Skip to main content

TNAP, an Essential Player in Membrane Lipid Rafts of Neuronal Cells

  • Chapter
  • First Online:
Neuronal Tissue-Nonspecific Alkaline Phosphatase (TNAP)

Part of the book series: Subcellular Biochemistry ((SCBI,volume 76))

Abstract

The tissue non-specific alkaline phosphatase (TNAP) is a glycosyl-phosphatidylinositol (GPI) anchored glycoprotein which exists under different forms and is expressed in different tissues. As the other members of the ecto-phosphatase family, TNAP is targeted to membrane lipid rafts . Such micro domains enriched in particular lipids, are involved in cell sorting, are in close contact with the cellular cytoskeleton and play the role of signaling platform. In addition to its location in functional domains, the extracellular orientation of TNAP and the fact this glycoprotein can be shed from plasma membranes, contribute to its different phosphatase activities by acting as a phosphomonoesterase on various soluble substrates (inorganic pyrophosphate -PPi-, pyridoxal phosphate -PLP-, phosphoethanolamine -PEA-), as an ectonucleotidase on nucleotide-phosphate and presumably as a phosphatase able to dephosphorylate phosphoproteins and phospholipids associated to cells or to extra cellular matrix. More and more data accumulate on an involvement of the brain TNAP both in physiological and pathological situations. This review will summarize what is known and expected from the TNAP localization in lipid rafts with a particular emphasis on the role of a neuronal microenvironment on its potential function in the central nervous system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Allen JA, Halverson-Tamboli RA, Rasenick MM (2007) Lipid raft microdomains and neurotransmitter signalling. Nat Rev Neurosci 8(2):128–140. doi:nrn2059

    Article  CAS  PubMed  Google Scholar 

  • Alvaro D, Benedetti A, Marucci L, Delle Monache M, Monterubbianesi R, Di Cosimo E, Perego L, Macarri G, Glaser S, Le Sage G, Alpini G (2000) The function of alkaline phosphatase in the liver: regulation of intrahepatic biliary epithelium secretory activities in the rat. Hepatology 32(2):174–184. doi:10.1053/jhep.2000.9078

    Article  CAS  PubMed  Google Scholar 

  • Bate C, Williams A (2011) Monoacylated cellular prion protein modifies cell membranes, inhibits cell signaling, and reduces prion formation. J Biol Chem 286(11):8752–8758. doi:M110.186833

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Becq F, Jensen TJ, Chang XB, Savoia A, Rommens JM, Tsui LC, Buchwald M, Riordan JR, Hanrahan JW (1994) Phosphatase inhibitors activate normal and defective CFTR chloride channels. Proc Natl Acad Sci USA 91(19):9160–9164

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bjork K, Sjogren B, Svenningsson P (2010) Regulation of serotonin receptor function in the nervous system by lipid rafts and adaptor proteins. Exp Cell Res 316(8):1351–1356. doi:10.1016/j.yexcr.2010.02.034

    Article  PubMed  Google Scholar 

  • Brewis IA, Turner AJ, Hooper NM (1994) Activation of the glycosyl-phosphatidylinositol-anchored membrane dipeptidase upon release from pig kidney membranes by phospholipase C. Biochem J 303(Pt 2):633–638

    CAS  PubMed Central  PubMed  Google Scholar 

  • Brun-Heath I, Ermonval M, Chabrol E, Xiao J, Palkovits M, Lyck R, Miller F, Couraud PO, Mornet E, Fonta C (2011) Differential expression of the bone and the liver tissue non-specific alkaline phosphatase isoforms in brain tissues. Cell Tissue Res 343(3):521–536. doi:10.1007/s00441-010-1111-4

    Article  CAS  PubMed  Google Scholar 

  • Calhau C, Martel F, Hipolito-Reis C, Azevedo I (2002a) Modulation of uptake of organic cationic drugs in cultured human colon adenocarcinoma Caco-2 cells by an ecto-alkaline phosphatase activity. J Cell Biochem 87(4):408–416. doi:10.1002/jcb.10306

