Skip to main content

Application of Machine Learning in Drug Design

  • Chapter
  • 224 Accesses

Part of the book series: NATO ASI Series ((NSSE,volume 352))

Summary

Neural networks and machine learning are two methods that are increasingly being used to model Structure Activity Relationships (SARs). These new methods make few statistical assumptions and are non-linear and nonparametric. We describe back-propagation from the field of neural networks, and Progol from machine learning, and illustrate their learning mechanisms using a simple expository problem.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hansch, C., Maloney, P.P., Fujita, T. and Muir, R.M. (1962) Correlation of Biological Activity of Phenoxyacetic Acids with Hammett Substitution Constants and Partition Coefficients. Nature, 194 178–180.

    Article  CAS  Google Scholar 

  2. Cramer, R.D., Patterson, D.E., and Bunce, J.D. (1988) Comparative Molecular Field Analysis (CoMFA). 1. Effect of shape on binding of steroids to carrier proteins. J. Am. Chem. Soc., 110 5959–5967.

    Article  CAS  Google Scholar 

  3. Hansch, C., Li, R.-I., Blaney, J.M. and Langridge, R. (1982) Comparison of the Inhibition of Escherichia coli and Lactobacillus casei Dihydrofolate Reductase by 2,4-Diamino-5-(Substituted-benzyl)pyrimidines: Quantitative Structure-Activity Relationships, X-ray Crystallography, and Computer Graphics in Structure-Activity Analysis. J. Med. Chem., 25 777–784.

    Article  CAS  Google Scholar 

  4. Silipo, C. and Hansch, C. (1975) Correlation Analysis. Its application to the Structure-Activity Relationship of Triazines Inhibiting Dihydrofolate Reductase. J. Am. Chem. Soc., 97 6849–6861.

    Article  CAS  Google Scholar 

  5. Day, N. and Kerridge, D. (1967) A general maximum likelihood discriminant. Biometrics, 23 313–323.

    Article  CAS  Google Scholar 

  6. Friedman, J.H. and Stuetzle, W.(1981) Projection pursuit regression. J. Am. Stat. Assoc. 76 817–823.

    Article  Google Scholar 

  7. Weiss, S.M. and Kulikowski, C.A. (1991) Computer Systems That Learn. Morgan Kaufmann, San Mateo.

    Google Scholar 

  8. Silverman, B.(1986) Density Estimation for Statistics. Chapman and Hall, New York.

    Google Scholar 

  9. Simpson, P.F.(1990) Artificial Neural Systems. Pergammon Press.

    Google Scholar 

  10. Rumelhart, D.E., Hinton, G.E. and Williams, R.J. (1986) Learning representations by back-propagating errors. Nature, 323, 533–536.

    Article  Google Scholar 

  11. Gear, C.W. (1971) Numerical Initial Value Problems in Ordinary Differential Equations. Prentice Hall, Englewood Cliffs, NJ.

    Google Scholar 

  12. Muggleton, S. (1995) Inverse entailment and Progol. New Gen. Computing Journal, 13 245–286.

    Article  Google Scholar 

  13. King, R.D. (1996) Muggleton, S.H., Srinivasan, A., Sternberg, M.J.E. Structure activity relationships derived by machine learning: The use of atoms and their bond connectivities to predict mutagenicity. Proc. Nat. Acad. Sci. U.S.A. 93 438–442.

    Article  CAS  Google Scholar 

  14. Muggleton, S. (1991) Inductive Logic Programming. New Gen. Computing, 8 295–318.

    Article  Google Scholar 

  15. Muggleton, S., Srinivasan, A. and Bain, M. 1992) Compression, Significance and Accuracy. In Proceedings of 9th International Conference on Machine Learning, Morgan-Kaufman, San Diego. p. 339–347.

    Google Scholar 

  16. Ripley, B.D. (1992) Statistical Aspects of Neural Networks, in Proceedings of SemStat, (Sandbjerg, Denmark), Chapman and Hall.

    Google Scholar 

  17. King, R., Henery, R., Feng, C., Sutherland, A. (1996) A Comparative Study of Classification Algorithms: Statistical, Machine Learning, and Neural Network, in Michie, D. S., Muggleton, S. and Furukawa, F. (eds.) Machine Intelligence and Inductive Learning: Vol. 13 of Machine Intelligence. Oxford, Oxford University Press.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

King, R.D. (1998). Application of Machine Learning in Drug Design. In: Codding, P.W. (eds) Structure-Based Drug Design. NATO ASI Series, vol 352. Springer, Dordrecht. https://doi.org/10.1007/978-94-015-9028-0_5

Download citation

  • DOI: https://doi.org/10.1007/978-94-015-9028-0_5

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-5078-6

  • Online ISBN: 978-94-015-9028-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics