Skip to main content

Bladder/Pelvic Pain and Neurogenic Inflammation

  • Chapter
  • First Online:
Neurourology

Abstract

Bladder and/or pelvic pain is prominent in patients with chronic prostatitis as well as interstitial cystitis/bladder pain syndrome (IC/BPS). The etiology of IC/BPS remains elusive and may involve multiple causes. IC/BPS has often been described as a disease of the urothelium. Ultrastructurally, an altered vascular supply is observed in its ulcerative form with locations of moderate-to-severe redness, interspersed among a whitish discoloration. There is also evidence that the urothelium is associated with altered synthesis of a number of proteins including those involved in cellular differentiation, barrier function and bacterial defense mechanisms. In addition, neurogenic inflammation of the bladder mucosa may be present in a percentage of patients with IC/BPS in addition to those with prostatitis, chronic pelvic pain and spinal cord injury. The urothelium, which lines the inner surface of the renal pelvis, the ureters and the urinary bladder, not only forms a high-resistance barrier to ion, solute and water flux, and pathogens, but also functions as an integral part of a sensory web which receives, amplifies, and transmits information about its external milieu. Urothelial cells have the ability to sense changes in their extracellular environment, and respond to chemical, mechanical and thermal stimuli by releasing various factors such as ATP, nitric oxide and acetylcholine and impart these changes to underlying bladder nerves and the central nervous system. Changes in these signaling mechanisms associated with lower urinary tract symptoms are discussed as well as new areas for therapeutic interventions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Apodaca G. The urothelium: not just a passive barrier. Traffic. 2014;5:117–28.

    Article  CAS  Google Scholar 

  2. Birder L, Andersson KE. Urothelial signaling. Physiol Rev. 2013;93:653–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Khanderwal P, Abraham SN, Apodaca G. Cel biology and physiology of the uroepithelium. Am Phys Renal Phys. 2009;297:F1477–501.

    Google Scholar 

  4. Hicks M. The mammalian urinary bladder: an accomodating organ. Biol Rev. 1975;50:215–46.

    Article  CAS  PubMed  Google Scholar 

  5. Liang fX, Riedel I, Deng FM, et al. Organization of uroplakin subunits: transmembrane topology, pair formation and plaque formation. J Biochem. 2011;355:13–8.

    Article  Google Scholar 

  6. Andersson KE. Bladder activation: afferent mechanisms. Urology. 2002;59:43–50.

    Article  PubMed  Google Scholar 

  7. Dixon JS, Gosling JA. Histology and fine structure of the muscularis mucosae of the human urinary bladder. J Anat. 1983;136:265–71.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Aitken KJ, Bagli DJ. The bladder extracellular matrix. Nat Rev Urol. 2009;6:596–611.

    Article  CAS  PubMed  Google Scholar 

  9. Heppner TJ, Layne JJ, Pearson JM, et al. Unique properties of muscularis mucosae smooth muscle in guinea pig urinary bladder. Am J Phys. 2011;301:F351–62.

    Google Scholar 

  10. Apodaca G, Kiss S, Ruiz W, et al. Disruption of bladder epithelium barrier function after spinal cord injury. Am J Phys. 2003;284:F966–76.

    CAS  Google Scholar 

  11. Truschel ST, Ruiz WG, Shulman T, et al. Primary uroepithelial cultures. A model system to analyze umbrella cell barrier function. J Biol Chem. 1999;274:15020–9.

    Article  CAS  PubMed  Google Scholar 

  12. Hicks M, Ketterer B, Warren R. The ultrastructure and chemistry of the luminal plasma membrane of the mammalian urinary bladder. Phil Trans R Soc Lond. 1974;268:23–38.

    Article  CAS  Google Scholar 

  13. Nirmal J, Wolf-Johnston AS, Chancellor MB, et al. Liposomal inhibition of acrolein-induced injury in rat cultured urothelial cells. Int Urol Nephrol. 2014;46:1947–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Tyagi P, Chancellor M, Yoshimura N, et al. Activity of different phospholipids in attenuating hyperactivity in bladder irritation. BJU Int. 2008;101:627–32.

    Article  CAS  PubMed  Google Scholar 

  15. Peters KM, Hasenau D, Killinger KA, et al. Liposomal bladder instillations for IC/BPS: an open-label clinical evaluation. Int Urol Nephrol. 2014;46:2291–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Romih R, Korosec P, de Mello W, et al. Differentiation of epithelial cells in the urinary tract. Cell Tissue Res. 2005;320:259–68.

    Article  PubMed  Google Scholar 

  17. Kreft ME, Jezernik K, Kreft M, et al. Apical plasma membrane traffic in superficial cells of bladder urothelium. Ann N Y Acad Sci. 2009;1152:18–29.

    Article  PubMed  Google Scholar 

  18. Hurst RE, Moldwin RM, Mulhulland SB. Bladder defense molecules, urothelial differentiation, urinary biomarkers and interstitial cystitis. Urology. 2007;69:17–23.

    Article  PubMed  Google Scholar 

  19. Apodaca G, Balestreire E, Birder LA. The uroepithelial-associated sensory web. Kidney Int. 2007;72:1057–64.

    Article  CAS  PubMed  Google Scholar 

  20. Keay SK, Szekely Z, Conrads TP, et al. An antiproliferative factor from interstitial cystitis patients is a frizzled 8 protein related sialoglycopeptide. PNAS. 2004;101:11803–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Fostand KS, Esko JD. Microbial adherence to and invasion through proteoglycans. Infect Immun. 1997;65:1–8.

    Google Scholar 

  22. Burnstock G. Purine-mediated signalling in pain and visceral perception. Trends Pharmacol Sci. 2001;22:182–8.

    Article  CAS  PubMed  Google Scholar 

  23. Ford AP, Undem BJ. The therapeutic promise of ATP antagonism at P2X3 receptors in respiratory and urological disorders. Front Cell Neurosci. 2013;7:267.

    PubMed  PubMed Central  Google Scholar 

  24. Schnegelsberg B, Sun TT, Cain G, et al. Overexpression of NGF in mouse urothelium leads to neuronal hyperinnervation, pelvic sensitivity, and changes in urinary bladder function. Am J Phys. 2010;298:F534–47.

    Google Scholar 

  25. Andersson KE, Persson K. Nitric oxide synthase and the lower urinary tract: possible implications for physiology and pathophysiology. Scand J Urol Nephrol. 1995;175:43–53.

    CAS  Google Scholar 

  26. Birder LA, Nealen ML, Kiss S, et al. Beta-adrenoceptor agonists stimulate endothelial nitric oxide synthase in rat urinary bladder urothelial cells. J Neurosci. 1995;22:8063–70.

    Article  Google Scholar 

  27. Igawa Y, Aizawa N, Homma Y. Beta 3 adrenoceptor agonists: possible role in the treatment of overactive bladder. Korean J Urol. 2010;51:811–8.

    Article  PubMed  PubMed Central  Google Scholar 

  28. MacDiarmid SA, Sand PL. Diagnosis of interstitial cystitis/ainful bladder syndrome in patients with overactive bladder symptoms. Rev Urol. 2007;184:9–16.

    Google Scholar 

  29. Graham E, Chai TC. Dysfunction of bladder urothelium and bladder urothelial cells in interstitial cystitis. Curr Urol Rep. 2006;7:440–6.

    Article  PubMed  Google Scholar 

  30. Rofeim O, Hom D, Freid RM. Use of the neodymium: YAG laser for interstitial cystitis: a prospective study. J Urol. 2001;166:134–6.

    Article  CAS  PubMed  Google Scholar 

  31. Tyagi P, Hsieh VC, Yoshimura N, et al. Instillation of liposomes vs dimethyl sulphoxide or pentosan polysulphate for reducing bladder hyperactivity. BJU Int. 2009;104:1689–92.

    Article  CAS  PubMed  Google Scholar 

  32. Chancellor MB, Fowler CJ, Apostolidia A, et al. Drug insight: biological effects of botulinum toxin A in the lower urinary tract. Nat Clin Prac Urol. 2008;5:319–28.

