Harvell CD, Sale F, Edwards AJ, Caldeira K., Knowlton N, Eakin CM, Iglesias-Prieto R, Muthiga N, Bradbury HR, Dubi A, Hatziolos ME (2007) Coral reefs under rapid climate change and ocean acidification. Science 318:1737–1742

    Article  CAS  Google Scholar 

  • Hönisch B, Ridgwell A, Schmidt DN, Thomas E, Gibbs SJ, Sluijs A, Zeebe R, Kump L, Martindale RC, Greene SE, Kiessling W, Ries J, Zachos JC, Royer DL, Barker S, Marchitto Jr TM, Moyer R, Pelejero C, Ziveri P, Foster GL,Williams B (2012) The geological record of ocean acidification. Science 335:1058–1063

    Article  CAS  Google Scholar 

  • Hopley D, Smithers SG, Parnell KG (2007) The geomorphology of the Great Barrier Reef: development, diversity, and change. Cambridge Univ Press, Cambridge, 532 p

    Book  Google Scholar 

  • Hubbard DK (2009) Depth-related and species-related patterns of Holocene reef accretion in the Caribbean and western Atlantic: a critical assessment of existing models. Int. Assoc. Sedimentol. Spec Publ 41:1–18

    Google Scholar 

  • Hubbard DK (2014) Holocene accretion rates and styles for Caribbean coral reefs: lessons for the past and future. In: Harris M (ed) Facies architecture of shelf-edge carbonates. SEPM Special Publication 105:264–281

    Google Scholar 

  • Hubbard DK, Gill IP, Burke RB (2013) Holocene reef building on eastern St. Croix, US Virgin Islands: Lang Bank revisited. Coral Reefs 32:653–669

    Article  Google Scholar 

  • Hueerkamp C, Glynn PW, D’Croz L, Maté L, Colley SB (2001) Bleaching and recovery of five eastern Pacific corals in an El Niño-related temperature experiment. Bull Mar Sci 69:215–236

    Google Scholar 

  • Hughes TP, Baird AH, Bellwood DR, Card M, Connolly SR, Folke C, Grosberg R, Hoegh-Guldberg O, Jackson JBC, Kleypas J, Lough JM, Marshall P, Nyström M, Palumbi SR, Pandolfi JM, Rosen B, Roughgarden J (2003) Climate change, human impacts, and the resilience of coral reefs. Science 301:929–933

    Article  CAS  Google Scholar 

  • Insalaco E, Hallam A, Rosen B (2008) Oxfordian (Upper Jurassic) coral reefs in Western Europe: reef types and conceptual depositional model. Sedimentol 44:707–734

    Article  Google Scholar 

  • IPCC (2014) Summary for policymakers. In: Field, CB, Barros VR, Dokken DJ, Mach KJ, Mastrandrea MD, Bilir TE, Chatterjee M, Ebi KL, Estrada YO, Genova RC, Girma B, Kissel ES, Levy AN, MacCracken S, Mastrandrea PR, White LL (eds) Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, pp. 1–32

    Google Scholar 

  • Isozaki Y, Aljinović D (2009) End-Guadalupian extinction of the Permian gigantic bivalve Alatoconchidae: end of gigantism in tropical seas by cooling. Palaeogeogr Palaeoclimatol Palaeoecol 284:1–11

    Article  Google Scholar 

  • Joachimski MM, Lai XL, Shen SZ, Jiang HS, Luo GM, Chen B, Chen J, Sun YD (2012) Climate warming in the latest Permian and the Permian–Triassic mass extinction. Geol 40:195–198

    Article  CAS  Google Scholar 

  • Johnson CC (2002) The rise and fall of rudist reefs. Amer Sci 90:148–153

    Article  Google Scholar 

  • Johnson CC, Kauffman EG (2001) Cretaceous evolution of reef ecosystems: a regional synthesis of the Caribbean tropics. In: Stanley GD Jr. (ed) The history and sedimentology of ancient reef systems. Kluwer Academic/Plenum Pub, New York, pp. 311–349

