Skip to main content

The Influence of Some Particular Biotic and Abiotic Factors on Distribution of Metal Concentrations in the Soil–Pine System

  • Chapter
Plants, Pollutants and Remediation

Abstract

All living systems, including the soil–pine system, are affected by some external and internal factors. The balance of a system depends on the nature of the influencing factors and the extent of their impact. When the balance is disturbed, the quantitative and qualitative changes in the chemical composition and the functions of a tree can be observed. Using the method of dynamic factors it has been determined that a biotic factor (a pathogen) stimulates biophilicity and bioaccumulation of macroelements in the pine tissue, whereas an abiotic factor (pollution) intensifies biophilicity and bioaccumulation of microelements. The external abiotic factor (pollution) has a stronger influence on the linear logarithmic distribution of metal concentrations in the soil–pine system than the external biotic factor (a pathogen). The strongest effect is produced on the balance between metal concentrations in pine tissue and the concentration of metals in the mobile form in soil.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    The word “factor”, meaning a circumstance, fact or influence that contributes to a result or outcome, should not be confused with ‘factor’ as a mathematical term, meaning a coefficient (as used to define “dynamic factor”).

  2. 2.

    The factors are called dynamic because they reflect the dynamics of the processes taking place in trees and soil.

References

  • Alloway BJ (ed) (1995) Heavy metals in soils, 2nd edn. Chapman & Hall, London

    Google Scholar 

  • Asiegbu FO, Daniel G, Johansson M (1994) Defence related reactions of seedling roots of Norway spruce to infection by Heterobasidion annosum (Fr.) Bref. Physiol Mol Plant Pathol 45:1–19

    Article  Google Scholar 

  • Ayeni OO, Ndakidemi PA, Snyman RG, Odendaal JP (2010) Chemical, biological and physiological indicators of metal pollution in wetlands. Sci Res Essays 5(15):1938–1949

    Google Scholar 

  • Baltrenaite E, Butkus D, Booth CA (2010) Comparison of three tree-ring sampling methods for trace metal analysis. J Environ Eng Landsc Manag 18(3):170–178

    Article  Google Scholar 

  • Baltrenaite E, Lietuvninkas A, Baltrenas P (2012) Use of dynamic factors to assess metal uptake and transfer in plants – example of trees, water. Air Soil Pollut 223(7):4297–4306

    Article  CAS  Google Scholar 

  • Baltrenaite E, Baltrenas P, Lietuvninkas A, Šerevičienė V, Zuokaitė E (2014) Integrated evaluation of aerogenic pollution by air-transported heavy metals (Pb, Cd, Ni, Zn, Mn and Cu) in the analysis of the main deposit media. Environ Sci Pollut Res 21:299–313

    Article  CAS  Google Scholar 

  • Baltrenaite E, Baltrenas P, Butkus D, Lietuvninkas A (2015) Using the dynamic factors method in bioindication and phytoremediation. In: Ansari AA, Gill SS, Gill R, Lanza GR, Newman L (eds) Phytoremediation: management of environmental contaminants, vol 1. Springer, Cham, 792 p, pp 21–30. http://www.springer.com/life+sciences/ecology/book/978-3-319-10394-5

  • Baltrenaite E, Baltrenas P, Lietuvninkas A (2016). The Sustainable Role of the Tree in Environmental Protection Technologies, Springer, Cham.

    Google Scholar 

  • Baryla A, Carrier P, Franck F, Coulomb C, Sahut C, Havaux M (2001) Leaf chlorosis in oilseed rape plants (Brassica napus) grown on cadmium-polluted soil: causes and consequences for photosynthesis and growth. Planta 212:696–709

    Article  CAS  PubMed  Google Scholar 

  • Chvastov IV, Kovalskaya GA, Pavlov VE (2011) Composition of elements in the annual rings of Scots pine in the regions of Chernonyl and river Podkamennaia Tunguska. Chem Veg Mater 153–158 (in Russian)

    Google Scholar 

  • Deacon J (2005) Fungal biology. Blackwell Publishing, Oxford

    Book  Google Scholar 

  • Ericson A (1979) Effects of fertilization and irrigation on the seasonal changes of carbohydrate reserves in different age-classes of needle on 20-year-old pine trees (Pinus sylvestris). Physiol Plant 45:270–280

    Article  Google Scholar 

  • Faust M (1989) Physiology of temperate zone fruit trees. Wiley, New York

    Google Scholar 

  • Finger-Teixeira A, Ferrarese ML, Soares AR, da Silva D, Ferrarese-Filho O (2010) Cadmium-induced lignification restricts soybean root growth. Ecotoxicol Environ Saf 73(8):1959–1964

    Article  CAS  PubMed  Google Scholar 

  • Gramss G (2010) The universe of basidiomycetous ground fungi. In: Mendez-Vilas A (ed) Current research, technology and education topics in applied microbiology and microbial biotechnology. Formatex Research Center, Badajoz, pp 218–229

    Google Scholar 

  • Gricius A, Urbonas V, Kutorga E, Matelis A (1999) Succession of fungi on dead timber of various trees. Botanica Lituanica 5(6):60–77

    Google Scholar 

  • Hartley RD, Ford CW (1989) Phenolic constituents of plant cell walls and wall biodegradability. In: Lewis NG, Paice WG (eds) Plant cell wall polymers: biogenesis and biodegradation. American Chemical Society, Washington, DC, pp 138–145

    Google Scholar 

  • Hill LJ (2002) Branching out into biogeochemical surveys: a guide to vegetation sampling. In: Roach IC (ed) Regolith and landscapes in Eastern Australia. CRC LEME, Perth, pp 50–53

