Skip to main content

Evolution and Biogeography of Laminarialean Kelps

  • Chapter
  • First Online:
Seaweed Phylogeography

Abstract

This review covers the evolution of Laminariales and recent phylogeographic studies focusing on Chorda and Undaria. In Laminariales, the phylogenetic relationships between basal families (i.e., Akkesiphycaceae, Pseudochordaceae, and Chordaceae) with simple thallus structures, and derived families (i.e., Alariaceae, Laminariaceae, and Lessoniaceae) with large elaborate sporophytes, have remained unclear. Derived Laminariales have been suggested to consist of three major clades roughly corresponding to Alariaceae, Agaraceae (=Costariaceae), and Laminariaceae/Lessoniaceae. Recently, a novel species Aureophycus aleuticus, basal to all derived Laminariales, was found in the Bering Sea, and was shown to be basal to all derived Laminariales. Geographically, the majority of derived families in the Laminariales only occur in the Northern Hemisphere, and the Laminariales are therefore considered to have originated in the Northwestern Pacific and spread to the other regions including the Atlantic and the Southern Hemisphere. The limited distributional range of the basal families Akkesiphycaceae and Pseudochordaceae in northeastern Asia, and that of Aureophycaceae in the Bering Sea, supports the notion that the Laminariales originated in the Northwestern Pacific and evolved to giant taxa such as Macrocystis in the course of dispersal to the Northeastern Pacific, perhaps through the Aleutian Archipelago. Chordaceae has wide distributional ranges both in the Atlantic and Pacific oceans, but of the four clearly recognized species of Chorda, C. asiatica, C. rigida, and C. kikonaiensis are found only in the Northwestern Pacific, whereas C. filum is also found in the North Atlantic. In addition, the genetic diversity within C. asiatica is greater than that of C. filum, and it is suggested that Chorda also originated and diverged in the Pacific, then spread into the Atlantic. In the genus Undaria (Alariaceae), three species, U. pinnatifida, U. undarioides, and U. peterseniana have been traditionally recognized based on morphological characters, and U. crenata was recently described. Based on the genetic studies, U. crenata was considered to be conspecific with U. pinnatifida or U. peterseniana, although the three species were shown to be genetically rather close, at present we suggest retaining the species-level taxonomy. Based on genetic analyses, we discuss the likely geographic origin and dispersal pathways for nonindigenous populations of U. pinnatifida.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aguilar-Rosas R, Aguilar-Rosas LE, Avila-Serrano G, Marcos-Ramirez R. First record of Undaria pinnatifida (Harvey) Suringar (Laminariales, Phaeophyta) on the Pacific coast of Mexico. Bot Mar. 2004;47:255–8.

    Article  Google Scholar 

  • Akiyama K. Studies of ecology and culture of Undaria pinnatifida (Harv.) Sur. II. Environmental factors affecting the growth and maturation of gametophyte. Bull Tohoku Nat Fish Res Inst. 1965;25:143–70.

    Google Scholar 

  • Akiyama K, Kurogi M. Cultivation of Undaria pinnatifida (Harvey) Suringar, the decrease in crops from natural plants following crop increase from cultivation. Bull Tohoku Reg Fish Res Lab. 1982;44:91–100.

    Google Scholar 

  • Avise JC. Phylogeography. The history and formation of species. Cambridge: Harvard University Press; 2000.

    Google Scholar 

  • Bold HC, Wynne MJ. Introduction to the Algae: structure and reproduction. 2nd ed. Englewood Cliffs: Prentice-Hall; 1985. p. 720.

    Google Scholar 

  • Bolton J. The biogeography of kelps (Laminariales, Phaeophyceae): a global analysis with new insights from recent advances in molecular phylogenies. Helgol Mar Res. 2010;64:263–79.

    Article  Google Scholar 

  • Bonnott P. A recent introduction of exotic species of mollusks into California waters from Japan. The Nautilus. 1935;49:1–2.

    Google Scholar 

  • Boo SM, Lee WJ, Yoon HS, Kato A, Kawai H. Molecular phylogeny of Laminariales (Phaeophyceae) inferred from small subunit ribosomal DNA sequences. Phycol Res. 1999;47:109–14.

    Article  CAS  Google Scholar 

  • Boudouresque CF, Verlaque M. Biological pollution in the Mediterranean Sea: invasive versus introduced macrophytes. Mar Poll Bull. 2002;44:32–8.

    Article  CAS  Google Scholar 

  • Boudouresque CF, Gerbal M, Knoepffler-Peguy M. L’algue japonnaise Undaria pinnatifida (Phaeophyta, Laminariales) en Mediterranee. Phycologia. 1985;24:364–6.

    Article  Google Scholar 

  • Campbell SJ, Burridge TR. Occurrence of Undaria pinnatifida (Phaeophyta: Laminariales) in Port Philip Bay, Victoria, Australia. Mar Fresh Wat Res. 1998;49:379–81.

    Article  Google Scholar 

  • Casas GN, Piriz ML. Survey on Undaria pinnatifida (Laminariales, Phaeophyta) in Golfo Nuevo, Argentina. Hydrobiologia. 1996;326(327):213–5.

    Article  Google Scholar 

  • Castric-Fey A, Beaupoil C, Bouchain J, Pradier E, L’Hardy-Halos MT. The introduced alga Undaria pinnatifida (Laminariales, Alariaceae) in the rocky shore ecosystem of the St Malo Area: morphology and growth of the sporophyte. Bot Mar. 1999; 42:71–82.

    Google Scholar 

  • Cecere E, Petrocelli A, Saracino OD. Undaria pinnatifida (Fucophyceae, Laminariales) spread in the Central Mediterranean: its occurrence in the Mar Piccolo of Taranto (Ionian Sea, Southern Italy). Cryptogam Algologie. 2000;21:305–9.

    Article  Google Scholar 

  • Choi CG, Oh SJ, Kang IJ. Growth and morphological characteristics of Undaria pinnatifida in the cultivation ground at Busan, Korea. J Fac Agr Kyushu Univ. 2009;54:47–51.

    Google Scholar 

  • Coyer JA, Engel JM, Zimmerman RC. Discovery of a fertile Pelagophycus × Macrocystis (Phaeophyta) putative hybrid and subsequent production of F2 sporophytes in the laboratory. J Phycol. 1992;28:127–30.

    Article  Google Scholar 

  • Dayton PK. Ecology of kelp communities. Ann Rev Ecol Syst. 1985;16:215–45.

    Article  Google Scholar 

  • Endo H, Park EJ, Sato Y, Mizuta H, Saga N. Intraspecific diversity of Undaria pinnatifida (Harvey) Suringar (Laminariales, Phaeophyta) from Japan, China and Korea based on the cox1 gene and ITS2 sequences. Fish Sci. 2009;75:393–400.

    Article  CAS  Google Scholar 

  • Fain SR, Druehl LD, Baillie DL. Repeat and single copy sequences are differentially conserved in the evolution of kelp chloroplast DNA. J Phycol. 1988;24:292–302.

    CAS  Google Scholar 

  • Fletcher RL, Farrell P. Introduced brown algae in the North Atlantic, with particular respect to Undaria pinnatifida (Harvey) Suringar. Helgol Meeresun. 1998;52:259–75.

    Article  Google Scholar 

  • Fritsch FE. The structure and reproduction of the Algae, vol. 2. Cambridge: Cambridge University Press; 1945.

    Google Scholar 

  • Gao X, Endo H, Taniguchi K, Agatsuma Y. Combined effects of seawater temperature and nutrient condition on growth and survival of juvenile sporophytes of the kelp Undaria pinnatifida (Laminariales; Phaeophyta) cultivated in northern Honshu, Japan. J Appl Phycol. 2013;25:269–75.

