Skip to main content

Connectivity, Networks, Cores and Corridors

  • Chapter
  • First Online:
Mapping Wilderness
  • 920 Accesses

Abstract

Ecological networks and connectivity assessment have a major role to play in supporting the adaptation and persistence of wildland areas as robust, functioning ecological units. They seek to achieve this by supporting the movement of species between discrete habitat patches. The ‘greenways’ concept developed in parallel but has a different focus that stresses the utility of linear corridors for humans. Greenways are typically defined by identifying the co-location of natural and cultural assets rather than through the dispersal of species or the location of habitat patches. When planning an ecological network it’s important to explicitly consider connectivity rather than use design-led approaches that simply ‘join the dots’ between protected areas. This process should focus on the functional and physical linkages that are already present in order to define and build upon any residual connectivity that might remain in a landscape. Understanding the relative benefits that ecological networks bring in relation to other conservation measures that might be applied in the same area is also important. A number of different tools are available that help define connectivity. Five broad approaches have been identified: spatial indices; graph theory approaches; habitat suitability models; spatially explicit population models; and individual-based models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adriaensen, F., Chardon, J. P., De Blust, G., Swinnen, E., Villalba, S., & Gulinck, H. (2003). The application of ‘least-cost’ modelling as a functional landscape model. Landscape and Urban Planning, 64, 233–247.

    Article  Google Scholar 

  • Ahern, J. (1996). Greenways as a planning strategy. In J. Fabos & J. Ahern (Eds.), Greenways: The beginning of an international movement (pp. 131–155). Amsterdam: Elsevier.

    Google Scholar 

  • Ahern, J. (2004). Greenways in the USA: Theory, trends and prospects. In R. H. G. Jongman & G. Pungetti (Eds.), Ecological networks and greenways: Concept, design, implementation (pp. 34–55). Cambridge: Cambridge University Press.

    Chapter  Google Scholar 

  • Amici, V., Geri, F., & Battisti, C. (2010). An integrated method to create habitat suitability models for fragmented landscapes. Journal for Nature Conservation, 18(3), 215–223.

    Article  Google Scholar 

  • Barrett, S. C. H., & Kohn, J. (1991). Genetic and evolutionary consequences of small population size in plants: Implications for conservation. In D. A. Falk & K. E. Holsinger (Eds.), Genetics and conservation of rare plants. New York: Oxford University Press.

    Google Scholar 

  • Beier, P., & Noss, R. F. (1998). Do habitat corridors provide connectivity? Conservation Biology, 12, 1241–1252.

    Article  Google Scholar 

  • Bennett, G., & Wit, P. (2001). The development and application of ecological networks (A review of proposals, plans and programmes). Gland: IUCN.

    Google Scholar 

  • Boitani, L., Falcucci, A., Maiorano, L., & Montemaggiori, A. (2007). Ecological networks as conceptual frameworks or operational tools in conservation. Conservation Biology, 21(6), 1414–1422.

    Article  Google Scholar 

  • Brajanoska, R., Melovski, L., Hristovski, S., Sarov, А., & Avukatov, V. (2011). Brown bear corridors management plan (Report under the project: “Development of the National Ecological Network in the Republic of Macedonia (MAK-NEN)”). Skopje: Macedonian Ecological Society.

    Google Scholar 

  • Burns, F., Eaton, M. A., Gregory, R. D., Al Fulaij, N., August, T. A., Biggs, J., Bladwell, S., Brereton, T., Brooks, D. R., Clubbe, C., Dawson, J., Dunn, E., Edwards, B., Falk, S. J., Gent, T., Gibbons, D. W., Gurney, M., Haysom, K. A., Henshaw, S., Hodgetts, N. G., Isaac, N. J. B., McLaughlin, M., Musgrove, A. J., Noble, D. G., O’Mahony, E., Pacheco, M., Roy, D. B., Sears, J., Shardlow, M., Stringer, C., Taylor, A., Thompson, P., Walker, K. J., Walton, P., Willing, M. J., Wilson, J., & Wynde, R. (2013). State of nature report. The State of Nature Partnership. Sandy: RSPB.

    Google Scholar 

  • Campillo, F., & Champagnat, N. (2012). Simulation and analysis of an individual-based model for graph-structured plant dynamics. Ecological Modelling, 234, 93–105.

    Article  Google Scholar 

  • Carrington, D. (2013). Global carbon dioxide in atmosphere passes milestone level. Climate warming greenhouse gas reaches 400 parts per million for the first time in human history. The Guardian, Friday 10 May 2013 15.10 BST. http://www.guardian.co.uk/environment/2013/may/10/carbon-dioxide-highest-level-greenhouse-gas. Accessed 31 May 2013.

  • Catchpole, R. D. J. (2006). Planning for biodiversity – Opportunity mapping and habitat networks in practice: A technical guide (English nature research report, 687). Peterborough: English Nature.

    Google Scholar 

  • Catchpole, R. D. J. (2013). Ecological coherence definitions in policy and practice (Scottish natural heritage commissioned report no. 552). Inverness: Scottish Natural Heritage; Bangkok: Food and Agriculture Organisation of the United Nations, Regional Office for Asia and the Pacific.

    Google Scholar 

  • Cianfrani, C., Le Lay, G., Hirzel, A. H., & Loy, A. (2010). Do habitat suitability models reliably predict the recovery areas of threatened species? Journal of Applied Ecology, 47(2), 421–430.

    Article  Google Scholar 

  • Cinzano, P., Falchi, F., & Elvidge, C. D. (2001). The first World Atlas of the artificial night sky brightness. Monthly Notes of the Royal Astronomical Society, 328, 689–707.

    Article  Google Scholar 

  • Crooks, K. R., & Sanjayan, M. (2006). Connectivity conservation: Maintaining connections for nature. In K. R. Crooks & M. Sanjayan (Eds.), Connectivity conservation (Conservation biology, Vol. 14, pp. 1–19). Cambridge: Cambridge University Press.

    Chapter  Google Scholar 

  • Dale, V. H., Offerman, H., Pearson, S., & O’Neill, R. V. (1994). Effects of forest fragmentation on neotropical fauna. Conservation Biology, 8, 1027–1036.

    Article  Google Scholar 

  • Desrochers, A. M., Bain, J. F., & Warwick, S. I. (1988). The biology of Canadian weeds 89. Carduus nutans L. and Carduus acanthoides L. Canadian Journal of Plant Science, 68, 1053–1068.

    Article  Google Scholar 

  • Dudash, M. R., & Fenster, C. B. (2000). Inbreeding and outbreeding depression in fragmented populations. In A. G. Young & G. M. Clarke (Eds.), Genetics, demography and viability of fragmented populations (Conservation biology, Vol. 4, pp. 35–53). Cambridge: Cambridge University Press.

    Chapter  Google Scholar 

  • Environment, D. G. (2009). Towards a green infrastructure for Europe: Ensuring the ecological coherence of the Natura 2000 network. European Commission Nature and Biodiversity Newsletter, 27, 3–7.

    Google Scholar 

  • Fagan, W. F., & Calabrese, J. M. (2006). Quantifying connectivity: Balancing metric performance with data require- ments. In K. R. Crooks & M. Sanjayan (Eds.), Connectivity conservation (Conservation biology, Vol. 14, pp. 297–317). Cambridge: Cambridge University Press.

    Chapter  Google Scholar 

  • Fenster, C. B., & Dudash, M. R. (1994). Genetic considerations for plant population restoration and conservation. In M. L. Bowles & C. J. Whelan (Eds.), Restoration of endangered species: Conceptual issues, planning and implementation (pp. 34–62). Cambridge: Cambridge University Press.

    Chapter  Google Scholar 

  • Ferreras, P. (2001). Landscape structure and asymmetrical inter-patch connectivity in a metapopulation of the endangered Iberian lynx. Biological Conservation, 100, 125–136.

    Article  Google Scholar 

  • Forman, R. T. T. (1995). Land mosaics: The ecology of landscapes and regions. Cambridge: Cambridge University Press.

    Google Scholar 

  • Forman, R. T. T., & Godron, M. (1981). Patches and structural components for a landscape ecology. Bioscience, 31, 733–740.

    Article  Google Scholar 

  • Fox, R., Parsons, M. S., Chapman, J. W., Woiwod, I. P., Warren, M. S., & Brooks, D. R. (2013). The state of Britain’s larger moths 2013. Wareham: Butterfly Conservation and Rothamsted Research.

