Skip to main content

Carbon, a Unique Model Material for Condensed Matter Physics and Engineering Science

  • Chapter
Fundamental and Applied Nano-Electromagnetics

Abstract

Although poorly known by the general public, carbon materials are everywhere in our life, and are present in multiple applications. But many more devices and systems might be based on carbon, considering the number of forms this element may take. In the present work, focus is given to black forms of carbon, and many structures are presented. Such different architectures, associated with different anisotropies and transport properties, may lead to materials presenting an outstanding number of distinct features. So broad range of characteristics is possible through the number of textures carbon may take. As far as the authors know, no other element can generate so many different materials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Inagaki M (2000) New carbons, control of structure and functions. Elsevier, Oxford

    Google Scholar 

  2. Walker PL Jr (1990) Carbon: an old but new material revisited. Carbon 28:261–279

    Article  Google Scholar 

  3. Amaral-Labat G, Szczurek A, Fierro V, Pizzi A, Celzard A (2013) Tannin as a key precursor of new porous carbon materials. In: Proceedings of the international conference on carbon’13, Rio de Janeiro (Brasil) 15–19 July 2013

    Google Scholar 

  4. Wang Y, Panzik JE, Kiefer B, Lee KKM (2012) Crystal structure of graphite under room-temperature compression and decompression. Sci Rep 2:520

    ADS  Google Scholar 

  5. Shabalin IL (2014) Ultra-high temperature materials I. Carbon (Graphene/graphite and refractory metals). Springer, p 56

    Google Scholar 

  6. Georgakilas V, Perman JA, Tucek J, Zboril R (2015) Broad family of carbon nanoallotropes: classification, chemistry, and applications of fullerenes, carbon dots, nanotubes, graphene, nanodiamonds, and combined superstructures. Chem Rev 115:4744–4822

    Article  Google Scholar 

  7. Liu M, Artyukhov VI, Lee H, Xu F, Yakobson BI (2013) Carbyne from first principles: chain of C atoms, a nanorod or a nanorope. ACS Nano 7:10075–10082

    Article  Google Scholar 

  8. Peng Q, Dearden AK, Crean J, Han L, Liu S, Wen X, De S (2014) New materials graphyne, graphdiyne, graphone, and graphane: review of properties, synthesis, and application in nanotechnology. Nanotechnol Sci Appl 7:1–29

    Article  Google Scholar 

  9. Terrones H, Terrones M, Hsu WK (1995) Beyond C 60: graphite structures for the future. Chem Soc Rev 24:341–350

    Article  Google Scholar 

  10. Marsh H, Griffiths JA (1982) High resolution electron microscopy study of graphitization of graphitizable carbons. Extended abstracts international symposium on carbon. Annual meeting, Toyohashi, Japan, 9, 81–83 1982

    Google Scholar 

  11. Braghiroli FL, Fierro V, Izquierdo MT, Parmentier J, Pizzi A, Celzard A (2014) Kinetics of the hydrothermal treatment of tannin for producing carbonaceous microspheres. Biores Technol 151:271–277

    Article  Google Scholar 

  12. Braghiroli FL, Fierro V, Izquierdo MT, Parmentier J, Pizzi A, Lacoste C, Delmotte L, Celzard A (2015) High surface – highly N-doped carbons from hydrothermal treatment of aminated tannin. Ind Crops Prod 66:282–290

    Article  Google Scholar 

  13. Celzard A, Marêché JF, Payot F, Furdin G (2002) Electrical conductivity of carbonaceous powders. Carbon 40:2801–2815

    Article  Google Scholar 

  14. Celzard A, Furdin G, Marêché JF, McRae E, Dufort M, Deleuze C (1994) Anisotropic percolation in an epoxy – graphite disc composite. Solid State Commun 92:377–383

    Article  ADS  Google Scholar 

  15. Reilly RM (2007) Carbon nanotubes: potential benefits and risks of nanotechnology in nuclear medicine. J Nucl Med 48:1039–1042

    Article  Google Scholar 

  16. Kranauskaite I, Macutkevic J, Kuzhir P, Volynets N, Paddubskaya A, Bychanok D, Maksimenko S, Banys J, Bistarelli S, Cataldo A, Micciulla F, Bellucci S, Fierro V, Celzard A (2014) Dielectric properties of graphite-based epoxy composites. Phys Status Solidi A 211:1623–1633

    Article  Google Scholar 

  17. Qin Y, Kim Y, Zhang L, Lee SM, Yang RB, Pan AL, Mathwig K, Alexe M, Gösele U, Knez M (2010) Preparation and elastic properties of helical nanotubes obtained by atomic layer deposition with carbon nanocoils as templates. Small 6:910–914

    Article  Google Scholar 

  18. Naess SN, Elgsaeter A, Helgesen G, Knudsen KD (2009) Carbon nanocones: wall structure and morphology. Sci Technol Adv Mater 10:065002

    Google Scholar 

  19. Koshino M, Niimi Y, Nakamura E, Kataura H, Okazaki T, Suenaga K, Iijima S (2010) Analysis of the reactivity and selectivity of fullerene dimerization reactions at the atomic level. Nat Chem 2:117–124

    Article  Google Scholar 

  20. Bousige C (2012) Structure and dynamics of a model unidimensionnal system: carbon nano-peapods. PhD thesis, Paris XI university

    Google Scholar 

  21. Celzard A, Marêché JF, Furdin G (2005) Modelling of exfoliated graphite. Prog Mater Sci 50:93–179

    Article  Google Scholar 

  22. Yi YB, Sastry AM (2004) Analytical approximation of percolation threshold for overlapping ellipsoids. Proc Roy Soc London A460:2353–2380

    Article  ADS  MathSciNet  MATH  Google Scholar 

  23. Yi YB, Berhan LM, Sastry AM (2004) Statistical geometry of random fibrous networks, revisited: waviness, dimensionality and percolation. J Appl Phys 96:1318–1327

    Article  ADS  Google Scholar 

  24. Hwang SH, Park YB, Yoon KH, Bang DS (2011) Smart materials and structures based on carbon nanotube composites. In: S Yellampalli (ed) Nanotechnology and nanomaterials, “Carbon nanotubes – synthesis, characterization, applications”, book edited by ISBN 978-953-307-497-9, Published: July 20, 2011 under CC BY-NC-SA 3.0 license (2011)

    Google Scholar 

  25. Masotti A, Caporali A (2013) Preparation of magnetic carbon nanotubes (Mag-CNTs) for biomedical and biotechnological applications. Int J Mol Sci 14:24619–24642

    Article  Google Scholar 

  26. Baaziz W, Florea I, Moldovan S, Papaefthimiou V, Zafeiratos S, Bégin-Colin S, Bégin D, Ersen O, Pham-Huu C (2015) Microscopy investigations of the microstructural change and thermal response of cobalt-based nanoparticles confined inside a carbon nanotube medium. J Mater Chem A 3:11203–11214

    Article  Google Scholar 

  27. Jana P, Fierro V, Pizzi A, Celzard A (2015) Thermal conductivity improvement of composite carbon foams based on tannin-based disordered carbon matrix and graphite fillers. Mater Des 83:635–643

    Google Scholar 

  28. Inagaki M, Morishita T, Kuno A, Kito T, Hirano M, Suwa T, Kusakawa K (2004) Carbon foams prepared from polyimide using urethane foam template. Carbon 42:497–502

    Article  Google Scholar 

  29. Tondi G, Fierro V, Pizzi A, Celzard A (2009) Tannin-based carbon foams. Carbon 47:1480–1492

    Article  Google Scholar 

  30. Li X, Basso MC, Braghiroli FL, Fierro V, Pizzi A, Celzard A (2012) Tailoring the structure of cellular vitreous carbon foams. Carbon 50:2026–2036

    Article  Google Scholar 

  31. Szczurek A, Fierro V, Pizzi A, Celzard A (2014) Emulsion-templated porous carbon monoliths derived from tannins. Carbon 74:352–362

    Article  Google Scholar 

  32. Crittenden B, Patton A, Jouin C, Perera S, Tennison S, Echevarris JAB (2005) Carbon monoliths: a comparison with granular materials. Adsorption 11:537–541

    Article  Google Scholar 

  33. Szczurek A, Fierro V, Pizzi A, Celzard A (2013) Mayonnaise, whipped cream and meringue, a new carbon cuisine. Carbon 58:245–248

    Article  Google Scholar 

  34. Petkovich ND, Stein A (2013) Controlling macro- and mesostructures with hierarchical porosity through combined hard and soft templating. Chem Soc Rev 42:3721–3739

    Article  Google Scholar 

  35. Zhao W, Fierro V, Pizzi A, Celzard A (2010) Bimodal cellular activated carbons derived from tannins. J Mater Sci 45:5778–5785

    Article  ADS  Google Scholar 

  36. Murakami K, Satoh Y, Ogino I, Mukai SR (2013) Synthesis of a monolithic carbon-based acid catalyst with a honeycomb structure for flow reaction systems. Ind Eng Chem Res 52:15372–15376

    Article  Google Scholar 

  37. Szczurek A, Amaral-Labat G, Fierro V, Pizzi A, Celzard A (2014) Chemical activation of tannin-based hydrogels by soaking in KOH and NaOH solutions. Microporous Mesoporous Mater 196:8–17

    Article  Google Scholar 

  38. Xu YX, Sheng KX, Li C, Shi GQ (2010) Self-assembled graphene hydrogel via a one-step hydrothermal process. ACS Nano 4:4324–4330