    Article  Google Scholar 

  • Graham LE, Wilcox LW. Algae. London: Prentice-Hall; 2000.

    Google Scholar 

  • Hay CH. The dispersal of sporophytes of Undaria pinnatifida by coastal shipping in New Zealand and implications for further dispersal of Undaria in France. Br Phycol J. 1990;25:301–13.

    Article  Google Scholar 

  • Hay C, Luckens P. The Asian kelp Undaria pinnatifida (Phaeophyta: Laminariales) found in a New Zealand harbour. NZ J Bot. 1987;25:364–6.

    Google Scholar 

  • Henry EC. Primitive reproductive characters and a photoperiodic response in Saccorhiza dermatodea (Laminariales, Phaeophyceae). Br Phycol J. 1987;22:23–31.

    Article  Google Scholar 

  • Henry EC, South GR. Phyllariopsis gen. nov. and a reappraisal of the Phyllariaceae Tilden 1935 (Laminariales, Phaeophyceae). Phycologia. 1987;26:9–16.

    Article  Google Scholar 

  • Kawai H. Life history and systematic position of Akkesiphycus lubricus (Phaeophyceae). J Phycol. 1986;22:286–91.

    Article  Google Scholar 

  • Kawai H, Kurogi M. On the life history of Pseudochorda nagaii (Pseudochordaceae fam. nov.) and its transfer from the Chordariales to the Laminariales (Phaeophyta). Phycologia. 1985;24:289–96.

    Article  Google Scholar 

  • Kawai H, Nabata S. Life history and systematic position of Pseudochorda gracilis sp. nov. (Laminariales, Phaeophyceae). J Phycol. 1990;26:721–7.

    Article  Google Scholar 

  • Kawai H, Sasaki H. Molecular phylogeny of brown algal genera Akkesiphycus and Halosiphon (Laminariales), resulting in the circumscription of the new families Akkesiphycaceae and Halosiphonaceae. Phycologia. 2000;39:416–28.

    Article  Google Scholar 

  • Kawai H, Sasaki H, Maeda Y, Arai S. Morphology, life history, and molecular phylogeny of Chorda rigida, sp. nov. (Laminariales, Phaeophyceae) from the Sea of Japan and the genetic diversity of Chorda filum. J Phycol. 2001;37:130–42.

    Article  CAS  Google Scholar 

  • Kawai H, Hanyuda T, Lindeberg M, Lindstrom SC. Morphology and molecular phylogeny of Aureophycus aleuticus gen. et sp. nov. (Laminariales, Phaeophyceae) from the Aleutian Islands. J Phycol. 2008;44:1013–21.

    Article  CAS  Google Scholar 

  • Kawai H, Hanyuda T, Ridgway LM, Holser K. Ancestral reproductive structure in basal kelp Aureophycus aleuticus. Sci Rep. 2013;3:2491.

    PubMed Central  PubMed  Google Scholar 

  • Kawai H, Hanyuda T, Draisma S, Wilce R, Andersen, R. Molecular phylogeny of two unusual brown algae, Phaeostrophion irregulare, Platysiphon verticillatus, the proposal of the Stschapoviales ord. nov. and Platysiphonaceae fam. nov. and a re-examination of the divergence time for brown algal orders. J Phycol. 2015a;51:918–28. doi:10.1111/jpy.12332

    Google Scholar 

  • Kawai H, Hanyuda T, Mumford T, Waaland JR. An introduced population of Chorda asiatica (Chordaceae, Laminariales) in Puget Sound, Pacific coast of North America. Phycol Res. 2015b;63:154–8.

    Article  CAS  Google Scholar 

  • Kikuchi N, Miyaki K, Maesako N, Oda K. Occurrence of a possible hybrid between Undaria pinnatifida (Harvey) Suringar and U. peterseniana (Kjellman) Okamura (Phaeophyceae) in Tsushima Island, Nagasaki Prefecture. Trans Nagasaki Biol Soc. 1996;47:20–2 (in Japanese).

    Google Scholar 

  • Kogame Y, Kawai H. Development of the intercalary meristem in Chorda filum (Laminariales, Phaeophyceae) and other primitive Laminariales. Phycol Res. 1996;44:247–60.

    Article  Google Scholar 

  • Kogame K, Uwai S, Shimada S, Masuda M. A study of sexual and asexual populations of Scytosiphon lomentaria (Scytosiphonaceae, Phaeophyceae) in Hokkaido, Northern Japan, using molecular markers. Eur J Phycol. 2005;40:313–22.

    Article  CAS  Google Scholar 

  • Kojima S, Segawa R, Hayashi I. Genetic differentiation among populations of the Japanese turban shell Turbo (Batillus) cornutus corresponding to warm currents. Mar Ecol Prog Ser. 1997;150:149–55.

    Article  Google Scholar 

  • Kraan S, Guiry MD. Sexual hybridization experiments and phylogenetic relationships as inferred from Rubisco spacer sequences in the genus Alaria (Phaeophyceae). J Phycol. 2000;35:190–8.

    Article  Google Scholar 

  • Kylin H. Ãœber dem Generationswechsel bei Laminaria digitata. Svensk Bot Tidsk. 1916;10:551–61.

    Google Scholar 

  • Lane CE, Mayes C, Druehl LD, Saunders GW. A multi-gene molecular investigation of the kelp (Laminariales, Phaeophyceae) supports substantial taxonomic re-organization. J Phycol. 2006;42:493–512.

    Article  CAS  Google Scholar 

  • Lee YP. Undariella, a new genus of the Alariaceae. Algae. 1998;13:419–26.

    Google Scholar 

  • Lee YP. Nomenclatural correction of Undariella, a new genus of the Alariaceae (Laminariales, Phaeophyta). Algae. 1999;14:79.

    Google Scholar 

  • Lee YP, Yoon JT. Taxonomy and morphology of Undaria (Alariaceae, Phaeophyceae). Algae. 1998;13:427–46.

    Google Scholar 

  • Lee KM, Yang EC, Coyer JA, Zuccarello GC, Wang WL, Choi CG, Boo SM. Phylogeography of the seaweed Ishige okamurae (Phaeophyceae): evidence for glacial refugia in the northwest Pacific region. Mar Biol. 2012;159:1021–8.

    Article  Google Scholar 

  • Lee KM, Boo GH, Coyer JA, Nelson WA, Miller KA, Boo SM. Distribution patterns and introduction pathways of the cosmopolitan brown alga Colpomenia peregrina using mt cox3 and atp6 sequences. J Appl Phycol. 2014;26:491–504.

    Article  CAS  Google Scholar 

  • Lewis RJ, Neushul M. Intergeneric hybridization among five genera of the family Lessoniaceae (Phaeophyceae) and evidence for polyploidy in a fertile Pelagophycus × Macrocystis hybrid. J Phycol. 1995;31:1012–7.

    Article  Google Scholar 

  • Lim BL, Kawai H, Hori H, Osawa S. Molecular evolution of 5S ribosomal RNA from red and brown algae. Jpn J Genet. 1986;61:169–76.

    Article  CAS  Google Scholar 

  • Lund S. The marine algae of East Greenland 1. Taxonomical part. Medd Grønland. 1959;156:1–247.

    Google Scholar 

  • Lüning K, tom Dieck I. The distribution and evolution of the Laminariales: North Pacific-Atlantic relationships. In: Garbary DJ, South GR, editors. NATO ASI Series G22. Evolutionary biogeography of the marine algae of the North Atlantic. Berlin: Springer; 1990. p. 187–204.

    Chapter  Google Scholar 

  • Lutaenko K, Furota T, Nakayama S, Shin K, Jing X. Atlas of marine invasive species. Beijing: Nowpap Dinrac; 2013.