    Google Scholar 

  • Frankham, R. (1995). Inbreeding and extinction: A threshold effect. Conservation Biology, 9(4), 792–799.

    Article  Google Scholar 

  • Glenz, C., Massolo, A., Kuonen, D., & Schlaepfer, R. (2001). A wolf habitat suitability prediction study in Valais (Switzerland). Landscape and Urban Planning, 55, 55–65.

    Article  Google Scholar 

  • Grimm, V., & Railsback, S. F. (2005). Individual-based modeling and ecology. Princeton: Princeton University Press.

    Book  Google Scholar 

  • Guisan, A., & Zimmermann, N. E. (2000). Predictive habitat distribution models in ecology. Ecological Modelling, 135, 147–186.

    Article  Google Scholar 

  • Hagen, M., Wikelski, M., & Kissling, W. D. (2011). Space use of bumblebees (Bombus spp.) revealed by radiotracking. PLoS ONE, 6(5), e19997.

    Article  CAS  Google Scholar 

  • Hanski, I. (1994). A practical model of metapopulation dynamics. Journal of Animal Ecology, 63, 151–162.

    Article  Google Scholar 

  • Hanski, I., & Ovaskainen, O. (2000). The metapopulation capacity of a fragmented landscape. Nature, 404, 755–758.

    Article  CAS  Google Scholar 

  • Hirzel, A. H., Hausser, J., Chessel, D., & Perrin, N. (2002). Ecological niche factor analysis: How to compute habitat suitability maps without absence data? Ecology, 83, 2027–2036.

    Article  Google Scholar 

  • Holderegger, R., Buehler, D., Gugerli, F., & Manel, S. (2010). Landscape genetics of plants. Trends in Plant Science, 15(12), 675–683.

    Article  CAS  Google Scholar 

  • Holsinger, K. E., & Gottlieb, L. D. (1989). The conservation of rare and endangered plants. Trends in Ecology and Evolution, 4(7), 193–194.

    Article  Google Scholar 

  • Jaluzot, A., Ashton, R., Baker, R., Dean, J., Golshetti, G., Jones, N., Moss, M., Steele, M., Williams, W., & Wilmers, P. (2011). Building natural value for sustainable economic development: The green infrastructure valuation toolkit user guide. London: Commission for Architecture and the Built Environment.

    Google Scholar 

  • Jongman, R. H. G. (1995). Nature conservation planning in Europe: Developing ecological networks. Landscape and Urban Planning, 32(3), 169–183.

    Article  Google Scholar 

  • Jongman, R. H. G., & Bogers, M. (2008). Current status of the practical implementation of ecological networks in the Netherlands (KEN project report). Tilburg: ECNC.

    Google Scholar 

  • Jongman, R. G. H., & Pungetti, G. (2004). Introduction: Ecological networks and greenways. In R. H. G. Jongman & G. Pungetti (Eds.), Ecological networks and greenways: Concept, design, implementation (pp. 1–6). Cambridge: Cambridge University Press.

    Chapter  Google Scholar 

  • Jongman, R. G. H., Külvik, M., & Kristiansen, I. (2004). European ecological networks and greenways. Landscape and Urban Planning, 68, 305–319.

    Article  Google Scholar 

  • Junk, W. J., Bayley, P. B., & Sparks, R. E. (1989). The flood pulse concept in river–floodplain systems. In D. P. Dodge (Ed.), Canadian special publication of fisheries and aquatic sciences (Vol. 106, pp. 110–127).

    Google Scholar 

  • Lamberson, R. H. (2012). A brief and biased look at spatial structure in ecological models: A route to individual-based models. Natural Resource Modeling, 25(1), 145–167.

    Article  Google Scholar 

  • Lande, R. (1994). Risk of population extinction from fixation of new deleterious mutations. Evolution, 48(5), 1460–1469.

    Article  Google Scholar 

  • Lawton, J. H., Brotherton, P. N. M., Brown, V. K., Elphick, C., Fitter, A. H., Forshaw, J., Haddow, R. W., Hilborne, S., Leafe, R. N., Mace, G. M., Southgate, M. P., Sutherland, W. J., Tew, T. E., Varley, J., & Wynne, G. R. (2010). Making space for nature: A review of England’s wildlife sites and ecological network (Report to Defra). London: DEFRA.

