Skip to main content

Tissue-Nonspecific Alkaline Phosphatase in the Developing Brain and in Adult Neurogenesis

  • Chapter
  • First Online:
Neuronal Tissue-Nonspecific Alkaline Phosphatase (TNAP)

Part of the book series: Subcellular Biochemistry ((SCBI,volume 76))

Abstract

Tissue-nonspecific alkaline phosphatase is expressed both in the developing and adult mammalian brain. Expression is particularly strong in the developing nervous system and associated with neurogenic activity. It ceases during later development but high expression remains in the rodent adult subventricular zone of the lateral ventricles, a neurogenic niche generating new neurons for the olfactory bulb. Lower activity is maintained in specific brain regions. In spite of the wide expression of the enzyme very little is known concerning its regulation of expression and physiological function in nervous tissue. This may be one of the reasons why the expression of TNAP in the nervous system to date has received relatively little attention. The strong and in part transient expression of the enzyme in the developing brain implies, however, a significant role in the control of neural development . Interestingly, several factors that stimulate TNAP expression or activity have a strong impact on neural development. The chapter summarizes major findings regarding the cellular distribution of TNAP in the developing brain and the neurogenic niches of the adult brain and in vitro evidence for a functional role of TNAP in axon growth and progenitor cell proliferation and differentiation. Potential mechanisms of TNAP function are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbracchio MP, Burnstock G, Verkhratsky A, Zimmermann H (2009) Purinergic signalling in the nervous system: an overview. Trends Neurosci 32:19–29

    CAS  PubMed  Google Scholar 

  • Altman J, Bayer SA (1990) Horizontal compartimentation in the germinal matrices and intermediate zone of the embryonic rat cerebral cortex. Eptl Neurol 107:36–47

    CAS  Google Scholar 

  • Alvarez-Buylla A, García-Verdugo JM (2002) Neurogenesis in the adult ventricular zone. J Neurosci 22:629–634

    CAS  PubMed  Google Scholar 

  • Aoki H, Fujii M, Imamura T, Yagi K, Takehara K, Kato M, Miyazono K (2001) Synergistic effects of different bone morphogenetic protein type I receptors on alkaline phosphatase induction. J Cell Sci 114:1483–1489

    CAS  PubMed  Google Scholar 

  • Attardo A, Calegari F, Haubensak W, Wilsch-Brauninger M, Huttner WB (2008) Live imaging at the onset of cortical neurogenesis reveals differential appearance of the neuronal phenotype in apical versus basal progenitor progeny. PLoS One 3:e2388

    PubMed Central  PubMed  Google Scholar 

  • Boldogköi Z, Schutz B, Sallach J, Zimmer A (2002) P2X3 receptor expression at early stage of mouse embryogenesis. Mech Dev 118:255–260

    PubMed  Google Scholar 

  • Bond AM, Bhalala OG, Kessler JA (2012) The dynamic role of morphogenetic proteins in neural stem cell fate and maturation. Dev Neurobiol 72:1068–1084

    CAS  PubMed Central  PubMed  Google Scholar 

  • Borta A, Höglinger GU (2007) Dopamine and adult neurogenesis. J Neurochem 100:587–595

    CAS  PubMed  Google Scholar 

  • Bossi M, Hoylaerts MF, Millán JL (1993) Modifications in a flexible surface loop modulate the isozyme-specific properties of mammalian alkaline phosphatases. J Biol Chem 268:25409–25416

    CAS  PubMed  Google Scholar 

  • Braun N, Sévigny J, Mishra S, Robson SC, Barth SW, Gerstberger R, Hammer K, Zimmermann H (2003) Expression of the ecto-ATPase NTPDase2 in the germinal zones of the developing and adult rat brain. Eur J Neurosci 17:1355–1364

    PubMed  Google Scholar 

  • Brazel CY, Romanko MJ, Rothstein RP, Levison SW (2003) Roles of the mammalian subventricular zone in barin development. Prog Neurobiol 69:49–69

    PubMed  Google Scholar 

  • Brun-Heath I, Ermonval M, Chabrol E, Xiao J, Palkovits M, Lyck R, Miller F, Couraud PO, Mornet E, Fonta C (2011) Differential expression of the bone and the liver tissue non-specific alkaline phosphatase isoforms in brain tissues. Cell Tissue Res 343:521–536

    CAS  PubMed  Google Scholar 

  • Cheung KK, Burnstock G (2002) Localization of P2X3 receptors and coexpression with P2X2 receptors during rat embryonic neurogenesis. J Comp Neurol 443:368–382

    CAS  PubMed  Google Scholar 

  • Cheung KK, Ryten M, Burnstock G (2003) Abundant and dynamic expression of G protein-coupled P2Y receptors in mammalian development. Dev Dyn 228:254–266

    CAS  PubMed  Google Scholar 

  • Chiquoine AD (1954) Distribution of alkaline phosphomonoesterase in the central nervous system of the mouse embryo. J Comp Neurol 100:415–439

    CAS  PubMed  Google Scholar 

  • Chojnacki AK, Mak GK, Weiss S (2009) Identity crisis for adult periventricular neural stem cells: subventricular zone astrocytes, ependymal cells or both? Nat Rev Neurosci 10:153–163

    CAS  PubMed  Google Scholar 

  • Díaz-Hernández M, del Puerto A, Díaz-Hernández JI, Díez-Zaera M, Lucas JJ, Garrido JJ, Miras-Portugal MT (2008) Inhibition of the ATP-gated P2X7 receptor promotes axonal growth and branching in cultured hippocampal neurons. J Cell Sci 121:3717–3728

    PubMed  Google Scholar 

  • Díaz-Hernández M, Gomez-Ramos A, Rubio A, Gomez-Villafuertes R, Naranjo JR, Miras-Portugal MT, Avila J (2010) Tissue-nonspecific alkaline phosphatase promotes the neurotoxicity effect of extracellular tau. J Biol Chem 285:32539–32548

    PubMed Central  PubMed  Google Scholar 

  • Díez-Zaera M, Díaz-Hernández JI, Hernández-Alvarez E, Zimmermann H, Díaz-Hernández M, Miras-Portugal MT (2011) Tissue-nonspecific alkaline phosphatase promotes axonal growth of hippocampal neurons. Mol Biol Cell 22:1014–1024

    PubMed Central  PubMed  Google Scholar 

  • Doetsch F, Caillé I, Lim DA, García-Verdugo JM, Alvarez-Buylla A (1999) Subventricular zone astrocytes are neural stem cells in the adult mammalian brain. Cell 97:703–716

    CAS  PubMed  Google Scholar 

  • Engberg N, Kahn M, Petersen DR, Hansson M, Serup P (2010) Retinoic acid synthesis promotes development of neural progenitors from mouse embryonic stem cells by suppressing endogenous, Wnt-dependent nodal signaling. Stem Cells 28:1498–1509

    CAS  PubMed  Google Scholar 

  • Ermonval M, Baudry A, Baychelier F, Pradines E, Pietri M, Oda K, Schneider B, Mouillet-Richard S, Launay JM, Kellermann O (2009) The cellular prion protein interacts with the tissue non-specific alkaline phosphatase in membrane microdomains of bioaminergic neuronal cells. PLoS One 4:e6497

    PubMed Central  PubMed  Google Scholar 

  • Escalante-Alcalde D, Recillas-Targa F, Hernández-Garcia D, Castro-Obregon S, Terao M, Garattini E, Covarrubias L (1996) Retinoic acid and methylation cis-regulatory elements control the mouse tissue non-specific alkaline phosphatase gene expression. Mech Dev 57:21–32

    CAS  PubMed  Google Scholar 

  • Fedde KN, Blair L, Silverstein J, Coburn SP, Ryan LM, Weinstein RS, Waymire K, Narisawa S, Millán JL, MacGregor GR, Whyte MP (1999) Alkaline phosphatase knock-out mice recapitulate the metabolic and skeletal defects of infantile hypophosphatasia. J Bone Miner Res 14:2015–2026

    CAS  PubMed Central  PubMed  Google Scholar 

  • Fonta C, Negyessy L, Renaud L, Barone P (2004) Areal and subcellular localization of the ubiquitous alkaline phosphatase in the primate cerebral cortex: Evidence for a role in neurotransmission. Cereb Cortex 14:595–609

    PubMed  Google Scholar 

  • Fonta C, Negyessy L, Renaud L, Barone P (2005) Postnatal development of alkaline phosphatase activity correlates with the maturation of neurotransmission in the cerebral cortex. J Comp Neurol 486:179–196

    PubMed  Google Scholar 

  • Gal JS, Morozov YM, Ayoub AE, Chatterjee M, Rakic P, Haydar TF (2006) Molecular and morphological heterogeneity of neural precursors in the mouse neocortical proliferative zones. J Neurosci 26:1045–1056

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gampe K, Stefani J, Hammer K, Brendel P, Pötzsch A, Enikolopov G, Enjyoji K, Acker-Palmer A, Robson SC, Zimmermann H (2015) NTPDase2 and purinergic signaling control progenitor cell proliferation in neurogenic niches of the adult mouse brain. Stem Cells 33:253–264

    Google Scholar 

  • Giachino C, De Marchis S, Giampietro C, Parlato R, Perroteau I, Schütz G, Fasolo A, Peretto P (2005) cAMP response element-binding protein regulates differentiation and survival of newborn neurons in the olfactory bulb. J Neurosci 25:10105–10118

    CAS  PubMed  Google Scholar 

  • Gianni M, Studer M, Carpani G, Terao M, Garattini E (1991) Retinoic acid induces liver/bone/kidney-type alkaline phosphatase gene expression in F9 teratocarcinoma cells. Biochem J 274:673–678

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gomez-Villafuertes R, del Puerto A, Díaz-Hernández M, Bustillo D, Díaz-Hernández JI, Huerta PG, Artalejo AR, Garrido JJ, Miras-Portugal MT (2009) Ca2+/calmodulin-dependent kinase II signalling cascade mediates P2X7 receptor-dependent inhibition of neuritogenesis in neuroblastoma cells. FEBS J 276:5307–5325

    CAS  PubMed  Google Scholar 

  • Götz M, Huttner WB (2005) The cell biology of neurogenesis. Nature Rev Mol Cell Biol 6:777–788

    Google Scholar 

  • Grimm I, Ullsperger SN, Zimmermann H (2010) Nucleotides and epidermal growth factor induce parallel cytoskeletal rearrangements and migration in cultured adult murine neural stem cells. Acta Physiol 199:181–189

    CAS  Google Scholar 

  • Guillemot F, Parras C (2005) Adult neurogenesis: a tale of two precursors. Nat Neurosci 8:846–848

    CAS  PubMed  Google Scholar 

  • Guo W, Zhang Z, Liu X, Burnstock G, Xiang Z, He C (2013) Developmental expression of P2X5 receptors in the mouse prenatal central and peripheral nervous systems. Purinergic Signal 9:239–248

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hack MA, Saghatelyan A, deChevigny A, Pfeifer A, Ashery-Padan R, Lledo PM, Götz M (2005) Neuronal fate determinants of adult olfactory bulb neurogenesis. Nat Neurosci 8:865–872

    CAS  PubMed  Google Scholar 

  • Hager S, Lampert FM, Orimo H, Stark GB, Finkenzeller G (2009) Up-regulation of alkaline phosphatase expression in human primary osteoblasts by cocultivation with primary endothelial cells is mediated by p38 mitogen-activated protein kinase-dependent mRNA stabilization. Tissue Eng Part A 15:3437–3447

    CAS  PubMed  Google Scholar 

  • Hahnel AC, Rappolee DA, Millán JL, Manes T, Ziomek CA, Theodosiu NG, Werb Z, Pedersen RA, Schultz GA (1990) Two alkaline phosphatase genes are expressed during early development in the mouse embryo. Development 110:555–564

    CAS  PubMed  Google Scholar 

  • Hanics J, Barna J, Xiao J, Millán JL, Fonta C, Negyessy L (2012) Ablation of TNAP function compromises myelination and synaptogenesis in the mouse brain. Cell Tissue Res 349:459–471

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ishiyama V, Izquierdo L (1977) The onset of phosphatase activity in the early mammalian embryos. J Embryol Exp Morph 42:305–308

    CAS  Google Scholar 

  • Ito S, Suzuki N, Kato S, Takahashi T, Takagi M (2007) Glucocorticoids induce the differentiation of a mesenchymal progenitor cell line, ROB-C26 into adipocytes and osteoblasts, but fail to induce terminal osteoblast differentiation. Bone 40:84–92

    CAS  PubMed  Google Scholar 

  • Izquierdo L, Lopez T, Marticorena P (1980) Cell membrane regions in preimplantation mouse embryos. J Embryol Exp Morphol 59:89–102

    CAS  PubMed  Google Scholar 

  • Johnson-Pais TL, Leach RJ (1996) 1,25-Dihydroxyvitamin D3 and transforming growth factor-beta act synergistically to override extinction of liver/bone/kidney alkaline phosphatase in osteosarcoma hybrid cells. Exp Cell Res 226:67–74

    CAS  Google Scholar 

  • Kempermann G, Jessberger S, Steiner B, Kronenberg G (2004) Milestones of neuronal development in the adult hippocampus. Trends Neurosci 27:447–452

    CAS  PubMed  Google Scholar 

  • Kermer V, Ritter M, Albuquerque B, Leib C, Stanke M, Zimmermann H (2010) Knockdown of tissue nonspecific alkaline phosphatase impairs neural stem cell proliferation and differentiation. Neurosci Lett 485:208–211

    CAS  PubMed  Google Scholar 

  • Khakh BS, North RA (2006) P2X receptors as cell-surface ATP sensors in health and disease. Nature 442:527–532

    CAS  PubMed  Google Scholar 

  • Khodosevich K, Zuccotti A, Kreuzberg MM, Le MC, Frank M, Willecke K, Monyer H (2012) Connexin45 modulates the proliferation of transit-amplifying precursor cells in the mouse subventricular zone. Proc Natl Acad Sci USA 109:20107–20112

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kiledjian M, Kadesch T (1990) Analysis of the human liver/bone/kidney alkaline phosphatase promoter in vivo and in vitro. Nucleic Acids Res 18:957–961

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kim HN, Lee JH, Bae SC, Ryoo HM, Kim HH, Ha H, Lee ZH (2011) Histone deacetylase inhibitor MS-275 stimulates bone formation in part by enhancing Dhx36-mediated TNAP transcription. J Bone Miner Res 26:2161–2173

    CAS  PubMed  Google Scholar 

  • Kim YJ, Lee MH, Wozney JM, Cho JY, Ryoo HM (2004) Bone morphogenetic protein-2-induced alkaline phosphatase expression is stimulated by Dlx5 and repressed by Msx2. J Biol Chem 279:50773–50780

    CAS  PubMed  Google Scholar 

  • Kishi F, Matsuura S, Kajii T (1989) Nucleotide sequence of the human liver-type alkaline phosphatase cDNA. Nucleic Acids Res 17:2129

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kriegstein A, Alvarez-Buylla A (2009) The glial nature of embryonic and adult neural stem cells. Annu Rev Neurosci 32(149–184):149–184

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kriegstein A, Götz M (2003) Radial glia diversity: a matter of cell fate. Glia 43:37–43

    PubMed  Google Scholar 

  • Kwong WH, Tam PP (1984) The pattern of alkaline phosphatase activity in the developing mouse spinal cord. J Embryol Exp Morphol 82:241–251

    CAS  PubMed  Google Scholar 

  • Kyeyune-Nyombi E, Lau KH, Baylink DJ, Strong DD (1991) 1,25-Dihydroxyvitamin D3 stimulates both alkaline phosphatase gene transcription and mRNA stability in human bone cells. Arch Biochem Biophys 291:316–325

    CAS  PubMed  Google Scholar 

  • Lacar B, Herman P, Hartman NW, Hyder F, Bordey A (2012) S phase entry of neural progenitor cells correlates with increased blood flow in the young subventricular zone. PLoS One 7:e31960

    CAS  PubMed Central  PubMed  Google Scholar 

  • Langer D, Ikehara Y, Takebayashi H, Hawkes R, Zimmermann H (2007) The ectonucleotidases alkaline phosphatase and nucleoside triphosphate diphosphohydrolase 2 are associated with subsets of progenitor cell populations in the mouse embryonic, postnatal and adult neurogenic zones. Neuroscience 150:863–879

    CAS  PubMed  Google Scholar 

  • Langer D, Hammer K, Koszalka P, Schrader J, Robson S, Zimmermann H (2008) Distribution of ectonucleotidases in the rodent brain revisited. Cell Tissue Res 334:199–217

    CAS  PubMed  Google Scholar 

  • LeDu MH, Stigbrand T, Taussig MJ, Menez A, Stura EA (2001) Crystal structure of alkaline phosphatase from human placenta at 1.8 A resolution: implication for a substrate specificity. J Biol Chem 276:9158–9165