    Google Scholar 

  • Maier I. Culture studies of Chorda tomentosa (Phaeophyta, Laminariales). Br Phycol J. 1984;19:95–106.

    Article  Google Scholar 

  • Maier I. Brown algal pheromones. In: Round FE, Chapman DJ, editors. Progress in phycological research, vol. 11. Bristol: Biopress; 1995. p. 51–102.

    Google Scholar 

  • Migita S. Studies on artificial hybrids between Undaria peterseniana (Kjellm.) Okam. and U. pinnatifida (Harv) Sur. Bull Fac Fish Nagasaki Univ. 1967;24:9–20 (in Japanese with English abstract).

    Google Scholar 

  • Migula W. Kryptogamen-Flora von Deutschland, Deutsch-Österreich und der Schweiz. Band II. Algen. 2. Teil. Rhodophyceae, Phaeophyceae, Characeae. Friedriech von Zezschwitz, Gera; 1909. pp i–iv, 1–382, 122 (41 col) pls.

    Google Scholar 

  • Miyabe K Konbu. Hokkaido Suisan Hokoku, vol 3. 1902 (in Japanese).

    Google Scholar 

  • Morita T, Kurashima A, Maegawa M. Temperature requirements for growth and maturation of the gametophytes of Undaria pinnatifida and Undaria undarioides (Laminariales, Phaeophyceae). Phycol Res. 2003a;51:154–60.

    Google Scholar 

  • Morita T, Kurashima A, Maegawa M. Temperature requirements for growth of young sporophytes of Undaria pinnatifida and Undaria undarioides (Laminariales, Phaeophyceae). Phycol Res. 2003b;51:266–70.

    Article  Google Scholar 

  • Muraoka D, Saito K. Identification of Undaria pinnatifida and Undaria undarioides Laminariales, Phaeophyceae using mitochondrial 23S ribosomal DNA sequences. Fish Sci. 2005;71:1365–9.

    Article  CAS  Google Scholar 

  • Nanba N, Fujiwara T, Kuwano K, Ishikawa Y, Ogawa H, Kado R. Effect of water flow velocity on growth and morphology of cultured Undaria pinnatifida sporophytes (Laminariales, Phaeophyceae) in Okiray Bay on the Sanriku coast, Northeast Japan. J Appl Phycol. 2011;23:1023–30.

    Article  Google Scholar 

  • Ohba T, Kato M, Kitazato H, Koizumi I, Omura A, Sakai T, Takayama T. Paleoenvironmental changes in the Japan Sea during the last 85,000 years. Paleoceanography. 1991;6:499–518.

    Article  Google Scholar 

  • Okamura K. Nippon Sourui Meii. Tokyo: Seibido; 1902.

    Google Scholar 

  • Okamura K. Undaria and its species. Bot Mag Tokyo. 1915;29:265–78.

    Google Scholar 

  • Okamura K. Icones of Japanese Algae. Vol 5(7) Privately published, Tokyo. 1926. p. 117–130.

    Google Scholar 

  • Oltmanns F. Morphologie und Biologie der Algen. Vol II 2nd ed. Fischer, Jena; 1922. p. 439.

    Google Scholar 

  • Park KJ, Kim BY, Park SK, Lee JH, Kim YS, Choi HG, Nam KW. Morphological and biochemical differences in three Undaria pinnatifida populations in Korea. Algae. 2012;27:189–96.

    Article  CAS  Google Scholar 

  • Perez P, Lee JY, Juge C. Observations sur la biologie de l’algue japoniase Undaria pinnatifida (Harvey) Suringar introduite accidentellement dans l’etang de Thau. Science et Peche. 1981;315:1–12.

    Google Scholar 

  • Peters A. Ribosomal DNA sequences support taxonomic separation of the two species of Chorda: reinstatement of Halosiphon tomentosus (Lyngbye) Jaasund (Phaeophyceae, Laminariales). Eur J Phycol. 1998;33:65–71.

    Article  Google Scholar 

  • Reinke J. Atlas Deutscher Meeresalgen. Berlin: Heft II; 1892.

    Google Scholar 

  • Riouall R. Sur la présence dans l’étang de Thau (Hérault-France) de Sphaerotrichia divaricata (C. Ag.) Kylin et Chorda filum (L) Stackhouse. Bot Mar. 1985; 28:83–86.

    Google Scholar 

  • Rothman MD, Mattio L, Wernberg T, Anderson RJ, Uwai S, Mohring MB, Bolton JJ. A molecular investigation of the genus Ecklonia (Phaeophyceae, Laminariales) with special focus on the Southern Hemisphere. J Phycol. 2015;51:236–46.

    Article  CAS  Google Scholar 

  • Russell G. Some anatomical and physiological differences in Chorda filum from coastal waters of Finland and Great Britain. J Mar Biol Assoc UK. 1985;65:343–9.

    Article  Google Scholar 

  • Saito Y. On the effect of environmental factors on morphological characteristics of Undaria pinnatifida and the breeding of hybrids in the genus Undaria. In: Abbott IA, Kurogi M, editors. Contributions to the systematics of benthic marine algae of the North Pacific. Kobe: Jpn Phycol Soc; 1972. p. 117–32.

    Google Scholar 

  • Sanderson JC. A preliminary survey of the distribution of the introduced macroalga Undaria pinnatifida (Harvey) Suringar on the coast of Tasmania, Australia. Bot Mar. 1990; 33:153–157.

    Google Scholar 

  • Sasaki H, Kawai H. Taxonomic revision of the genus Chorda (Chordaceae, Laminariales) on the basis of sporophyte anatomy and molecular phylogeny. Phycologia. 2007;46:10–21.

    Article  Google Scholar 

  • Sasaki H, Flores-Moya A, Henry EC, Müller DG, Kawai H. Molecular phylogeny of Phyllariaceae, Halosiphonaceae and Tilopteridales (Phaeophyceae). Phycologia. 2001;40:123–34.

    Article  Google Scholar 

  • Saunders GW, Druehl LD. Nucleotide sequences of the small subunit ribosomal RNA genes from selected Laminariales (Phaeophyta): implications for kelp evolution. J Phycol. 1992;28:544–9.

    Article  CAS  Google Scholar 

  • Sauvageau C. Sur la sexualité heterogamique d’une Laminaire (Alaria esculenta) C R Acad Sci Paris. 1916;161:840–842.

    Google Scholar 

  • Setchell WA, Gardner NL. The marine algae of the Pacific Coast of North America Part III Melanophyceae. Univ Calif Publ Bot. 1925;8:383–898.

    Google Scholar 

  • Silberfeld T, Jeigh JW, Verbruggen H, Cruaud C, de Reviers B, Rousseau F. A multi-locus time-calibrated phylogeny of the brown algae (Heterokonta, Ochrophyta, Phaeophyceae): Investigating the evolutionary nature of the brown algal crown radiation. Mol Phylogenet Evol. 2010;56:659–74.

    Article  CAS  PubMed  Google Scholar 

  • Silva PC, Woodfield RA, Cohen AN, Harris LH, Goddard JHR. First report of the Asian kelp Undaria pinnatifida in the northeastern Pacific Ocean. Biol Invasions. 2002;4:333–8.

    Article  Google Scholar 

  • South GR, Burrows EM. Studies on marine algae of the British Isles 5 Chorda filum (L) Stackh. Br Phycol Bull. 1967;3:379–402.

    Article  Google Scholar 

  • Steele EN. The Immigrant Oyster (Ostrea gigas) now known as the Pacific Oyster. Warren’s Quick Print, Washington; 1964. p. 179.

    Google Scholar 

  • Stuart MD. Review of research on Undaria pinnatifida in New Zealand and its potential impacts on the eastern coast of the South Island. DOC Science Internal Series 166. Department of Conservation. Wellington, New Zealand; 2004.