    Article  CAS  Google Scholar 

  33. Hanna-Mitchell AT, Wolf-Johnston AS, Barrick SR, et al. Effect of botulinum toxin A on urothelial-release of ATP and expression of SNARE targets within the urothelium. Neurourol Urodyn. 2015;34:79–84.

    Article  CAS  PubMed  Google Scholar 

  34. Ochodnicky P, Cruz CD, Yoshimura N, et al. Nerve growth factor in bladder dysfunction: contributing factor, biomarker, and therapeutic target. Neurourol Urodyn. 2011;30:1227–41.

    CAS  PubMed  Google Scholar 

  35. Tonyali S, Ates D, Akbiyik F, et al. Urine nerve growth factor (NGF) level, bladder nerve staining and symptom/problem scores in patients with interstitial cystitis. Adv Clin Exp Med. 2018;27:159–63.

    Article  PubMed  Google Scholar 

  36. Elbadawi AE, Light JK. Distinctive ultrastructural pathology of nonulcerative interstitial cystitis: new observations and their potential significance in pathogenesis. Urol Int. 1996;56:137–62.

    Article  CAS  PubMed  Google Scholar 

  37. Grover S, Srivastava A, Lee R, et al. Role of inflammation in bladder function and interstitial cystitis. Ther Adv Urol. 2011;3:19–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Manikandan R, Kumar S, Dorairajan LN. Hemorrhagic cystitis: a challenge to the urologist. Indian J Urol. 2010;26:159–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Taweel WA, Seyam R. Neurogenic bladder in spinal cord injury patients. Res Rep Urol. 2015;7:85–99.

    PubMed  PubMed Central  Google Scholar 

  40. Maggi CA, Santicioli P, Geppetti P, et al. Simultaneous release of substance P- and calcitonin gene-related peptide (CGRP)-like immunoreactivity from isolated muscle of the guinea pig urinary bladder. Neurosci Lett. 1988;87:163–7.

    Article  CAS  PubMed  Google Scholar 

  41. Pinter E, Szolcsanyi J. Plasma extravasation in the skin and pelvic organs evoked by antidromic stimulation of the lumbosacral dorsal roots of the rat. Neuroscience. 1995;68:603–14.

    Article  CAS  PubMed  Google Scholar 

  42. Koltzenburg M, McMahon SB. Plasma extravasation in the rat urinary bladder following mechanical, electrical and chemical stimuli: evidence for a new population of chemosensitive primary sensory afferents. Neurosci Lett. 1986;72:352–6.

    Article  CAS  PubMed  Google Scholar 

  43. Bjorling DE, Jerde TJ, Zine MJ, et al. Mast cells mediate the severity of experimental cystitis in mice. J Urol. 1999;162:231–6.

    Article  CAS  PubMed  Google Scholar 

  44. Jasmin L, Janni G. Experimental neurogenic cystitis. Adv Exp Med Biol. 2003;539:319–35.

    PubMed  Google Scholar 

  45. Spanos C, Pang X, Ligris K, et al. Stress-induced bladder mast cell activation: implications for interstitial cystitis. J Urol. 1997;157:669–72.

    Article  CAS  PubMed  Google Scholar 

  46. Jasmin L, Janni G, Ohara PT, et al. CNS induced neurogenic cystitis is associated with bladder mast cell degranulation in the rat. J Urol. 2000;164:852–5.

    Article  CAS  PubMed  Google Scholar 

  47. De Ridder D, Chandiramani V, Dasgupta P, et al. Intravesical capsaicin as a treatment for refractory detrusor hyperreflexia: a dual center study with long-term followup. J Urol. 1997;158:2087–92.

    Article  PubMed  Google Scholar 

  48. Cruz F. Desensitization of bladder sensory fibers by intravesical capsaicin or capsaicin analogs. A new strategy for treatment of urge incontinence in patients with spinal detrusor hyperreflexia or bladder hypersensitivity disorders. Int Urogynecol J Pelvic Floor Dysfunct. 1998;9:214–20.