    Article  CAS  PubMed  Google Scholar 

  • Calhau C, Martel F, Pinheiro-Silva S, Pinheiro H, Soares-da-Silva P, Hipolito-Reis C, Azevedo I (2002b) Modulation of insulin transport in rat brain microvessel endothelial cells by an ecto-phosphatase activity. J Cell Biochem 84(2):389–400. doi:10.1002/jcb.10027

  • Chatterjee S, Mayor S (2001) The GPI-anchor and protein sorting. Cell Mol Life Sci 58(14):1969–1987

    Article  CAS  PubMed  Google Scholar 

  • Chen Y, Sabatini BL (2012) Signaling in dendritic spines and spine microdomains. Curr Opin Neurobiol 22(3):389–396. doi:10.1016/j.conb.2012.03.003

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ciancaglini P, Simao AM, Camolezi FL, Millan JL, Pizauro JM (2006) Contribution of matrix vesicles and alkaline phosphatase to ectopic bone formation. Braz J Med Biol Res 39(5):603–610. doi:S0100-879X2006000500006

    Article  CAS  PubMed  Google Scholar 

  • Cox RF, Hernandez-Santana A, Ramdass S, McMahon G, Harmey JH, Morgan MP (2012) Microcalcifications in breast cancer: novel insights into the molecular mechanism and functional consequence of mammary mineralisation. Br J Cancer 106(3):525–537. doi:bjc2011583

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Cuddy LK, Winick-Ng W, Rylett RJ (2014) Regulation of the high-affinity choline transporter activity and trafficking by its association with cholesterol-rich lipid rafts. J Neurochem 128(5):725–740. doi:10.1111/jnc.12490

    Article  CAS  PubMed  Google Scholar 

  • Delic J, Zimmermann H (2011) Nucleotides affect neurogenesis and dopaminergic differentiation of mouse fetal midbrain-derived neural precursor cells. Purinergic Signal 6(4):417–428. doi:10.1007/s11302-010-9206-7

    Article  PubMed Central  Google Scholar 

  • Diaz-Hernandez M, Gomez-Ramos A, Rubio A, Gomez-Villafuertes R, Naranjo JR, Miras-Portugal MT, Avila J (2010) Tissue-nonspecific alkaline phosphatase promotes the neurotoxicity effect of extracellular tau. J Biol Chem 285(42):32539–32548. doi:10.1074/jbc.M110.145003

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Diez-Zaera M, Diaz-Hernandez JI, Hernandez-Alvarez E, Zimmermann H, Diaz-Hernandez M, Miras-Portugal MT (2011) Tissue-nonspecific alkaline phosphatase promotes axonal growth of hippocampal neurons. Mol Biol Cell 22(7):1014–1024. doi:10.1091/mbc.E10-09-0740

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Dityatev A, Schachner M (2003) Extracellular matrix molecules and synaptic plasticity. Nat Rev Neurosci 4(6):456–468. doi:10.1038/nrn1115

    Article  CAS  PubMed  Google Scholar 

  • Dityatev A, Schachner M, Sonderegger P (2010) The dual role of the extracellular matrix in synaptic plasticity and homeostasis. Nat Rev Neurosci 11(11):735–746. doi:10.1038/nrn2898

    Article  CAS  PubMed  Google Scholar 

  • Ermonval M, Baudry A, Baychelier F, Pradines E, Pietri M, Oda K, Schneider B, Mouillet-Richard S, Launay JM, Kellermann O (2009a) The cellular prion protein interacts with the tissue non-specific alkaline phosphatase in membrane microdomains of bioaminergic neuronal cells. PLoS ONE 4(8):e6497. doi:10.1371/journal.pone.0006497

    Article  PubMed Central  PubMed  Google Scholar 

  • Ermonval M, Petit D, Le Duc A, Kellermann O, Gallet PF (2009b) Glycosylation-related genes are variably expressed depending on the differentiation state of a bioaminergic neuronal cell line: implication for the cellular prion protein. Glycoconj J 26(4):477–493. doi:10.1007/s10719-008-9198-5

    Article  CAS  PubMed  Google Scholar 

  • Fonta C, Negyessy L, Renaud L, Barone P (2004) Areal and subcellular localization of the ubiquitous alkaline phosphatase in the primate cerebral cortex: evidence for a role in neurotransmission. Cereb Cortex 14(6):595–609. doi:10.1093/cercor/bhh021

    Article  PubMed  Google Scholar 

  • Fonta C, Negyessy L, Renaud L, Barone P (2005) Postnatal development of alkaline phosphatase activity correlates with the maturation of neurotransmission in the cerebral cortex. J Comp Neurol 486(2):179–196. doi:10.1002/cne.20524

    Article  PubMed  Google Scholar 

  • Fricker AD, Rios C, Devi LA, Gomes I (2005) Serotonin receptor activation leads to neurite outgrowth and neuronal survival. Brain Res Mol Brain Res 138(2):228–235. doi:10.1016/j.molbrainres.2005.04.016

    Article  CAS  PubMed  Google Scholar 

  • Fukunaka A, Kurokawa Y, Teranishi F, Sekler I, Oda K, Ackland ML, Faundez V, Hiromura M, Masuda S, Nagao M, Enomoto S, Kambe T (2011) Tissue nonspecific alkaline phosphatase is activated via a two-step mechanism by zinc transport complexes in the early secretory pathway. J Biol Chem 286(18):16363–16373. doi:M111.227173

    Google Scholar 

  • Goldberg RF, Austen WG Jr, Zhang X, Munene G, Mostafa G, Biswas S, McCormack M, Eberlin KR, Nguyen JT, Tatlidede HS, Warren HS, Narisawa S, Millan JL, Hodin RA (2008) Intestinal alkaline phosphatase is a gut mucosal defense factor maintained by enteral nutrition. Proc Natl Acad Sci USA 105(9):3551–3556. doi:0712140105 [pii]

    Google Scholar 

  • Guirland C, Zheng JQ (2007) Membrane lipid rafts and their role in axon guidance. Adv Exp Med Biol 621:144–155. doi:10.1007/978-0-387-76715-4_11

    Article  PubMed  Google Scholar 

  • Halling Linder C, Englund UH, Narisawa S, Millan JL, Magnusson P (2013) Isozyme profile and tissue-origin of alkaline phosphatases in mouse serum. Bone 53(2):399–408. doi:10.1016/j.bone.2012.12.048

  • Halling Linder C, Narisawa S, Millan JL, Magnusson P (2009) Glycosylation differences contribute to distinct catalytic properties among bone alkaline phosphatase isoforms. Bone 45(5):987–993. doi:10.1016/j.bone.2009.07.009

  • Halling Linder C, Narisawa S, Millan JL, Magnusson P (2012) Characterization of alkaline phosphatase in mice. Bull Group Int Rech Sci Stomatol Odontol 51(1):e32

    Google Scholar 

  • Hamir AN, Palmer MV, Kunkle RA (2008) Wasting and neurologic signs in a white-tailed deer (Odocoileus virginianus) not associated with abnormal prion protein. J Wildl Dis 44(4):1045–1050. doi:44/4/1045

    Google Scholar 

  • Head BP, Patel HH Insel PA (2014) Interaction of membrane/lipid rafts with the cytoskeleton: impact on signaling and function: membrane/lipid rafts, mediators of cytoskeletal arrangement and cell signaling. Biochim Biophys Acta 1838(2):532–545. doi:10.1016/j.bbamem.2013.07.018

  • Head BP, Patel HH, Roth DM, Murray F, Swaney JS, Niesman IR, Farquhar MG, Insel PA (2006) Microtubules and actin microfilaments regulate lipid raft/caveolae localization of adenylyl cyclase signaling components. J Biol Chem 281(36):26391–26399. doi:M602577200

    Google Scholar 

  • Hoshi K, Amizuka N, Oda K, Ikehara Y, Ozawa H (1997) Immunolocalization of tissue non-specific alkaline phosphatase in mice. Histochem Cell Biol 107(3):183–191

    Article  CAS  PubMed  Google Scholar 

  • Ishida Y, Komaru K, Ito M, Amaya Y, Kohno S, Oda K (2003) Tissue-nonspecific alkaline phosphatase with an Asp(289) –> Val mutation fails to reach the cell surface and undergoes proteasome-mediated degradation. J Biochem 134(1):63–70

    Article  CAS  PubMed  Google Scholar 

  • Ito M, Amizuka N, Ozawa H, Oda K (2002) Retention at the cis-Golgi and delayed degradation of tissue-non-specific alkaline phosphatase with an Asn153 –> Asp substitution, a cause of perinatal hypophosphatasia. Biochem J 361(Pt 3):473–480

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Jones J, Krag SS, Betenbaugh MJ (2005) Controlling N-linked glycan site occupancy. Biochim Biophys Acta 1726(2):121–137. doi:10.1016/j.bbagen.2005.07.003

  • Kapojos JJ, Poelstra K, Borghuis T, Van Den Berg A, Baelde HJ, Klok PA, Bakker WW (2003) Induction of glomerular alkaline phosphatase after challenge with lipopolysaccharide. Int J Exp Pathol 84(3):135–144. doi:345

    Google Scholar 

  • Kellett KA, Williams J, Vardy ER, Smith AD, Hooper NM (2011) Plasma alkaline phosphatase is elevated in Alzheimer’s disease and inversely correlates with cognitive function. Int J Mol Epidemiol Genet 2(2):114–121

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kinoshita T, Maeda Y, M Fujita (2013) Transport of glycosylphosphatidylinositol-anchored proteins from the endoplasmic reticulum. Biochim Biophys Acta 1833(11):2473–2478. doi:10.1016/j.bbamcr.2013.01.027

    Article  CAS  PubMed  Google Scholar 

  • Kooyman DL, Byrne GW, Logan JS (1998) Glycosyl phosphatidylinositol anchor. Exp Nephrol 6(2):148–151. doi:exn06148 [pii]

    Google Scholar 

  • Kothekar D, Bandivdekar A, Dasgupta D (2014) Increased activity of goat liver plasma membrane alkaline phosphatase upon release by phosphatidylinositol-specific phospholipase C. Indian J Biochem Biophys 51(4):263–270

    CAS  PubMed  Google Scholar 

  • Koyama I, Matsunaga T, Harada T, Hokari S, Komoda T (2002) Alkaline phosphatases reduce toxicity of lipopolysaccharides in vivo and in vitro through dephosphorylation. Clin Biochem 35(6):455–461. doi:S0009912002003302 [pii]

    Google Scholar 

  • Labasque M, Faivre-Sarrailh C (2010) GPI-anchored proteins at the node of Ranvier. FEBS Lett 584(9):1787–1792. doi:S0014-5793(09)00652-8

    Google Scholar 

  • Lakhan SE, Sabharanjak S, De A (2009) Endocytosis of glycosylphosphatidylinositol-anchored proteins. J Biomed Sci 16:93. doi:1423-0127-16-93 [pii]

    Google Scholar 

  • Legler DF, Doucey MA, Schneider P, Chapatte L, Bender FC, Bron C (2005) Differential insertion of GPI-anchored GFPs into lipid rafts of live cells. FASEB J 19(1):73–75. doi:03-1338fje [pii]

    Google Scholar 

  • Lehto MT, Sharom FJ (1998) Release of the glycosylphosphatidylinositol-anchored enzyme ecto-5’-nucleotidase by phospholipase C: catalytic activation and modulation by the lipid bilayer. Biochem J 332(Pt 1):101–109

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lindner R, Naim HY (2009) Domains in biological membranes. Exp Cell Res 315(17):2871–2878. doi:S0014-4827(09)00332-2 [pii]

    Google Scholar 

  • Lomashvili KA, Narisawa S, Millan JL, O’Neill WC (2014) Vascular calcification is dependent on plasma levels of pyrophosphate. Kidney Int 85(6):1351–1356. doi:ki2013521 [pii]

    Google Scholar 

  • Maeda Y, Kinoshita T (2011) Structural remodeling, trafficking and functions of glycosylphosphatidylinositol-anchored proteins. Prog Lipid Res 50(4):411–424. doi:10.1016/j.plipres.2011.05.002

    Article  CAS  PubMed  Google Scholar 

  • Martel F, Martins MJ, Hipolito-Reis C, Azevedo I (1996) Inward transport of [3H]-1-methyl-4-phenylpyridinium in rat isolated hepatocytes: putative involvement of a P-glycoprotein transporter. Br J Pharmacol 119(8):1519–1524

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Matsuoka I, Ohkubo S (2004) ATP- and adenosine-mediated signaling in the central nervous system: adenosine receptor activation by ATP through rapid and localized generation of adenosine by ecto-nucleotidases. J Pharmacol Sci 94(2):95–99

    Article  CAS  PubMed  Google Scholar 

  • Moochhala SH, Sayer JA, Carr G, Simmons NL (2008) Renal calcium stones: insights from the control of bone mineralization. Exp Physiol 93(1):43–49. doi:expphysiol.2007.040790 [pii]

    Google Scholar 

  • Mouillet-Richard S, Ermonval M, Chebassier C, Laplanche JL, Lehmann S, Launay JM, Kellermann O (2000) Signal transduction through prion protein. Science 289(5486):1925–1928

    Article  CAS  PubMed  Google Scholar 

  • Mouillet-Richard S, Schneider B, Pradines E, Pietri M, Ermonval M, Grassi J, Richards JG, Mutel V, Launay JM, Kellermann O (2007) Cellular prion protein signaling in serotonergic neuronal cells. Ann NY Acad Sci 1096:106–119. doi:10.1196/annals.1397.076

    Article  CAS  PubMed  Google Scholar 

  • Narisawa S, Hasegawa H, Watanabe K, Millan JL (1994) Stage-specific expression of alkaline phosphatase during neural development in the mouse. Dev Dyn 201(3):227–235. doi:10.1002/aja.1002010306

    Article  CAS  PubMed  Google Scholar 

  • Narisawa S, Wennberg C, Millan JL (2001) Abnormal vitamin B6 metabolism in alkaline phosphatase knock-out mice causes multiple abnormalities, but not the impaired bone mineralization. J Pathol 193(1):125–133. doi:10.1002/1096-9896(2000)9999:9999

    Article  CAS  PubMed  Google Scholar 

  • Newpher TM, Ehlers MD (2009) Spine microdomains for postsynaptic signaling and plasticity. Trends Cell Biol 19(5):218–227. doi:10.1016/j.tcb.2009.02.004 [pii]

  • Nishimune H, Sanes JR, Carlson SS (2004) A synaptic laminin-calcium channel interaction organizes active zones in motor nerve terminals. Nature 432(7017):580–587. doi:nature03112 [pii]

    Google Scholar 

  • Nunes ML, Mugnol F, Bica I, Fiori RM (2002) Pyridoxine-dependent seizures associated with hypophosphatasia in a newborn. J Child Neurol 17(3):222–224

    Article  PubMed  Google Scholar 

  • Pettengill M, Robson S, Tresenriter M, Millan JL, Usheva A, Bingham T, Belderbos M, Bergelson I, Burl S, Kampmann B, Gelinas L, Kollmann T, Bont L, Levy O (2013) Soluble ecto-5’-nucleotidase (5’-NT), alkaline phosphatase, and adenosine deaminase (ADA1) activities in neonatal blood favor elevated extracellular adenosine. J Biol Chem 288(38):27315–27326. doi:10.1074/jbc.M113.484212

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Premkumar DR, Fukuoka Y, Sevlever D, Brunschwig E, Rosenberry TL, Tykocinski ML, Medof ME (2001) Properties of exogenously added GPI-anchored proteins following their incorporation into cells. J Cell Biochem 82 (2):234–245. doi:10.1002/jcb.1154

  • Rajendran L, Bali J, Barr MM, Court FA, Kramer-Albers EM, Picou F, Raposo G, van der Vos KE, van Niel G, Wang J, Breakefield XO (2014) Emerging roles of extracellular vesicles in the nervous system. J Neurosci 34(46):15482–15489. doi:10.1523/JNEUROSCI.3258-14.2014

    Article  PubMed Central  PubMed  Google Scholar 

  • Scheibe RJ, Kuehl H, Krautwald S, Meissner JD, Mueller WH (2000) Ecto-alkaline phosphatase activity identified at physiological pH range on intact P19 and HL-60 cells is induced by retinoic acid. J Cell Biochem 76(3):420–436. doi:10.1002/(SICI)1097-4644(20000301)76:3<420::AID-JCB10>3.0.CO;2-F

  • Sebastiao AM, Colino-Oliveira M, Assaife-Lopes N, Dias RB, Ribeiro JA (2013) Lipid rafts, synaptic transmission and plasticity: impact in age-related neurodegenerative diseases. Neuropharmacol 64:97–107. doi:10.1016/j.neuropharm.2012.06.053

    Article  CAS  Google Scholar 

  • Sesana S, Re F, Bulbarelli A, Salerno D, Cazzaniga E, Masserini M (2008) Membrane features and activity of GPI-anchored enzymes: alkaline phosphatase reconstituted in model membranes. Biochem 47(19):5433–5440. doi:10.1021/bi800005s

    Article  CAS  Google Scholar 

  • Silvius JR (2005) Partitioning of membrane molecules between raft and non-raft domains: insights from model-membrane studies. Biochim Biophys Acta 1746(3):193–202. doi:10.1016/j.bbamcr.2005.09.003

  • Sperling LE, Klaczinski J, Schutz C, Rudolph L, Layer PG (2012) Mouse acetylcholinesterase enhances neurite outgrowth of rat R28 cells through interaction with laminin-1. PLoS ONE 7(5):e36683. doi:10.1371/journal.pone.0036683

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Stanley P (2011) Golgi glycosylation. Cold Spring Harb Perspect Biol 3(4). doi:cshperspect.a005199 [pii]

    Google Scholar 

  • Sultana S, Al-Shawafi HA, Makita S, Sohda M, Amizuka N, Takagi R, Oda K (2013) An asparagine at position 417 of tissue-nonspecific alkaline phosphatase is essential for its structure and function as revealed by analysis of the N417S mutation associated with severe hypophosphatasia. Mol Genet Metab 109(3):282–288. doi:10.1016/j.ymgme.2013.04.016

  • Toffoli AM, Gautschi OP, Frey SP, Filgueira L, Zellweger R (2008) From brain to bone: evidence for the release of osteogenic humoral factors after traumatic brain injury. Brain Inj 22(7–8):511–518. doi:10.1080/02699050802158235

    Article  PubMed  Google Scholar 

  • Vardy ER, Kellett KA, Cocklin SL, Hooper NM (2012) Alkaline phosphatase is increased in both brain and plasma in Alzheimer’s disease. Neurodegener Dis 9(1):31–37. doi:10.1159/000329722

    Article  CAS  PubMed  Google Scholar 

  • Watt NT, Griffiths HH, Hooper NM (2014) Lipid rafts: linking prion protein to zinc transport and amyloid-beta toxicity in Alzheimer’s disease. Front Cell Dev Biol 2:41. doi:10.3389/fcell.2014.00041

    Article  PubMed Central  PubMed  Google Scholar 

  • Wuthier RE, Lipscomb GF (2011) Matrix vesicles: structure, composition, formation and function in calcification. Front Biosci (Landmark edn) 16:2812–2902. doi:3887 [pii]

    Google Scholar 

  • Yamamoto H, Sasamoto Y, Miyamoto Y, Murakami H, Kamiyama N (2004) A successful treatment with pyridoxal phosphate for West syndrome in hypophosphatasia. Pediatr Neurol 30(3):216–218. doi:10.1016/j.pediatrneurol.2003.08.003

    Article  PubMed  Google Scholar 

  • Zempel H, Mandelkow E (2014) Lost after translation: missorting of Tau protein and consequences for Alzheimer disease. Trends Neurosci. doi:10.1016/j.tins.2014.08.004

Download references

Conflict of Interest

The author declares no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Myriam Ermonval .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Ermonval, M., Baychelier, F., Fonta, C. (2015). TNAP, an Essential Player in Membrane Lipid Rafts of Neuronal Cells. In: Fonta, C., Négyessy, L. (eds) Neuronal Tissue-Nonspecific Alkaline Phosphatase (TNAP). Subcellular Biochemistry, vol 76. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-7197-9_9

Download citation

Publish with us

Policies and ethics