    Chapter  Google Scholar 

  • Johnson KG, Jackson JBC, Budd AF (2008) Caribbean reef development was independent of coral diversity over 28 million years. Science 319:1521–1523

    Article  CAS  Google Scholar 

  • Jourdan F, Féraud G, Bertrand H, Watkeys MK, Renne PR (2008) The 40Ar/39Ar ages of the sill complex of Karoo large igneous province: implications for the Pliensbachian-Toarcian climate change. Geochem Geophys Geosyst 9:Q06009, doi:10.1029/2008GC001994

    Google Scholar 

  • Karhu J, Epstein S (1986) The implication of the oxygen isotope records in coexisting cherts and phosphates. Geochem Cosmochem Acta 30:1745–1756

    Article  Google Scholar 

  • Karlson RH, Cornell HV, Hughes TP (2004) Coral communities are regionally enriched along an oceanic biodiversity gradient. Nature 429:867–870

    Article  CAS  Google Scholar 

  • Kauffman EG, Johnson CC (1988) The morphological and ecological evolution of Middle and Upper Cretaceous reef-building rudistids. Palaios 3:194–216

    Article  Google Scholar 

  • Kiessling W (2002) Secular variations in the Phanerozoic reef ecosystem In Kiessling, W, Flügel, E and Golonka, J (eds) Phanerozoic reef patterns. Tulsa, SEPM Spec Pub 72:391–463

    Google Scholar 

  • Kiessling W (2009) Geologic and biologic controls on the evolution of reefs. Ann Rev Ecol Evol Syst 40:173–192

    Article  Google Scholar 

  • Kiessling W (2010) Reef expansion during the Triassic: spread of photosymbiosis balancing climatic cooling. Palaeogeogr Palaeoclimatol Palaeoecol 290:11–19

    Article  Google Scholar 

  • Kiessling W (2011) On the potential for ocean acidification to be a general cause of ancient reef crises. Glob Change Biol 17:56–67

    Article  Google Scholar 

  • Kiessling W, Baron-Szabo RC (2004) Extinction and recovery patterns of scleractinian corals at the Cretaceous-Tertiary boundary. Palaeogeogr Palaeoclimatol Palaeoecol 214:195–223

    Article  Google Scholar 

  • Kiessling W, Kocsis AT (2015) Biodiversity dynamics and environmental occupancy of fossil azooxanthellate and zooxanthellate scleractinian corals. Paleobiol 41:402–414

    Article  Google Scholar 

  • Kiessling W, Simpson C, Beck B, Mewis H, Pandolfi JM (2012) Equatorial decline of reef corals during the last Pleistocene interglacial. Proc Nat Acad Sci 109:21378–21383

    Article  CAS  Google Scholar 

  • Kiessling W, Simpson C, Foote M (2010) Reefs as cradles of evolution and sources of biodiversity in the Phanerozoic. Science 327:196–198

    Article  CAS  Google Scholar 

  • Kleppel GS, Dodge RE, Reese CJ (1989) Changes in pigmentation associated with the bleaching of stony corals. Limnol and Oceanogr 34:1331–1335

    Article  CAS  Google Scholar 

  • Kleypas JA, Yates KK (2009) Coral reefs and ocean acidification. Oceanogr 22:108–117

    Article  Google Scholar 

  • Knowlton N, Brainard RE, Fishcer R, Moews M, Plaisance L, Caley MJ (2010) Coral reef diversity. In: MacIntyre AD (ed) Life in the world’s oceans: diversity, distribution, and abundance. Wiley-Blackwell, Oxford, pp. 65–77

    Chapter  Google Scholar 

  • Knowlton N, Jackson JBC (2008) Shifting baselines, local impacts, and global change on coral reefs. PLoS Biol 6:215–220

    Article  CAS  Google Scholar 

  • Knowlton N, Jackson JBC (2011) Evolutionary diversity and ecological complexity of coral reefs. Paleontol Soc Pap 17:111–120

    Google Scholar 

  • Köhler P, Fischer H, Schmitt J (2010) Atmospheric δ 13CO2 and its relation to pCO2 and deep ocean δ 13C during the late Pleistocene. Paleoceanogr 25 doi:10.1029/2008PA001703