    Article  Google Scholar 

  39. Wang X, Zhang Y, Zhi C, Wang X, Tang D, Xu Y, Weng Q, Jiang X, Mitome M, Golberg D, Bando Y (2013) Three-dimensional strutted graphene grown by substrate-free sugar blowing for high-power-density supercapacitors. Nat Commun 4:2905

    Google Scholar 

  40. Lee KT, Lytle JC, Ergang NS, Oh SM, Stein A (2005) Synthesis and rate performance of monolithic macroporous carbon electrodes for lithium-ion secondary batteries. Adv Funct Mater 14:547–556

    Article  Google Scholar 

  41. Kohno H, Tatsutani K, Ichikawa S (2012) Carbon nanofoam formed by laser ablation. J Nanosci Nanotechnol 12:2844–2848

    Article  Google Scholar 

  42. Szczurek A, Amaral-Labat G, Fierro V, Pizzi A, Masson E, Celzard A (2011) The use of tannin for preparing carbon gels. Part I. Carbon aerogels. Carbon 49:2773–2784

    Article  Google Scholar 

  43. Braghiroli F, Fierro V, Izquierdo MT, Parmentier J, Pizzi A, Celzard A (2012) Nitrogen-doped carbon materials produced from hydrothermally treated tannin. Carbon 50:5411–5420

    Article  Google Scholar 

  44. Sun H, Xu Z, Gao C (2013) Multifunctional, ultra-flyweight. Synergistically assembled carbon aerogels. Adv Mater 25:2554–2560

    Article  Google Scholar 

  45. Bryning MB, Milkie DE, Islam MF, Hough LA, Kikkawa JM, Yodh AG (2007) Carbon nanotube aerogels. Adv Mater 19:661–664

    Article  Google Scholar 

  46. Meng Y, Gu D, Zhang F, Shi Y, Cheng L, Feng D, Wu Z, Chen Z, Wan Y, Stein A, Zhao D (2006) A family of highly ordered mesoporous polymer resin and carbon structures from organic-organic self-assembly. Chem Mater 18:4447–4464

    Article  Google Scholar 

  47. Fierro V, Zhao W, Izquierdo MT, Aylon E, Celzard A (2010) Adsorption and compression contributions to hydrogen storage in activated anthracites. Int J Hydrogen Energy 35:9038–9045

    Article  Google Scholar 

  48. Szczurek A, Ortona A, Ferrari L, Rezaei E, Medjahdi G, Fierro V, Bychanok D, Kuzhir P, Celzard A (2015) Carbon periodic cellular architectures. Carbon 88:70–85

    Article  Google Scholar 

  49. Lu X, Chen L, Amini N, Yang S, Evans JRG, Guo ZX (2012) Novel methods to fabricate macroporous 3D carbon scaffolds and ordered surface mesopores on carbon filaments. J Porous Mater 19:529–536

    Article  Google Scholar 

  50. Zhu C, Han TY-J, Duoss EB, Golobic AM, Kuntz JD, Spadaccini CM, Worsley MA (2015) Highly compressible 3D periodic graphene aerogel microlattices. Nat Commun 6:6962

    Google Scholar 

  51. Paul RK, Ghazinejad M, Penchev M, Lin J, Ozkan M, Sinan Ozkan C (2010) Synthesis of a pillared graphene nanostructure: a counterpart of three-dimensional carbon architectures. Small 6:2309–2313

    Article  Google Scholar 

  52. Lee J-H, Wang L, Boyce MC, Thomas EL (2012) Periodic bicontinuous composites for high specific energy absorption. Nano Lett 12:4392–4396

    Article  ADS  Google Scholar 

  53. Jacobsen AJ, Mahoney S, Carter WB, Nutt S (2011) Vitreous carbon micro-lattice structures. Carbon 49:1025–1032

    Article  Google Scholar 

  54. Cheung KC, Gershenfeld N (2013) Reversibly assembled cellular composite materials. Science 341:1219–1221

    Article  ADS  Google Scholar 

  55. Endo M (2008) Science and technology of nanocarbons. In: Tang Z, Sheng P (eds) Nanoscale phenomena: basic science to device applications. Springer, New York

    Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support of the CPER 2007–2013 “Structuration du Pôle de Compétitivité Fibres Grand’Est” (Competitiveness Fiber Cluster), through local (Conseil Général des Vosges), regional (Région Lorraine), national (DRRT and FNADT) and European (FEDER) funds. This research was also partially supported by FP7-PEOPLE-2013-IRSES-610875 NAmiceMC and Belarus-CNRS project BRFFI F13F-004.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alain Celzard .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Celzard, A., Fierro, V. (2016). Carbon, a Unique Model Material for Condensed Matter Physics and Engineering Science. In: Maffucci, A., Maksimenko, S.A. (eds) Fundamental and Applied Nano-Electromagnetics. NATO Science for Peace and Security Series B: Physics and Biophysics. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-7478-9_1

Download citation

Publish with us

Policies and ethics