    CAS  Google Scholar 

  • Lee HW, Suh JH, Kim AY, Lee YS, Park SY, Kim JB (2006) Histone deacetylase 1-mediated histone modification regulates osteoblast differentiation. Mol Endocrinol 20:2432–2443

    CAS  PubMed  Google Scholar 

  • Lepire ML, Ziomek CA (1989) Preimplantation mouse embryos express a heat-stable alkaline phosphatase. Biol Reprod 41:464–473

    CAS  PubMed  Google Scholar 

  • Levison SW, Chuang C, Abramson BJ, Goldman JE (1993) The migrational patterns and developmental fates of glial precursors in the rat subventricular zone are temporarily regulated. Development 119:611–622

    CAS  PubMed  Google Scholar 

  • Ligon KL, Fancy SPJ, Franklin RJP, Rowitch DH (2006) Olig gene function in CNS development and disease. Glia 54:1–10

    PubMed  Google Scholar 

  • Lim DA, Tramontin AD, Tervejo JM, Herrera DG, Garcia-Verdugo JM, Alvarez-Buylla A (2000) Noggin antagonizes BMP signaling to create a niche for adult neurogenesis. Neuron 28:713–726

    CAS  PubMed  Google Scholar 

  • Lin JHC, Takano T, Arcuino G, Wang XH, Hu FR, Darzynkiewicz Z, Nunes M, Goldman SA, Nedergaard M (2007) Purinergic signaling regulates neural progenitor cell expansion and neurogenesis. Dev Biol 302:356–366

    CAS  PubMed Central  PubMed  Google Scholar 

  • Liu X, Hashimoto-Torii K, Torii M, Haydar TF, Rakic P (2008) The role of ATP signaling in the migration of intermediate neuronal progenitors to the neocortical subventricular zone. Proc Natl Acad Sci USA 105:11802–11807

    CAS  PubMed Central  PubMed  Google Scholar 

  • Liu X, Hashimoto-Torii K, Torii M, Ding C, Rakic P (2010) Gap junctions/hemichannels modulate interkinetic nuclear migration in the forebrain precursors. J Neurosci 30:4197–4209

    CAS  PubMed Central  PubMed  Google Scholar 

  • Malatesta P, Hack MA, Hartfuss E, Kettenmann H, Klinkert W, Kirchhoff F, Götz M (2003) Neuronal or glial progeny: regional differences in radial glia fate. Neuron 37:751–764

    CAS  PubMed  Google Scholar 

  • Menn B, Garcia-Verdugo JM, Yaschine C, Gonzalez-Perez O, Rowitch D, Alvarez-Buylla A (2006) Origin of oligdendrocytes in the subventricular zone of the adult brain. J Neurosci 26:7907–7918

    CAS  PubMed  Google Scholar 

  • Mikami Y, Asano M, Honda MJ, Takagi M (2010) Bone morphogenetic protein 2 and dexamethasone synergistically increase alkaline phosphatase levels through JAK/STAT signaling in C3H10T1/2 cells. J Cell Physiol 223:123–133

    CAS  PubMed  Google Scholar 

  • Millán JL (2006a) Mammalian alkaline phosphatase. From biology to applications in medicine and biotechnology. Wiley Verlag GmbH, Weinheim

    Google Scholar 

  • Millán JL (2006b) Structure, substrate specificity and functional relatedness to other members of a large superfamily of enzymes. Purinergic Signal 2:335–341

    PubMed Central  PubMed  Google Scholar 

  • Ming GL, Song HJ (2005) Adult neurogenesis in the mammalian central nervous system. Annu Rev Neurosci 28:223–250

    CAS  PubMed  Google Scholar 

  • Ming GL, Song HJ (2011) Adult neurogenesis in the mammalian brain: significant answers and significant questions. Neuron 70:687–702

    CAS  PubMed Central  PubMed  Google Scholar 

  • Mishra SK, Braun N, Shukla V, Füllgrabe M, Schomerus C, Korf H-W, Gachet C, Ikehara Y, Sévigny J, Robson SC, Zimmermann H (2006) Extracellular nucleotide signaling in adult neural stem cells: Synergism with growth factor-mediated cellular proliferation. Development 133:675–684

    CAS  PubMed  Google Scholar 

  • Mori S, Nagano M (1985) Ultracytochemical demonstration of alkaline phosphatase activity in astrocytes and subependymal cells in the rat brain. Arch Hist Jap 48:511–517

    CAS  Google Scholar 

  • Müller WH, Kleefeld D, Khattab B, Meissner JD, Scheibe RJ (2000) Effects of retinoic acid on N-glycosylation and mRNA stability of the liver/bone/kidney alkaline phosphatase in neuronal cells. J Cell Physiol 182:50–61

    Google Scholar 

  • Mulnard J, Huygens R (1978) Ultrastructural localization of non-specific alkaline phosphatase during cleavage and blastocyst formation in the mouse. J Embryol Exp Morphol 44:121–131

    CAS  PubMed  Google Scholar 

  • Narisawa S, Wennberg C, Millán JL (2001) Abnormal vitamin B6 metabolism in alkaline phosphatase knock-out mice causes multiple abnormalities, but not the impaired bone mineralization. J Pathol 193:125–133

    CAS  PubMed  Google Scholar 

  • Narisawa S, Hasegawa H, Watanabe K, Millán JL (1994) Stage-specific expression of alkaline phosphatase during neural development of the mouse. Dev Dynam 201:227–235

    CAS  Google Scholar 

  • Narisawa S, Fröhlander N, Millán JL (1997) Inactivation of two mouse alkaline phosphatase genes and establishment of a model of infantile hypophosphatasia. Dev Dynam 208:432–446

    CAS  Google Scholar 

  • North RA (2002) Molecular physiology of P2X receptors. Physiol Rev 82:1013–1067

    CAS  PubMed  Google Scholar 

  • Ohkubo S, Kimura J, Matsuoka I (2000) Ecto-alkaline phosphatase in NG108-15 cells: a key enzyme mediating P1 antagonist-sensitive ATP response. Br J Pharmacol 131:1667–1672

    CAS  PubMed Central  PubMed  Google Scholar 

  • Orimo H, Shimada T (2005) Regulation of the human tissue-nonspecific alkaline phosphatase gene expression by all-trans-retinoic acid in SaOS-2 osteosarcoma cell line. Bone 36:866–876

    CAS  PubMed  Google Scholar 

  • Orimo H, Shimada T (2008) The role of tissue-nonspecific alkaline phosphatase in the phosphate-induced activation of alkaline phosphatase and mineralization in SaOS-2 human osteoblast-like cells. Mol Cell Biochem 315:51–60

    CAS  PubMed  Google Scholar 

  • Parnavelas JG (1999) Glial cell lineages in the rat cerebral cortex. Exp Neurol 156:418–429

    CAS  PubMed  Google Scholar 

  • Peretto P, Merighi A, Fasolo A, Bonfanti L (1999) The subependymal layer in rodents: a site of structural plasticity and cell migration in the adult mammalian brain. Brain Res Bull 49:221–243

    CAS  PubMed  Google Scholar 

  • Pinner B, Davison JF, Campbell JB (1964) Alkaline phosphatase in peripheral nerves. Science 145:936–938

    CAS  PubMed  Google Scholar 

  • Pinto L, Götz M (2007) Radial glial cell heterogeneity: the source of diverse progeny in the CNS. Progr Neurobiol 83:2–23

    CAS  Google Scholar 

  • Platel JC, Lacar B, Bordey A (2007) GABA and glutamate signaling: homeostatic control of adult forebrain neurogenesis. J Mol Histol 38:303–311

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ruan HZ, Moules E, Burnstock G (2004) Changes in P2X3 purinoceptors in sensory ganglia of the mouse during embryonic and postnatal development. Histochem Cell Biol 122:539–551

    CAS  PubMed  Google Scholar 

  • Sauvageot CM, Stiles CD (2002) Molecular mechanisms controlling cortical gliogenesis. Curr Opin Neurobiol 12:244–249

    CAS  PubMed  Google Scholar 

  • Scemes E, Duval N, Meda P (2003) Reduced expression of P2Y1 receptors in connexin43-null mice alters calcium signaling and migration of neural progenitor cells. J Neurosci 23:11444–11452

    CAS  PubMed Central  PubMed  Google Scholar 

  • Scherer SS (1996) Molecular specializations at nodes and paranodes in peripheral nerve. Microsci Res Tech 34:452–461

    CAS  Google Scholar 

  • Schmitt A, Benninghoff J, Moessner R, Rizzi M, Paizanis E, Doenitz C, Gross S, Hermann M, Gritti A, Lanfumey L, Fritzen S, Reif A, Hamon M, Murphy DL, Vescovi A, Lesch KP (2007) Adult neurogenesis in serotonin transporter deficient mice. J Neural Transm 114:1107–1119

    CAS  PubMed  Google Scholar 

  • Smart I (1961) The subependymal layer of the mouse brain and its cell production as shown by autoradiography after thymidine-H3 injection. J Comp Neurol 116:325–347

    Google Scholar 

  • Smart IH, McSherry GM (1982) Growth patterns in the lateral wall of the mouse telencephalon. II. Histological changes during and subsequent to the period of isocortical neuron production. J Anat 134:415–442

    CAS  PubMed Central  PubMed  Google Scholar 

  • Solter D, Damjanov I, Skreb N (1973) Distribution of hydrolytic enzymes in early rat and mouse embryos–a reappraisal. Z Anat Entwicklungsgesch 139:119–126

    CAS  PubMed  Google Scholar 

  • Street SE, Kramer NJ, Walsh PL, Taylor-Blake B, Yadav MC, King IF, Vihko P, Wightman RM, Millán JL, Zylka MJ (2013) Tissue-nonspecific alkaline phosphatase acts redundantly with PAP and NT5E to generate adenosine in the dorsal spinal cord. J Neurosci 33:11314–11322

    CAS  PubMed Central  PubMed  Google Scholar 

  • Striedinger K, Meda P, Scemes E (2007) Exocytosis of ATP from astrocyte progenitors modulates spontaneous Ca2+ oscillations and cell migration. Glia 55:652–662

    PubMed Central  PubMed  Google Scholar 

  • Studer M, Terao M, Gianni M, Garattini E (1991) Characterization of a second promoter for the mouse liver/bone/kidney-type alkaline phosphatase gene: cell and tissue specific expression. Biochem Biophys Res Commun 179:1352–1360

    CAS  PubMed  Google Scholar 

  • Sturrock RR, Smart IHM (1980) A morphological study of the mouse subependymal layer from embryonic life to old age. J Anat 130:391–415

    CAS  PubMed Central  PubMed  Google Scholar 

  • Suyama S, Sunabori T, Kanki H, Sawamoto K, Gachet C, Koizumi S, Okano H (2012) Purinergic signaling promotes proliferation of adult mouse subventricular zone cells. J Neurosci 32:9238–9247

    CAS  PubMed  Google Scholar 

  • Tam PP, Kwong WH (1987) A study on the pattern of alkaline phosphatase activity correlated with observations on silver-impregnated structures in the developing mouse brain. J Anat 150:169–180

    CAS  PubMed Central  PubMed  Google Scholar 

  • Taniura H, Ito M, Sanada N, Kuramoto N, Ohno Y, Nakamichi N, Yoneda Y (2006) Chronic vitamin D3 treatment protects against neurotoxicity by glutamate in association with upregulation of vitamin D receptor mRNA expression in cultured rat cortical neurons. J Neurosci Res 83:1179–1189

    CAS  PubMed  Google Scholar 

  • Toh Y, Yamamoto M, Endo H, Fujita A, Misumi Y, Ikehara Y (1989a) Sequence divergence of 5’ extremities in rat liver alkaline phosphatase mRNAs. J Biochem 105:61–65

    CAS  PubMed  Google Scholar 

  • Toh Y, Yamamoto M, Endo H, Misumi Y, Ikehara Y (1989b) Isolation and characterization of a rat liver alkaline phosphatase gene. A single gene with two promoters. Eur J Biochem 182:231–237

    CAS  PubMed  Google Scholar 

  • Tran PB, Ren DJ, Veldhouse TJ, Miller RJ (2004) Chemokine receptors are expressed widely by embryonic and adult neural progenitor cells. J Neurosci Res 76:20–34

    CAS  PubMed  Google Scholar 

  • Vittur F, Stagni N, Moro L, de Bernhard B (1984) Alkaline phosphatase binds to collagen; a hypothesis on the mechanism of extravesicular mineralization in epiphyseal cartilage. Experientia 40:836–837