  • Ladner T, Barshis DJ, Palumbi, SR (2012) Protein evolution in two co-occurring types of Symbiodinium: an exploration into the genetic basis of thermal tolerance in Symbiodinium clade D. Evol Biol. 12:217 http://www.biomedcentral.com/1471-2148/12/217

    Google Scholar 

  • Landing E, Geyer G, Brasier MD, Bowring, SA (2013a) Cambrian evolutionary radiation: context, correlation, and chronostratigraphy—overcoming deficiencies of the first appearance datum (FAD) concept. Earth-Sci Rev 123:133–172

    Google Scholar 

  • Landing E, Westrop SR, Bowring SA (2013b) Reconstructing the Avalonia palaeocontinent in the Cambrian: a 519 Ma caliche in South Wales and transcontinental middle Terreneuvian sandstones. Geol Mag 150:1022–1046

    Google Scholar 

  • Lathuilière B, Marchal D (2009) Extinction, survival and recovery of corals from the Triassic to Middle Jurassic time: Terra Nova, v. 21, no. 1, p. 57–66.

    Google Scholar 

  • Lees A (1988) Waulsortian reefs the history of a concept. Mem l’Inst Geol l’Universite Louvain 34:43–55

    Google Scholar 

  • Leigh EG, O’Dea A, Vermeij GJ (2014) Historical biogeography of the Isthmus of Panama. Biol Rev 89:148–172

    Google Scholar 

  • Leinfelder RR (2001) Jurassic reef ecosystems. In: Stanley GD Jr. (ed) The history and sedimentology of ancient reef systems. Kluwer Academic/Plenum Pub, New York pp 251–309

    Chapter  Google Scholar 

  • Lessios HA (2008) The great American schism: divergence of marine organisms after the rise of the central American isthmus. Ann Rev Ecol Evol Syst 39:63–91

    Article  Google Scholar 

  • Lipps JH (1970) Plankton evolution. Evol 24:1–22

    Article  Google Scholar 

  • Lipps JH (2006) Major features of protistan evolution: Controversies, problems and a few answers. Anu Inst Geociên–UFRJ 29:55–80

    Google Scholar 

  • Lipps JH (2011) Reef restoration—the good and the bad, a paleobiologic perspective. Paleontol Soc Papers 17:139–152

    Google Scholar 

  • Little AF, Van Oppen JH, Willis BL (2004) Flexibility in algal endosymbioses shapes growth in reef corals. Science 304:1492–1494

    Article  CAS  Google Scholar 

  • McCauley DJ, Pinsky ML, Palumbi SR, Estes JA, Joyce FH, Warner RR (2015) Marine defaunation: animal loss in the global ocean. Science 347(6219) doi: 10.1126/science.1255641

    Google Scholar 

  • Medina M, Collins A, Takaoka TL, Kuehl J, Boore JL (2006) Naked corals: skeleton loss in Scleratinia. Proc Nat Acad Sci 103:9096–9100

    Article  CAS  Google Scholar 

  • Melchin MJ, Mitchell CE, Holmden, C, Štorch P (2013) Environmental changes in the Late Ordovician–early Silurian: review and new insights from black shales and nitrogen isotopes. Geol Soc Amer Bull 125:1635–1670

    Article  CAS  Google Scholar 

  • Meyer CP, Geller JB, Paulay G (2005) Fine scale endemism on coral reefs: archipelagic differentiation in turbinid gastropods. Evol 59:113–125

    Article  Google Scholar 

  • Miller J, Muller E, Rogers C, Waara R, Atkinson A, Whelan KRT, Patterson M, Witcher B (2009) Coral disease following massive bleaching in 2005 causes 60% decline in coral cover on reefs in the US Virgin Islands. Coral Reefs 28:925–937

    Article  Google Scholar 

  • Moffitt SE, Hill TM, Roopnarine PD, Kennett JP (2015) Response of seafloor ecosystems to abrupt global climate change. Proc Nat Acad Sci 112:4684–4689