    Article  CAS  PubMed  Google Scholar 

  49. Brady CM, Apostolidis A, Yiangou Y, et al. P2X3-immunoreactive nerve fibres in neurogenic detrusor overactivity and the effect of intravesical resiniferatoxin. Eur Urol. 2004;46:247–53.

    Article  CAS  PubMed  Google Scholar 

  50. Brookoff D. Genitourinary pain syndromes: interstitial cystitis, chronic prostatitis, pelvic floor dysfunction, and related disorders. Urol Clin North Am. 2009;36:527–36.

    Article  Google Scholar 

  51. Ham BK, Kim JH, Oh MM, et al. Effects of combination treatment of intravesical resiniferatoxin instillation and hydrodistention in patients with refractory painful bladder syndrome/interstitial cystitis: a pilot study. Int Neurourol J. 2012;16:41–6.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Brain SD, Williams TJ, Tippins JR, et al. Calcitonin gene-related peptide is a potent vasodilator. Nature. 1985;313:54–6.

    Article  CAS  PubMed  Google Scholar 

  53. Miyoshi H, Nakaya Y. Calcitonin gene-related peptide activates the K+ channels of vascular smooth muscle cells via adenylate cyclase. Basic Res Cardiol. 1995;90:332–6.

    Article  CAS  PubMed  Google Scholar 

  54. Persson K, Garcia-Pascual A, Andersson KE. Difference in the actions of calcitonin gene-related peptide on pig detrusor and vesical arterial smooth muscle. Acta Physiol Scand. 1991;143:45–53.

    Article  CAS  PubMed  Google Scholar 

  55. Lu B, Figini M, Emanueli C, et al. The control of microvascular permeability and blood pressure by neutral endopeptidase. Nat Med. 1997;3:904–7.

    Article  CAS  PubMed  Google Scholar 

  56. Lembeck F, Donnerer J, Tsuchiya M, et al. The non-peptide tachykinin antagonist, CP-96,345, is a potent inhibitor of neurogenic inflammation. Br J Pharmacol. 1992;105:527–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Bjorling DE, Saban MR, Saban R. Neurogenic inflammation of Guinea-pig bladder. Mediat Inflamm. 1994;3:189–97.

    Article  CAS  Google Scholar 

  58. Saban R. Angiogenic factors, bladder neuroplasticity and interstitial cystitis-new pathobiological insights. Transl Androl Urol. 2015;4:555–62.

    PubMed  PubMed Central  Google Scholar 

  59. Jaromi P, Garab D, Hartmann P, et al. Capsaicin-induced rapid neutrophil leukocyte activation in the rat urinary bladder microcirculatory bed. Neurourol Urodyn. 2018;37:60–8.

    Article  CAS  Google Scholar 

  60. Iwanaga T, Han T, Hoshi O, et al. Topographical relation between serotonin-containing paraneurons and peptidergic neurons in the intestine and urethra. Biol Signals. 1994;3:259–70.

    Article  CAS  PubMed  Google Scholar 

  61. Hashimoto Y, Ushiki T, Uchida T, et al. Scanning electron microscopic observation of apical sites of open-type paraneurons in the stomach, intestine and urethra. Arch Histol Cytol. 1999;62:181–9.

    Article  CAS  PubMed  Google Scholar 

  62. Grol S, van Koeveringe GA, de Vente J, et al. Regional differences in sensory innervation and suburothelial interstitial cells in the bladder neck and urethra. BJU Int. 2008;102:870–7.

    Article  PubMed  Google Scholar 

  63. Saunders CJ, Reynolds SD, Finger TE. Chemosensory brush cells of the trachea. Am J Respir Cell Mol Biol. 2013;49:190–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. McLennan MT, Melick C, Bent AE. Urethral instability: clinical and urodynamic characteristics. Neurourol Urodyn. 2001;20:653–60.

    Article  CAS  PubMed  Google Scholar 

  65. Rosen JM, Klumpp DJ. Mechanisms of pain from urinary tract infection. Int J Urol. 2014;21:26–32.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Ee H, McKinley K, Pearce MM, et al. Urine is not sterile: use of enhanced urine culture techniques to detect resident bacterial flora in the adult female bladder. J Clin Microbiol. 2014;52:871–6.