    Google Scholar 

  • Levins, R. (1969). Some demographic and genetic consequences of environmental heterogeneity for biological control. Bulletin of the Entomological Society of America, 15, 237–240.

    Article  Google Scholar 

  • Lewis, P. H. (1964). Quality corridors for Wisconsin. Landscape Architecture Quarterly, Louisville, Kentucky, (January Issue), pp. 101–108.

    Google Scholar 

  • Lynch, M. (1988). The rate of polygenic mutation. Genetical Research, 51(2), 137–148.

    Article  CAS  Google Scholar 

  • Mander, Ü., Palang, H., & Jagomägi, J. (1995). Ecological networks in Estonia. Landschap, 12(3), 27–38.

    Google Scholar 

  • McGarigal, K., & Marks, B. J. (1995). FRAGSTATS: Spatial pattern analysis program for quantifying landscape structure (U.S. Forest Service general technical report PNW 351). Oregon: Oregon State University.

    Google Scholar 

  • McRae, B. H., Dickson, B. G., Keitt, T. H., & Shah, V. B. (2008). Using circuit theory to model connectivity in ecology and conservation. Ecology, 10, 2712–2724.

    Article  Google Scholar 

  • McSweeney, C. F., Jones, R. G., & Booth, B. B. B. (2012). Selecting ensemble members to provide regional climate change information. Journal of Climate, 25, 7100–7121.

    Article  Google Scholar 

  • Merriam, G. (1984). Connectivity: A fundamental ecological characteristic of landscape pattern. In J. Brandt & P. Agger (Eds.), Proceedings of the first international seminar on methodology in landscape ecological research and planning. Roskilde: Roskilde University.

    Google Scholar 

  • Moilanen, A., & Hanski, I. (2001). On the use of connectivity measures in spatial ecology. Oikos, 95(1), 147–151.

    Article  Google Scholar 

  • Moilanen, A., & Nieminen, M. (2002). Simple connectivity measures in spatial ecology. Ecology, 83, 1131–1145.

    Article  Google Scholar 

  • Moore, N. W. (1987). The bird of time. The science and politics of nature conservation – A personal account. Cambridge: Cambridge University Press.

    Google Scholar 

  • Mosley, D., Ray, D., Watts, K., & Humphrey, J. (2008). Forest habitat networks Scotland. Contract report to Forestry Commission Scotland, Forestry Commission GB and Scottish Natural Heritage. Forest Research, Alice Holt.

    Google Scholar 

  • Nathan, R. (2006). Long-distance dispersal of plants. Science, 313, 786–788.

    Article  CAS  Google Scholar 

  • Pankhurst, H. J. (2010). Green infrastructure: Mainstreaming the concept. Understanding and applying the principles of green infrastructure in South Worcestershire (Natural England commissioned reports, Number 79). Sheffield: Natural England.

    Google Scholar 

  • Pe’er, G., Henle, K., Dislich, C., & Frank, K. (2011). Breaking functional connectivity into components: A novel approach using an individual-based model, and first outcomes. PLoS ONE, 6, e22355.

    Article  Google Scholar 

  • Pither, J., & Taylor, P. D. (1998). An experimental assessment of landscape connectivity. Oikos, 83, 166–174.

    Article  Google Scholar 

  • POST. (2013, February). Biodiversity and planning decisions (POSTNOTE Number 429). London: Parliamentary Office of Science and Technology.

    Google Scholar 

  • Reeve, H. K., Westneat, D. F., Noon, W. A., Sherman, P. W., & Aquadro, C. F. (1990). DNA ‘fingerprinting’ reveals high levels of inbreeding in colonies of the eusocial naked mole-rat. PNAS, 87(7), 2496–2500.

    Article  CAS  Google Scholar 

  • Ricketts, T. H. (2001). The matrix matters: Effective isolation in fragmented landscapes. The American Naturalist, 158(1), 87–99.

    Article  CAS  Google Scholar 

  • Roland, J., Keyghobadi, N., & Fownes, S. (2000). Alpine Parnassius butterfly dispersal: Effect of landscape and population size. Ecology, 81, 1642–1653.

    Article  Google Scholar 

  • Schoen, D. J., & Brown, A. H. (1991). Intraspecific variation in population gene diversity and effective population size correlates with the mating system in plants. PNAS, 88(10), 4494–4497.

    Article  CAS  Google Scholar 

  • Schooley, R. L., & Wiens, J. A. (2003). Finding habitat patches and directional connectivity. Oikos, 102, 559–570.

    Article  Google Scholar 

  • Schultz, C. B. (1998). Dispersal behavior and its implication for reserve design in a rare Oregon butterfly. Conservation Biology, 12, 284–292.

    Article  Google Scholar 

  • Sherwin, W. B., & Moritz, C. (2000). Managing and monitoring genetic erosion. In A. G. Young & G. M. Clarke (Eds.), Genetics, demography and viability of fragmented populations (Conservation biology, Vol. 4, pp. 9–34). Cambridge: Cambridge University Press.

    Chapter  Google Scholar 

  • Simberloff, D., & Cox, J. (1987). Consequences and costs of conservation corridors. Conservation Biology, 1, 63–71.

    Article  Google Scholar 

  • Steffen, W., Crutzen, P. J., & McNeill, J. R. (2007). The anthropocene: Are humans now overwhelming the great forces of nature? AMBIO: A Journal of the Human Environment, 36(8), 614–621.

    Article  CAS  Google Scholar 

  • Taylor, P. D., Fahrig, L., Henein, K., & Merriam, G. (1993). Connectivity is a vital element of landscape structure. Oikos, 68, 571–573.

    Article  Google Scholar 

  • TCPA. (2004). Biodiversity by design: A guide for sustainable communities (‘By design’ guide). London: Town and Country Planning Association.

    Google Scholar 

  • Tirpak, J. M., Jones-Farrand, D. T., Thompson, F. R., III, Twedt, D. J., Baxter, C. K., Fitzgerald, J. A., & Uihlein, W. B., III. (2009). Assessing ecoregional-scale habitat suitability index models for priority landbirds. The Journal of Wildlife Management, 73(8), 1307–1315.

    Article  Google Scholar 

  • Tischendorf, L., Darren, J., & Fahrig, L. (2003). Evaluation of patch isolation metrics in mosaic landscapes for specialist vs. generalist dispersers. Landscape Ecology, 18(1), 41–50.

    Article  Google Scholar 

  • Tweed Forum. (2010). Tweed catchment management plan. Roxburghshire: The Tweed Forum.

    Google Scholar 

  • UNEP. (1992) The Rio declaration on the environment. http://www.unep.org/documents.multilingual/default.asp?documentid=78andarticleid=1163. Accessed 7 June 2013.

  • Vannote, R. L., Minshall, G. W., Cummins, K. W., Sedell, J. R., & Cushing, C. E. (1980). The river continuum concept. Canadian Journal of Fisheries and Aquatic Science, 37, 130–137.

    Article  Google Scholar 

  • Verbeylen, G., De Bruyn, L., Adriaensen, F., & Matthysen, E. (2003). Does matrix resistance influence red squirrel (Sciurus vulgaris L 1758) distribution in an urban landscape? Landscape Ecology, 18, 791–805.

    Article  Google Scholar 

  • Watts, K., Eycott, A. E., Handley, P., Ray, D., Humphrey, J. W., & Quine, C. P. (2010). Targeting and evaluating biodiversity conservation action within fragmented landscapes: An approach based on generic focal species and least-cost networks. Landscape Ecology, 25(9), 1305–1318.

    Article  Google Scholar 

  • With, K. A., Gardner, R. H., & Turner, M. G. (1997). Landscape connectivity and population distributions in heterogeneous environments. Oikos, 78, 151–169.

    Article  Google Scholar 

  • Zohmann, M., Pennerstorfer, J., & Nopp-Mayr, U. (2013). Modelling habitat suitability for alpine rock ptarmigan (Lagopus muta helvetica) combining object-based classification of IKONOS imagery and Habitat Suitability Index modelling. Ecological Modelling, 254, 22–32.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roger D. J. Catchpole .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Catchpole, R.D.J. (2016). Connectivity, Networks, Cores and Corridors. In: Carver, S., Fritz, S. (eds) Mapping Wilderness. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-7399-7_3

Download citation

Publish with us

Policies and ethics