    CAS  PubMed  Google Scholar 

  • Vorbrodt AW, Lossinsky AS, Wisniewski HM (1986) Localization of alkaline phosphatase activity in endothelia of developing and mature mouse blood-brain barrier. Dev Neurosci 8:1–13

    CAS  PubMed  Google Scholar 

  • Waymire JC, Mahuren JD, Jaje JM, Guilarte T, Coburn SP, MacGregor GR (1995) Mice lacking tissue non-specific alkaline phosphatase die from seizures due to defective metabolism of vitamin B-6. Nat Genet 11:45–51

    CAS  PubMed  Google Scholar 

  • Weissman TA, Riquelme PA, Ivic L, Flint AC, Kriegstein AR (2004) Calcium waves propagate through radial glial cells and modulate proliferation in the developing neocortex. Neuron 43:647–661

    CAS  PubMed  Google Scholar 

  • Whyte PP (1996) Hypophosphatasia: natures window on alkaline phosphatase function in man. In: Bilezkian J, Raisz L, Rodan G (eds) Principles of bone biology. Academic Press, San Diego, pp 951–968

    Google Scholar 

  • Wichterle H, Turnbull DH, Nery S, Fishell G, Alvarez-Buylla A (2001) In utero fate mapping reveals distinct migratory pathways and fates of neurons born in the mammalian forebrain. Development 128:3759–3771

    CAS  PubMed  Google Scholar 

  • Wu LN, Genge BR, Lloyd GC, Wuthier RE (1991) Collagen-binding proteins in collagenase-released matrix vesicles from cartilage. Interaction between matrix vesicle proteins and different types of collagen. J Biol Chem 266:1195–1203

    CAS  PubMed  Google Scholar 

  • Wu LN, Genge BR, Wuthier RE (1992) Evidence for specific interaction between matrix vesicle proteins and the connective tissue matrix. Bone Miner 17:247–252

    CAS  PubMed  Google Scholar 

  • Young SZ, Taylor MM, Bordey A (2011) Neurotransmitters couple brain activity to subventricular zone neurogenesis. Eur J Neurosci 33:1123–1132

    PubMed Central  PubMed  Google Scholar 

  • Zerlin M, Levison SW, Goldman JE (1995) Early patterns of migration, morphogenesis, and intermediate filament expression of subventricular zone cells in the postnatal rat forebrain. J Neurosci 15:7238–7249

    CAS  PubMed  Google Scholar 

  • Zernik J, Kream B, Twarog K (1991) Tissue-specific and dexamethasone-inducible expression of alkaline phosphatase from alternative promoters of the rat bone/liver/kidney/placenta gene. Biochem Biophys Res Commun 176:1149–1156

    CAS  PubMed  Google Scholar 

  • Zhao CM, Deng W, Gage FH (2008) Mechanisms and functional implications of adult neurogenesis. Cell 132:645–660

    CAS  PubMed  Google Scholar 

  • Zhou H, Manji SS, Findlay DM, Martin TJ, Heath JK, Ng KW (1994) Novel action of retinoic acid: stabilization of newly synthesized alkaline phosphatase transcripts. J Biol Chem 269:22433–22439

    CAS  PubMed  Google Scholar 

  • Zimmermann H (2006) Nucleotide signaling in nervous system development. Pflugers Arch Eur J Physiol 452:573–588

    CAS  Google Scholar 

  • Zimmermann H (2011) Purinergic signaling in neural development. Semin Cell Dev Biol 22:194–204

    CAS  PubMed  Google Scholar 

  • Zimmermann H, Zebisch M, Sträter N (2012) Cellular function and molecular structure of ecto-nucleotidases. Purinergic Signal 8:437–502

    CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank Miguel Díaz-Hernández, Madrid, for providing Fig. 4.3.

Disclosure of Potential Conflict of Interest

The authors indicate no potential conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Herbert Zimmermann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Zimmermann, H., Langer, D. (2015). Tissue-Nonspecific Alkaline Phosphatase in the Developing Brain and in Adult Neurogenesis. In: Fonta, C., Négyessy, L. (eds) Neuronal Tissue-Nonspecific Alkaline Phosphatase (TNAP). Subcellular Biochemistry, vol 76. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-7197-9_4

Download citation

Publish with us

Policies and ethics