    Google Scholar 

  • Stuart MD, Hurd CL, Brown MT. Effects of seasonal growth rate on morphological variation of Undaria pinnatifida (Alariaceae, Phaeophyceae). Hydrobiologia. 1999;398(399):191–9.

    Article  Google Scholar 

  • Suringar WFR. Illustrationes des algues du Japon. Musée Botanique de Leide. 1873;1:77–90, pls 26–33.

    Google Scholar 

  • Tilden JE. The algae and their life relations. Minneapolis: University of Minnesota Press; 1935.

    Google Scholar 

  • tom Dieck I. Temperature tolerance and survival in darkness of kelp gametophytes (Laminariales, Phaeophyta): ecological and biogeographical implications. Mar Ecol Prog Ser. 1993;100:253–64.

    Article  Google Scholar 

  • Tseng CK. Common seaweeds of China. Beijing: Science Press; 1983. p. 316.

    Google Scholar 

  • Uwai S, Nelson W, Neill K, Wang WD, Aguilar-Rosas LE, Boo S-M, Kitayama T, Kawai H. Genetic diversity in Undaria pinnatifida deduced from mitochondria genes—origins and succession of introduced populations. Phycologia. 2006a;45:687–95.

    Article  Google Scholar 

  • Uwai S, Yotsukura N, Serisawa Y, Muraoka D, Hiraoka M, Kogame K. Interspecific genetic diversity of Undaria pinnatifida in Japan, based on the mitochondrial cox3 gene and the ITS1 of nrDNA. Hydrobiologia. 2006b;553:345–56.

    Article  CAS  Google Scholar 

  • Uwai S, Arai S, Morita T, Kawai H. Genetic distinctness and phylogenetic relationships among Undaria spp. based on mitochondrial cox3 sequence. Phycol Res. 2007;45:687–95.

    Article  Google Scholar 

  • Voisin M, Engel CR, Viard F. Differential shuffling of native genetic diversity across introduced regions in a brown alga: Aquaculture vs. maritime traffic effects. Proc Natl Acad Sci USA. 2005;102:5432–7.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Woolcott GW, Iima M, King RJ. Speciation within Blidingia minima (Chlorophyta) in Japan: evidence from morphology, ontogeny, and analyses of nuclear rDNA ITS sequence. J Phycol. 2000;36:227–36.

    Article  CAS  Google Scholar 

  • Yendo K. Three new marine algae from Japan. Bot Mag Tokyo. 1903;17:99–104.

    Article  Google Scholar 

  • Yendo K. Kaisan-Syokubutsugaku. Hakubunkan: Tokyo; 1911. p. 748.

    Google Scholar 

  • Yoon HS, Lee JY, Boo SM, Bhattacharya D. Phylogeny of Alariaceae, Laminariaceae, and Lessoniaceae (Phaeophyceae) based on plastid-encoded Rubisco spacer and nuclear-encoded ITS sequence comparisons. Mol Phylogenet Evol. 2001;21:231–43.

    Article  CAS  PubMed  Google Scholar 

  • Yotsukura N, Kawashima S, Kawai T, Abe T, Druehl LD. A systematic re-examination of four Laminaria species: L. japonica, L. religiosa, L. ochotensis and L. diabolica. J Jpn Bot. 2008;83:165–76.

    Google Scholar 

Download references

Acknowledgments

We are grateful to Dr. E.C. Henry for his critical comments on the manuscript. A part of this work was supported by JSPS Grants-in-Aid for Scientific Research (No. 22370034) to H. K.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroshi Kawai .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Kawai, H., Hanyuda, T., Uwai, S. (2016). Evolution and Biogeography of Laminarialean Kelps. In: Hu, ZM., Fraser, C. (eds) Seaweed Phylogeography. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-7534-2_9

Download citation

Publish with us

Policies and ethics