    Article  Google Scholar 

  67. Khasriya R, Sathiananthamoorthy S, Ismail S, et al. Spectrum of bacterial colonization associated with urothelial cells from patients with chronic lower urinary tract symptoms. J Clin Microbiol. 2013;51:2054–62.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Pearce MM, Hilt EE, Rosenfeld AB, et al. The female urinary microbiome: a comparison of women with and without urgency urinary incontinence. MBio. 2014;5:e01283–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Pearce MM, Zilliox MJ, Rosenfeld AB, et al. The female urinary microbiome in urgency urinary incontinence. Am J Obstet Gynecol. 2015;213:347 e341–11.

    Article  Google Scholar 

  70. Thomas-White KJ, Hilt EE, Fok C, et al. Incontinence medication response relates to the female urinary microbiota. Int Urogynecol J. 2016;27:723–33.

    Article  PubMed  Google Scholar 

  71. Schilling JD, Mulvey MA, Vincent CD, et al. Bacterial invasion augments epithelial cytokine responses to Escherichia coli through a lipopolysaccharide-dependent mechanism. J Immunol. 2001;166:1148–55.

    Article  CAS  PubMed  Google Scholar 

  72. Thumbikat P, Berry RE, Zhou G, et al. Bacteria-induced uroplakin signaling mediates bladder response to infection. PLoS Pathog. 2009;5:1–17.

    Article  CAS  Google Scholar 

  73. Wood MW, Breitschwerdt EB, Nordone SK, et al. Uropathogenic E. coli promote a paracellular urothelial barrier defect characterized by altered tight junction integrity, epithelial cell sloughing and cytokine release. J Comp Pathol. 2011;5:1–9.

    Google Scholar 

  74. Birder LA, Klumpp DJ. Host responses to urinary tract infections and emerging therapeutics: sensation and pain within the urinary tract. Microbiol Spectrum. 2016;4(5).

    Google Scholar 

  75. Abraham SN, Miao Y. The nature of immune responses to urinary tract infections. Nat Rev Immunol. 2015;15:655–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Mo L. Ablation of the Tamm-Horsfall protein gene increases susceptibility of mice to bladder colonization by type 1 fimbriated Eschericia coli. Am J Physiol Renal Physiol. 2004;286:F795–802.

    Article  CAS  PubMed  Google Scholar 

  77. Valore EV, Park CH, Quayle AJ, et al. Human beta-defensin-1: an antimicrobial peptide of urogenital tissues. J Clin Invest. 1998;101:1633–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Meseguer V, Alpizar YA, Luis E, et al. TRPA1 channels mediate acute neurogenic inflammation and pain produced by bacterial endotoxins. Nat Commun. 2014;5:3125.

    Article  PubMed  CAS  Google Scholar 

  79. Kullmann FA, Chang HH, Gauthier C, et al. Serotonergic paraneurones in the female mouse urethral epithelium and their potential role in peripheral sensory information processing. Acta Physiol Scand. 2018;222(2).

    Google Scholar 

  80. Johansen C, Verheul A, Gram L, et al. Protamine-induced permeabilization of cell envelopes of gram-positive and gram-negative bacteria. Appl Environ Microbiol. 1997;63:1155–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Luber-Narod J, Austin-Ritchie T, Banner B, et al. Experimental autoimmune cystitis in the Lewis rat: a potential animal model for interstitial cystitis. Urol Res. 1996;24:367–73.

    Article  CAS  PubMed  Google Scholar 

  82. Lin YH, Liu G, Kavran M, et al. Lower urinary tract phenotype of experimental autoimmune cystitis in mouse: a potential animal model for interstitial cytitis. BJU Int. 2008;102:1724–30.

    Article  CAS  PubMed  Google Scholar 

  83. Marson L, Giamberadino MA, Costantini R, et al. Animal models for the study of female sexual dysfunction. Sex Med Rev. 2013;1:108–22.