    Google Scholar 

  • Jana S, Choudhuri MA (1982) Senescence in submerged aquatic angiosperms: effects of heavy metals. New Phytol 90:477–484

    Article  CAS  Google Scholar 

  • Johansson M, Theander O (1974) Changes of sapwood of roots of Norway spruce, attacked by Fomes annosus. Part I Physiol Plant 30:218–225

    Article  CAS  Google Scholar 

  • Juneau P, Berdey A, Popovic P (2002) PAM fluorometry in the determination of the sensitivity of Chlorella vulgaris, Selenastrum capricornutum and Chlamydomonas reinhardtii to copper. Arch Environ Contam Toxicol 42:155–164

    Article  CAS  PubMed  Google Scholar 

  • Kadūnas V, Radzevičius A (2001) Sunkiųjų metalų migracinės formos Panevėžio miesto įmonių technogeniškai užterštame grunte. Geologija 35:23–28

    Google Scholar 

  • Kozlowski TT, Pallardy SG (1997) Physiology of woody plants. Academic, San Diego

    Google Scholar 

  • Kupčinskienė E (2011) Phytoindication of Environment, Kaunas, p 752 (in Lithuanian)

    Google Scholar 

  • Lietuvninkas A (2012) Environmental geochemistry [Aplinkos geochemija]. Technika, Vilnius

    Google Scholar 

  • Lipetz J, Garro AJ (1965) Ionic effects on lignification and peroxidase in tissue cultures. J Cell Biol 25(1):109–116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mancinelli E, Baltrėnaitė E, Baltrenas P, Paliulis D, Passerini G, Almas AR (2015) Trace metal concentration and speciation in storm water runoff on impervious surfaces. J Environ Eng Landsc Manag 23(1):15–27. doi:10.3846/16486897.2014.936441

  • Markert B (1996) Instrumental element and multi-element analysis of plant samples: methods and applications. Wiley, Chichester, p 312

    Google Scholar 

  • Markert B, Wunschmann S, Baltrėnaitė E (2012) Innovative observation of the environment. Bioindicators and biomonitors: definitions, strategies and applications. J Environ Eng Landsc Manag 20(3):221–239 (in Lithuanian)

    Article  Google Scholar 

  • Markert B, Baltrėnaitė E, Chudzińska E, De Marco S, Diatta J, Ghaffari Z, Gorelova S, Marcovecchio J, Tabors G, Wang M, Yousef N, Fraenzle S, Wuenschmann S (2014) Multilingual education of students on a global scale and perspective – international networking on the example of bioindication and biomonitoring (B&B technologies). Environ Sci Pollut Res 21(8):5450–5456

    Article  Google Scholar 

  • Navasaitis M (2008) Dendrology. Margi raštai, Vilnius, 856 p [in Lithuanian]

    Google Scholar 

  • Noland TL, Kozlowski TT (1979) Effect of SO2 on stomatal aperture and sulfur uptake of woody angiosperm seedlings. Can J Forest Res 9:57–62

    Article  CAS  Google Scholar 

  • Poschenrieder C, Tolrà R, Barceló J (2006) Can metals defend plants against biotic stress? Trends Plant Sci 11(6):288–295

    Article  CAS  PubMed  Google Scholar 

  • Pundytė N, Baltrėnaitė E, Pereira P, Paliulis D (2011) Anthropogenic effects on heavy metals and macronutrients accumulation in soil and wood of Pinus sylvestris L. J Environ Eng Landsc Manag 19(1):34–43

    Article  Google Scholar 

  • Reich PB (1987) Quantifying plant response to ozone: a unifying theory. Tree Physiol 3:63–91

    Article  CAS  PubMed  Google Scholar 

  • Schulze ED, Beck E, Muller-Hohenstein K (2005) Plant ecology. Springer, Berlin/New York

    Google Scholar 

  • Tang DJ, Li XJ, He YQ (2005) The zinc uptake regulator Zur is essential for the full virulence of Xanthomonas campestris pv. campestris. Mol Plant Microbe Interact 18:652–658

    Article  CAS  PubMed  Google Scholar 

  • Turvey ND, Carlyle C, Downes GM (1992) Effects of micronutrients on the growth form of two families of Pinus radiata (D. Don) seedlings. Plant and Soil 139:59–65

    Article  CAS  Google Scholar 

  • Vance CP, Kirk TK, Sherwood RT (1980) Lignification as a mechanism of disease resistance. Annu Rev Phytopathol 18:259–288

    Article  CAS  Google Scholar 

  • Woodward J, Stenlid J, Karjalainen R, Hüttermann A (1998) Heterobasidion annosum. Biology, ecology, impact, and control. CAB International, Wallingford

    Google Scholar 

  • Youssef N, Markert B, Gurbanov E, Sevnic H, Wünschmann S (2014) Bioindication of trace metal pollution in the atmosphere of Baku city using ligustrum japonicum, olea europea, and pyracantha coccinea leaves. J Environ Eng Landsc Manag 22(1):14–20

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edita Baltrenaite .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Baltrenaite, E., Lietuvninkas, A., Baltrenas, P., Singh, B.R., Moskvitina, N., Vaishlya, O. (2015). The Influence of Some Particular Biotic and Abiotic Factors on Distribution of Metal Concentrations in the Soil–Pine System. In: Öztürk, M., Ashraf, M., Aksoy, A., Ahmad, M., Hakeem, K. (eds) Plants, Pollutants and Remediation. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-7194-8_10

Download citation

Publish with us

Policies and ethics