    Article  CAS  Google Scholar 

  • Montaggioni LF (2005) History of Indo-Pacific coral reef systems since the last glaciation: development patterns and controlling factors. Earth-Sci Rev 71:1–75

    Article  Google Scholar 

  • Muscatine L, Goiran C, Land L, Jaubert J, Cuif J-P, Allemand D (2005) Stable isotopes (13C and 15N) of organic matrix from coral skeleton. Proc Nat Acad Sci 102:1525–1530

    Article  CAS  Google Scholar 

  • Muscatine L. (1990) The role of symbiotic algae in carbon and energy flux in reef corals. In: Dubinsky Z (ed) Ecosystems of the world: Coral reefs. Elsevier, Amsterdam, pp. 75–87

    Google Scholar 

  • Newell, ND (1971) An outline history of tropical organic reefs. American Mus Novitiates 2465:1–37

    Google Scholar 

  • Newell ND, Rigby JK, Fischer AG, Whiteman AJ, Hicks LE, Bradley J. (1953) The Permian Reef Complex of the Guadalupe Mountains region, Texas and New Mexico: a study in paleoecology. WH Freeman, San Francisco. 236 p.

    Google Scholar 

  • Oliver WA Jr (1996) Origins and relationships of Paleozoic coral groups and the origin of the Scleractinia. Paleontol Soc Papers 1:107–134

    Google Scholar 

  • Oreskes N, Conway EM (2010) Merchants of doubt—how a handful of scientists obscured the truth on issues from tobacco smoke to global warming. Bloomsbury Press, New York, 345 p.

    Google Scholar 

  • Pandolfi JM (1996) Limited membership in Pleistocene reef coral assemblages from the Huon Peninsula, Papua New Guinea: constancy during global change. Paleobiol 22:152–176

    Article  Google Scholar 

  • Pandolfi JM (2002) Coral community dynamics at multiple scales. Coral Reefs 21:13–23

    Article  Google Scholar 

  • Pandolfi JM, Jackson JBC, Baron N, Bradbury RH, Guzman HM, Hughes TP, Kappel CV, Micheli F, Ogden JC, Possingham HP, Sala E (2005) Are U.S. Coral Reefs on the slippery slope to slime? Science 307:1725–1726

    Article  CAS  Google Scholar 

  • Paulay G (1997) Diversity and distribution of reef organisms. In: Birkeland C (ed) Life and death of coral reefs. Chapman Hall, New York, pp. 298–353

    Chapter  Google Scholar 

  • Payne JL, Clapham ME (2012) End-Permian mass extinction in the oceans: an ancient analog for the Twenty-First Century? Ann Rev Earth Planet Sci 40:89–111

    Article  CAS  Google Scholar 

  • Perrin C (2002) Tertiary: the emergence of modern reef ecosystems. SEPM Spec Publ 71:587–621

    Google Scholar 

  • Perrin C, Kiessling W (2010) Latitudinal trends in Cenozoic reef patterns and their relationship to climate. In: Piller W, Mutti M, Betzler C (eds) Carbonate systems during the Oligocene–Miocene climatic transition. Internat Assoc Sedimentol 42:17–34

    Google Scholar 

  • Pilkey OH, Pilkey KC (2011) Global climate change—a primer. Duke Univ Press, Durham, 142 p.

    Book  Google Scholar 

  • Planavsky NJ, Reinhart CT, Wang X, Thomson D, McGoldrick P, Rainbird RH, Johnson T, Fischer WW, Lyons TW (2014) Low Mid-Proterozoic atmospheric oxygen levels and the delayed rise of animals. Science 346: 635–638

    Article  CAS  Google Scholar 

  • Pochon X, Montoya-Burgos JI, Stadelmann, B, Pawlowski JP (2006) Molecular phylogeny, evolutionary rates, and divergence timing of the symbiotic dinoflagellate genus Symbiodinium. Mol Phylogen Evol 38:20–30

    Article  CAS  Google Scholar 

  • Pope KO (2002) Impact dust not the cause of the Cretaceous-Tertiary mass extinction. Geol 30:99–102

    Article  Google Scholar 

  • Pruss SB, Bottjer DJ (2005) The reorganization of reef communities following the end-Permian mass extinction. Compt Rend Palevol 4:553–568

    Article  Google Scholar 

  • Reaka-Kudla ML (1997) The global diversity of coral reefs: a comparison with rain forests. In: Reaka-Kudla ML, Wilson DE, Wilson EO (eds) Biodiversity II: Understanding and protecting our biological resources. Joseph Henry Press, Washington, DC, pp. 83–108

    Google Scholar 

  • Richards MA, Alvarez W, Self S, Karlstrom L, Renne PR, Manga M, Sprain CJ, Smit, J, Vanderkluysen L, Gibson SA (2015) Triggering of the largest Deccan eruptions by the Chicxulub impact. Geol Soc Amer Bull doi: 10.1130/B31167.1

    Google Scholar 

  • Robertson DS, Lewis WM, Sheehan PM, Toon OB (2013) K-Pg extinction: reevaluation of the heat-fire hypothesis. J Geophys Res: Biogeosci 118:329–336

    Article  Google Scholar 

  • Romano SL, Palumbi SR (1996) Evolution of scleractinian corals inferred from molecular systematics. Science 271:640–642

    Article  CAS  Google Scholar 

  • Roniewicz E (2010) Uniform habit spectrum vs. taxonomic discrepancy between two succeeding Triassic coral faunas: a proof of the intra-Norian faunal turnover: Palaeoworld 19:410–413

    Article  Google Scholar 

  • Rosen BR (2000) Algal symbiosis, and the collapse and recovery of reef communities: Lazarus corals across the K-T boundary. In: Culver SJ, Rawson PA (eds) Biotic response to global change: the last 145 million years. Cambridge Univ Press, Cambridge, pp. 164–180

    Chapter  Google Scholar 

  • Rosen BR, Turnšek D (1989) Extinction patterns and biogeography of scleractinian corals across the Cretaceous/Tertiary boundary. In: Jell PA, Pickett JW (eds) Fossil Cnidaria 5 Mem Assoc Australas Paleontol 8:355–370

    Google Scholar 

  • Rowan R (2004) Coral bleaching: thermal adaptation in reef coral symbionts. Nature 430:742

    Article  CAS  Google Scholar 

  • Rowland SM (2001) Archaeocyaths—a history of phylogenetic interpretation. J Paleontol 75:1065–1078

    Article  Google Scholar 

  • Rowland SM, Hicks M (2004) The Early Cambrian experiment in reef-building by metazoans. In: Lipps JH,Waggoner BM (eds) Neoproterozoic—Cambrian biological revolutions. Paleontol Soc Papers 10:107–130

    Google Scholar 

  • Rowland SM, Shapiro SH (2002) Reef patterns and environmental influences in the Cambrian and earliest Ordovician. SEPM Spec Publ 72:95–128

    Google Scholar 

  • Salvat B (ed) (1987) Human impacts on coral reefs: facts and recommendations. Antenne Mus EPHE, French Polynesia, 253 p

    Google Scholar 

  • Salvat B, Aubanel A, Adjeroud M, Bouisset P, Calmet D, Chancerelle Y, Cochennec N, Davies N, Fougerousse A, Galzin R, Lagouy R, Lo C, Monier C, Ponsonnet C, Remoissenet G, Schneider D, Stein A, Tatarata M, Villiers L (2008) Monitoring of French Polynesia coral reefs and their recent development. Rev Ecol-La Terre La Vie 63:145–177

    Google Scholar 

  • Schlager W (1981) The paradox of drowned reefs and carbonate platforms. Bull.Geol. Soc Amer 92:197–211

    Google Scholar 

  • Schoene B, Samperton KM, Eddy MP, Keller G, Adatte, T, Bowring SA, Khadri SFR, Gertsch B (2015) U-Pb geochronology of the Deccan Traps and relation to the end-Cretaceous mass extinction. Science 347:182–184

    Article  CAS  Google Scholar 

  • Schopf JW (1992) Paleobiology of the Archean. In: Schopf JW, Klein C (eds) The Proterozoic biosphere. Cambridge Univ Press, Cambridge, pp. 25–39

    Chapter  Google Scholar 

  • Scott RW (1988) Evolution of Late Jurassic and Early Cretaceous reef biotas. Palaios 3:184–193

    Article  Google Scholar 

  • Scott RW, Fernández-Mendiola PA, Gili E, Simó A (1990) Persistence of coral-rudist reefs into the Late Cretaceous. Palaios 5:98–110

    Article  Google Scholar 

  • Sella B, Ovtcharova M, Guex J, Bartolini A, Jourdand F, Spangenberg JE, Vicente J-C, Schaltegger U (2014) Evaluating the temporal link between the Karoo LIP and climatic–biologic events of the Toarcian Stage with high-precision U–Pb geochronology. Earth Planet Sci Let 408:48–56

    Article  CAS  Google Scholar 

  • Shen S-Z, Bowring SA (2014) The end-Permian mass extinction: a still unexplained catastrophe. Nat Sci Rev 1: 492–495

    Article  Google Scholar 

  • Signor PW, Lipps JH (1982) Sampling bias, gradual extinction patterns and catastrophes in the fossil record. Geol Soc Amer Spec Papers 190:291–296

    Article  Google Scholar 

  • Simon SL, Robinson WL (1997) A compilation of nuclear weapons test detonation data for U.S. Pacific Ocean tests. Health Phys 73:258–264

    Article  CAS  Google Scholar 

  • Simpson C, Kiessling W, Mewis H, Baron-Szabo RC, Müller J (2011) Evolutionary diversification of reef corals: a comparison of the molecular and fossil records. Evol 65:3274–3284

    Article  Google Scholar 

  • Spalding MD, Brown BE (2015) Warm-water coral reefs and climate change. Science 350:769–772

    Article  CAS  Google Scholar 

  • Stanley GD Jr (1981) Early history of scleractinian corals and its geological consequences. Geology 9:507–511

    Article  Google Scholar 

  • Stanley GD Jr (1988) The history of early Mesozoic reef communities: a three-step process. Palaios 3:170–183

    Article  Google Scholar 

  • Stanley GD Jr (1991) Tropical reef ecosystems. In Nierenberg WA (ed) Encyclopedia of earth system science. Academic Press, New York 4:375–388

    Google Scholar 

  • Stanley GD Jr (2001) Introduction to reef ecosystems and their evolution. In: Stanley GD Jr (ed) The history and sedimentology of ancient reef systems. Kluwer Academic/Plenum Publ, New York, pp. 1–39

    Chapter  Google Scholar 

  • Stanley GD Jr (2003) The evolution of modern corals and their early history. Earth Sci Rev 60:195–225

    Article  Google Scholar 

  • Stanley GD Jr (2005) Coral microatolls from the Triassic of Nevada: oldest scleractinian examples. Coral Reefs 24:247

    Google Scholar 

  • Stanley GD Jr (2006) Photosymbiosis and the evolution of modern coral reefs. Science 312: 857–860

    Article  CAS  Google Scholar 

  • Stanley GD Jr (2011) The naked Lazarus effect and the recovery of corals after the end-Permian mass extinction. Kölner Forum Geol Paläontol 19:164–165

    Google Scholar 

  • Stanley GD Jr (2015) Geologic history of reefs. In: McGraw-Hill Yearbook of Science and Technology 2015, McGraw-Hill publishers, New York, pp. 124–126.

    Google Scholar 

  • Stanley GD Jr, Fautin DF (2001) The origins of modern corals. Science 291:1913–1914

    Article  CAS  Google Scholar 

  • Stanley GD Jr, Helmle KP (2010) Middle Triassic coral growth bands and their implication for photosymbiosis. Palaios 25:754–763

    Article  Google Scholar 

  • Stanley GD Jr, Lipps JH (2011) Photosymbiosis: the driving force for reef success and failure. Paleontol Soc Papers 17:33–60

    Google Scholar 

  • Stanley GD Jr, Swart PK (1995) Evolution of the coral-zooxanthellae symbiosis during the Triassic: a geochemical approach. Paleobiol 21:179–199

    Article  Google Scholar 

  • Stanley SM, Hardie A (1998) Secular oscillations in the carbonate mineralogy of reef-building and sediment-producing organisms driven by tectonically forced shifts in seawater chemistry. Palaeogeogr Palaeoclimatol Palaeoecol 144:3–19

    Article  Google Scholar 

  • Stanton RJ (2006) Nutrient models for the development and location of ancient reefs. Geo. Alps 3:191–206

    Google Scholar 

  • Stanton RJ, Flügel E (1987) Paleoecology of Upper Triassic reefs in the Northern Calcareous Alps: reef communities. Facies 16:157–186

    Article  Google Scholar 

  • Steuber T, Mitchell SF, Buhl D, Gunter G, Kasper HU (2002) Catastrophic extinction of Caribbean rudist bivalves at the Cretaceous-Tertiary boundary. Geology 30:999–1002

    Article  CAS  Google Scholar 

  • Stigall AL (2012) Speciation collapse and invasive species dynamics during the Late Devonian “Mass Extinction”. GSA Today 22:4–8

    Article  Google Scholar 

  • Sun Y, Joachimski MM, Wignell PB, Yan C, Chen Y, Jiang H, Wang L, Lai X (2012) Lethally hot temperatures during the Early Triassic greenhouse. Science 338:366–370

    Article  CAS  Google Scholar 

  • Svensen H, Planke S, Chevallier L, Malthe-Sørenssen A, Corfu F, Jamtveit B (2007) Hydrothermal venting of greenhouse gases triggering Early Jurassic global warming. Earth Planet Sci Let 256:554–566

    Article  CAS  Google Scholar 

  • Svensen H, Planke S, Polozov AG, Schmidbauer N, Corfu F, Podladchikov YY, Jamtveit B (2009) Siberian gas venting and the end-Permian environmental crisis. Earth Planet Sci Letters 277:490–500

    Article  CAS  Google Scholar 

  • Talent JA (1988) Organic reef-building: episodes of extinction and symbiosis? Lethaea 69:315–368

    Google Scholar 

  • Talge HK, Hallock P (2003) Ultrastructural responses in field-bleached and experimentally stressed Amphistegina gibbosa (Class Foraminifera). J Eukary Microbiol 50:324–333

    Article  Google Scholar 

  • Toon OB, Zahnle K, Morrison D, Turco RP, Covey C (1997) Environmental perturbations caused by the impacts of asteroids and comets. Rev Geophys 35: 41–78

    Article  CAS  Google Scholar 

  • Tripati AK, Roberts CD, Eagle RA (2009) Coupling of CO2 and ice sheet stability over major climate transitions of the last 20 million years. Science 326:1394–1397

    Article  CAS  Google Scholar 

  • Van Geldern R, Joachimski MM, Day J, Jansen U, Alvarez F, Yolkin EA, Ma XP (2006) Carbon, oxygen and strontium isotope records of Devonian brachiopod shell calcite. Palaeogeogr Palaeoclim Palaeoecol 240:47–67

    Article  Google Scholar 

  • Van Oppen MJH, Lough JM (eds) (2009) Coral bleaching: patterns, processes, causes, and consequences. Springer-Verlag Berlin, Heidelberg

    Google Scholar 

  • Veron JEN (2008) Mass extinctions and ocean acidification: biological constraints on geological dilemmas. Coral Reefs 27:459–472

    Article  Google Scholar 

  • Veron JEN (2011) Ocean acidification and coral reefs: an emerging big picture. Diversity 3:262–274

    Article  CAS  Google Scholar 

  • Walter MR (1983) Archean stromatolites: evidence of the Earth’s earliest benthos. In: Schopf JW (ed) Earth’s earliest biosphere. Princeton Univ Press, Princeton NJ, pp. 187–213

    Google Scholar 

  • Webby BD (2002) Patterns of Ordovician reef development. SEPM Spec Publ 72:129–179

    Google Scholar 

  • Weidlich O (2002) Middle and Late Permian reefs—distributional patterns and reservoir potential. SEPM Spec Publ 72:339–390

    Google Scholar 

  • West RR (1988) Temporal changes in Carboniferous reef mound communities. Palaios 3:152–169

    Article  Google Scholar 

  • Wignall PB, Twitchett RJ (1996) Oceanic anoxia and the end Permian mass extinction. Science 272:1155–1158

    Article  CAS  Google Scholar 

  • Wood R (1993) Nutrients, predation and the history of reef-building. Palaios 8:526–543

    Article  Google Scholar 

  • Wood R (1999) Reef evolution. Oxford Univ Press, Oxford, 414 p

    Google Scholar 

  • Wood R, Curtis A (2014) Extensive metazoan reefs from the Ediacaran Nama Group, Namibia: the rise of benthic suspension feeding. Geobiol doi: 10.1111/gbi.12122

    Google Scholar 

  • Woods AD (2014) Assessing Early Triassic paleoceanographic conditions via unusual sedimentary fabrics and features. Earth-Sci Rev 137:6–18

    Article  Google Scholar 

  • Zachos J, Pagani M, Sloan L, Thomas E, Billups K (2001) Trends, rhythms, and aberrations in global climate 65 ma to present. Science 292:686–693

    Google Scholar 

  • Zachos JC, Schouten S, Bohaty SM, Quattlebaum T, Sluijs A, Brinkhuis H, Gibbs SJ, Bralower TJ (2006) Extreme warming of mid-latitude coastal ocean during the Paleocene-Eocene Thermal maximum: inferences from TEX86 and isotope data. Geol 34:737–740

    Article  Google Scholar 

  • Zamagni J, Mutti M, Košir A (2012) The evolution of mid Paleocene-early Eocene coral communities: how to survive during rapid global warming. Palaeogeogr Palaeoclimatol Palaeoecol 317–318:48–65

    Article  Google Scholar 

  • Zeebe EE, Wolf-Gladrow DA (2001) CO2 in seawater equilibrium, kinetics and isotopes. Elsevier Oceanography Series No 65, Elsevier B.V., 346

    Google Scholar 

  • Zhang Y, Payne JL (2012) Size-frequency distributions along a latitudinal gradient in Middle Permian fusulinoideans. PLoS One 7(6):e38603. doi:10.1371/journal.pone.0038603

    Article  CAS  Google Scholar 

  • Zhuravlev AY (2001) Paleoecology of Cambrian reef ecosystems. In: Stanley GD Jr (ed) The history and sedimentology of ancienkenneth Johnson Caribbean Acroporat reef systems. Kluwer Academic/Plenum Publishers, New York, p 121–157

    Chapter  Google Scholar 

Download references

Acknowledgements

We are indebted to numerous people with whom we have interacted about reefs. Lipps particularly thanks Drs. Loraine Casazza, Michele Weber, Scott Fay, Ken Severin, Bernard Ormsby, Yan Song, Ted Delaca, Malcolm Erskin, Pat Colin, Martin Langer, John Pandolfi, Steve Rowland, and A. Rozanov for working with him in the field on modern and fossil reefs as well as the many students who followed him into the field and asked penetrating questions. He also thanks Professors Brent Mishler and Carole Hickman, the late Professor David Stoddart and Mr. Frank Murphy for long time co-teaching with him on the reefs of French Polynesia. We thank Jose Garcia for the artistic reconstructions and Kallie Moore for photographs and management of the collections. Stanley and Lipps acknowledge support by grants from the National Science Foundation (DBI-0749683 and EAR 84-08001). Co-editors Dennis K. Hubbard and Caroline Roberts provided very useful suggestions that have improved this chapter, for which we thank them.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jere H. Lipps .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Lipps, J.H., Stanley, G.D. (2016). Reefs Through Time: An Evolutionary View. In: Hubbard, D., Rogers, C., Lipps, J., Stanley, Jr., G. (eds) Coral Reefs at the Crossroads. Coral Reefs of the World, vol 6. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-7567-0_8

Download citation

Publish with us

Policies and ethics