    Article  PubMed  PubMed Central  Google Scholar 

  84. Fariello JY, Moldwin RM. Similarities between interstitial cystitis/bladder pain syndrome and vulvodynia: implications for patient management. Transl Androl Urol. 2015;4:643–52.

    PubMed  PubMed Central  Google Scholar 

  85. Yoshikawa S, Kawamorita N, Oguchi T, et al. Pelvic organ cross-sensitization to enhance bladder and urethral pain behaviors in rats with experimental colitis. Neuroscience. 2015;284:422–9.

    Article  CAS  PubMed  Google Scholar 

  86. Hunter HJ, Momen SE, Kleyn CE. The impact of psychosocial stress on healthy skin. Clin Exp Derm. 2015;40:540–6.

    Article  CAS  PubMed  Google Scholar 

  87. Leue C, Kruimel J, Vrigens D, et al. Functional urological disorders: a sensitized defence response in the bladder-gut-brain axis. Nat Rev Urol. 2017;14:153–63.

    Article  CAS  PubMed  Google Scholar 

  88. Powell N, Walker MM, Talley NJ. The mucosal immune system: master regulator of bidirectional gut-brain communications. Nat Rev Gastroenterol Hepatol. 2017;14:143–59.

    Article  CAS  PubMed  Google Scholar 

  89. Wang Z, Chang HH, Gao Y, et al. Effects of water avoidance stress on peripheral and central responses during bladder filling in the rat: a multidisciplinary approach to the study of urologi chronic pelvic pain syndrome (MAPP) research network study. PLoS One. 2017;12:e0182976.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  90. Elbadawi A. Interstitial cystitis: a critique of current concepts with a new proposal for pathologic diagnosis and pathogenesis. Urology. 1997;49:14–40.

    Article  CAS  PubMed  Google Scholar 

  91. Hagen EM, Rekand T. Management of neuropathic pain associated with spinal cord injury. Pain Ther. 2015;4:51–65.

    Article  PubMed  PubMed Central  Google Scholar 

  92. Wada N, Shimizu T, Shimizu N, et al. The effect of neutralization of nerve growth factor (NGF) on bladder and urethral dysfunction in mice with spinal cord injury. Neurourol Urodyn. 2018 Mar 8. https://doi.org/10.1002/nau.23539. [Epub ahead of print].

  93. Apostolidis A, Brady CB, Yiangou Y, et al. Capsaicin receptor TRPV1 in urothelium of neurogenic human bladders and effect of intravesical resiniferatoxin. Urology. 2005;65:400–5.

    Article  PubMed  Google Scholar 

  94. Jiang W, Li M, He F, et al. Targeting the NLRP3 inflammasome to attenuate spinal cord injury in mice. J Neuroinflamm. 2017;14:208.

    Article  CAS  Google Scholar 

  95. Xiang H, Liu Z, Wang F, et al. Primary sensory neuron-specific interference of TRPV1 signaling by AAV-encoded TRPV1 peptide aptamer attenuates neuropathic pain. Mol Pain. 2007;13:1744806917717040.

    Google Scholar 

  96. Topf T, Wrobel L, Chacinska A. Chatty mitochondria: keeping balance in cellular protein homeostasis. Trends Cell Biol. 2016;26:577–86.

    Article  CAS  PubMed  Google Scholar 

  97. McEwen ML, Sullivan PG, Rabchevsky AG, et al. Targeting mitochondrial function for the treatment of acute spinal cord injury. Am Soc Exp Neurother. 2011;8:168–79.

    Article  CAS  Google Scholar 

  98. Scholpa NE, Schnellmann RG. Mitochondrial-based therapeutics for the treatment of spinal cord injury: mitochondrial biogenesis as a potential pharmacological target. JPET. 2017;363:303–13.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lori Ann Birder .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature B.V.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Birder, L.A. (2019). Bladder/Pelvic Pain and Neurogenic Inflammation. In: Liao, L., Madersbacher, H. (eds) Neurourology. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-7509-0_54

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-7509-0_54

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-017-7507-6

  • Online ISBN: 978-94-017-7509-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics