Skip to main content

Part of the book series: Developments in Cardiovascular Medicine ((DICM,volume 234))

  • 62 Accesses

Abstract

Over the past few years the evaluation of coronary artery disease has been, essentially, anatomical and based on the coronary angiography. Recently, greater emphasis has been placed on knowledge of the functional repercussions of a particular coronary stenosis and which may be investigated using perfusion gammagraphy; both procedures, however, may be considered complementary in the assessment of the severity of coronary disease [1].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Steinberg EP, Klag MJ, Bakal CW et al. Exercise thallium scans: patterns of use and impact on management of patients with known or suspected coronary artery disease. Am J Cardiol 1987; 59: 50–55.

    CAS  PubMed  Google Scholar 

  2. Palet-Balart J, Candell-Riera J, Castell-Conesa J et al. La tomogammagrafía de perfusión y la coronariografia como exploraciones complementarias en la decisión terapeútica de pacientes con cardiopatía isquémica. Rev Esp Cardiol 1994; 47: 796–802.

    CAS  PubMed  Google Scholar 

  3. Gibson RS, Watson DD, Taylor GJ et al. Prospective assessment of regional myocardial perfusion before and after coronary revascularization surgery by quantitative thallium-201 scintigraphy. J Am Coll Cardiol 1983; 1: 804–815.

    CAS  PubMed  Google Scholar 

  4. Lim YL, Okada RD, Chesler DA et al. A new approach to quantitation of exercise thallium-201 scintigraphy before and after an intervention: Application to define the impact of coronary angioplasty on regional myocardial perfusion. Am Heart J 1984; 108: 917–925.

    CAS  PubMed  Google Scholar 

  5. Ritchie JL, Narahara KA, Trobaugh GB et al. Thallium-201 myocardial imaging before and after coronary revascularization. Assessment of regional myocardial blood flow and graft patency. Circulation 1977; 56: 830–836.

    CAS  PubMed  Google Scholar 

  6. Rasmussen SL, Nielsen SL, Amtorp O et al. 201-thallium imaging as an indicator of graft patency after coronary artery bypass surgery. Eur Heart J 1984; 5: 494–499.

    CAS  PubMed  Google Scholar 

  7. Breisblatt WM, Barnes JV, Weiland F et al. Incomplete revascularization in multivessel percutaneous transluminal coronary angioplasty: The role for stress thallium-201 imaging. J Am Coll Cardiol 1988; 11: 1183–1190.

    CAS  PubMed  Google Scholar 

  8. Wohlgelernter D, Cleman M, Highman HA et al. Percutaneous transluminal coronary angioplasty of the “culprit lesion” for management of unstable angina pectoris in patients with multivessel coronary artery disease. Am J Cardiol 1986; 58: 460–464.

    CAS  PubMed  Google Scholar 

  9. Joye JD, Schulman DS, Lasorda D et al. Intracoronary doppler guide wire versus stress single-photon emission computed tomographic thallium-201 imaging in assessment of intermediate coronary stenoses. J Am Coll Cardiol 1994; 24: 904–907.

    Google Scholar 

  10. White CW, Wright CB, Doty DB et al. Does visual interpretation of the coronary arteriogram predict the physiologic importance of a coronary stenosis? N Engl J Med 1984; 310: 819–824.

    CAS  PubMed  Google Scholar 

  11. Trask N, Califf RM, Conley MJ et al. Accuracy and interobserver variability of coronary cineangiography: a comparison with postmortem evaluation. J Am Coll Cardiol 1984; 3: 1145–1154.

    CAS  PubMed  Google Scholar 

  12. Kleiman NS, Rodriguez AR, Raizner AE. Interobserver variability in grading of coronary arterial narrowings using the American College of Cardiology/American Heart Association grading criteria. Am J Cardiol 1992; 69: 413–415.

    CAS  PubMed  Google Scholar 

  13. Gurley JC, Nissen SE, Booth DC et al. Influence of operator-and patient-dependent variables on the suitability of automated quantitative coronary arteriography for routine clinical use. J Am Coll Cardiol 1992; 19: 1237–1243.

    CAS  PubMed  Google Scholar 

  14. Legrand V, Mancini GBJ, Le Free MT et al. Clinical value of digital radiographic coronary quantification: comparison with visual assessment and coronary flow reserve. Eur Heart J 1992; 13: 95–101.

    CAS  PubMed  Google Scholar 

  15. Danchin N, Juilliere Y, Foley D et al. Visual versus quantitative assessment of the severity of coronary artery stenoses: can the angiographer’s eye be reeducated?. Am Heart J 1993; 126: 594–600.

    CAS  PubMed  Google Scholar 

  16. Leung WH, Alderman EL, Lee TC, Stadius ML. Quantitative arteriography of apparently normal coronary segments with nearby or distant disease presence of occult, nonvisualized atherosclerosis. J Am Coll Cardiol 1995; 25: 311–317.

    CAS  PubMed  Google Scholar 

  17. Di Carli M, Czemin J, Hoh CK et al. Relation among stenosis severity, myocardial blood flow, and flow reserve in patients with coronary artery disease. Circulation 1995; 91: 1944–1951.

    PubMed  Google Scholar 

  18. Keane D, Haase J, Slager CJ et al. Comparative validation of quantitative coronary agiography systems. Results and implications from a multicenter study using a standardized approach. Circulation 1995; 91: 2174–2183.

    CAS  PubMed  Google Scholar 

  19. Beauman GJ, Vogel RA. Accuracy of individual and panel visual interpretations of coronary arteriograms: Implications for clinical decisions. J Am Coll Cardiol 1990; 16: 108–113.

    CAS  PubMed  Google Scholar 

  20. DeRouen T, Murray J, Owen W. Variability in the analysis of coronary angiograms. Circulation 1977; 55: 324–328.

    Google Scholar 

  21. Klein JL, Boccuzzi SJ, Treasure CB et al. Performance standards and edge detection with computerized quantitative coronary arteriography. Am J Cardiol 1996; 77: 815–822.

    CAS  PubMed  Google Scholar 

  22. Heller LI, Cates C, Popma J et al. Intracoronary Doppler assessment of moderate coronary artery disease. Comparison with 201T1 imaging and coronary angiography. Circulation 1997; 96: 484–490.

    CAS  PubMed  Google Scholar 

  23. Ozaki Y, Violaris AG, Kobayashi T et al. Comparison of coronary lumina] quantification obtained from intracoronary ultrasound and both geometric and videodensitometric quantitative angiography before and after balloon angioplasty and directional atherectomy. Circulation 1997; 96: 491–499.

    CAS  PubMed  Google Scholar 

  24. Candell-Riera J, Santana-Boado C, Castell-Conesa J et al. Culprit lesion and jeopardized myocardium: Correlation between coronary angiography and single photon emission computed tomography. Clin Cardiol 1997; 20: 345–350.

    CAS  PubMed  Google Scholar 

  25. Castell-Conesa J (1994) Methods for quantifying myocardial perfusion, in Candell-Riera J and Ortega-Alcalde D (eds.), Nuclear Cardiology in everyday practice, Kluwer Academic Publishers, Dordrecht, pp. 88–108.

    Google Scholar 

  26. Maddahi J, Van Train K, Prigent F et al. Quantitative single photon emission computed thallium-201 tomography for detection and localization of coronary artery disease: Optimization and prospective validation of a new technique. J Am Coll Cardiol 1989; 14: 1689–1699.

    CAS  PubMed  Google Scholar 

  27. Van Train KF, Garcia EV, Cooked AJ (1995) Quantitative analysis of SPECT myocardial perfusion, in De Puey EG, Berman DS and Garcia EV (eds.), Cardiac SPECT Imaging, Raven Press, New York, pp. 49–74.

    Google Scholar 

  28. Gibson CM, Cannon CP, Daley WL et al. TIMI frame count. A quantitative method of assessing coronary artery flow. Circulation 1996; 93: 879–888.

    CAS  PubMed  Google Scholar 

  29. Bartúnek J, Sys SU, Heyndrickx GR et al. Quantitative coronary angiography in predicting functional significance of stenoses in an unselected patient cohort. J Am Coll Cardiol 1995; 26: 328–334.

    PubMed  Google Scholar 

  30. Arnese M, Salustri A, Fioretti PM et al. Quantitative angiographic measurements of isolated left anterior descending coronary artery stenosis. Correlation with exercise echocardiography and technetium-99m 2-methoxy isobutyl isonitrile single-photon emission tomography. J Am Coll Cardiol 1995; 25: 1486–1491.

    CAS  PubMed  Google Scholar 

  31. Mancini GB, Simin SB, McGillen MJ et al. Automated quantitative coronary arteriography: Morphologic and physiologic validation in vivo of rapid digital angiographic method. Circulation 1987; 75: 452–460.

    CAS  PubMed  Google Scholar 

  32. Rentrop KP, Cohen M, Blanke H, Phillips RA. Changes in collateral channel filling immediately after controlled coronary artery occlusion by an angioplasty balloon in human subjects. J Am Coll Cardiol 1985; 5: 587–592.

    CAS  PubMed  Google Scholar 

  33. Rentrop KP, Feit F, Sherman W, Thornton JC. Serial angiographie assessment of coronary artery obstruction and collateral flow in acute myocardial infarction. Report from the Second Mount Sinai-New York University Reperfusion Trial. Circulation 1989; 80: 1166–1175.

    CAS  PubMed  Google Scholar 

  34. Pijls NH, Bech JW, El Gamal MIH et al. Quantification of recruitable coronary collateral blood flow in conscious humans and its potential to predict future ischemic events. J Am Coll Cardiol 1995; 25: 1522–1528.

    CAS  PubMed  Google Scholar 

  35. Candell-Riera J, (1994) Stress testing, in Candell-Riera J and Ortega-Alcalde D (eds.), Nuclear Cardiology in everyday practice. Kluwer Academic Publishers, Dordrecht, pp. 43–66.

    Google Scholar 

  36. Candell-Riera J, Santana-Boado C, Castell-Conesa J et al. Simultaneous dipyridamole/maximal subjective exercise with 99mTc-MIBI SPECT: Improved diagnostic yield in coronary artery disease. J Am Coll Cardiol 1997; 29: 531–536.

    CAS  PubMed  Google Scholar 

  37. Santana-Boado C, Candell-Riera J, Castell-Conesa J et al. Importancia de los parámetros ergométricos en los resultados de la tomogammagrafia de perfusión miocárdica. Med Clin (Bare.) 1997; 109: 406–409.

    CAS  Google Scholar 

  38. Hockings B, Saltissi S, Croft DN, Webb-Peploe MM. Effect of beta adrenergic blockade on thallium-201 myocardial perfusion imaging. Br Heart J 1983; 49: 83–89.

    CAS  PubMed  Google Scholar 

  39. Martin GJ, Henkin RE, Scanlon PJ. Beta blockers and the sensitivity of the thallium treadmill test. Chest 1987; 92: 486–487.

    CAS  PubMed  Google Scholar 

  40. Santana-Boado C, Candell-Riera J, Aguadé-Bruix S et al. Cuantificación de la isquemia miocárdica en regiones dependientes de arterias coronarias ocluidas de pacientes sin infarto previo. Rev Esp Cardiol 1998; 51: 388–395.

    CAS  PubMed  Google Scholar 

  41. Pollock SC, Abbot RD, Boucher CA et al. A model to predict multivessel coronary artery disease from the exercise thallium-201 stress test. Am J Med 1991; 90: 345–352.

    CAS  PubMed  Google Scholar 

  42. Christian TF, Miller TD, Bailey KR et al. Noninvasive identification of severe coronary artery disease using exercise tomographic thallium-201 imaging. Am J Cardiol 1992; 70: 14–20.

    CAS  PubMed  Google Scholar 

  43. Iskandrian AS, Heo J, Lemlek J et al. Identification of high risk patients with left main and three-vessel coronary artery disease using stepwise discriminant analysis of clinical, exercise, and tomographic thallium data. Am Heart J 1993; 125: 221–225.

    CAS  PubMed  Google Scholar 

  44. Gewirtz H, Paladino W, Sullivan M et al. Value and limitations of myocardial thallium washout rate in the noninvasive diagnosis of patients with triple-vessel coronary artery disease. Am Heart J 1983; 106: 681–686.

    CAS  PubMed  Google Scholar 

  45. Bateman TM, Maddahi J, Gray RI et al. Diffuse slow washout of myocardial thallium-201: A new scintigraphic indicator of extensive coronary artery disease. J Am Coll Cardiol 1984; 4: 55–64.

    CAS  PubMed  Google Scholar 

  46. Nordrehaug JE, Danielsen R, Vik-Mo H. Effects of heart rate on myocardial thallium-201 uptake and clearance. J Nucl Med 1989; 30: 1972–1976.

    CAS  PubMed  Google Scholar 

  47. Maddahi J, Abdulla A, García EV et al. Noninvasive identification of left main and triple vessel coronary artery disease: Improved accuracy using quantitative analysis of regional myocardial stress distribution and washout of thallium-201. J Am Coll Cardiol 1986; 7: 53–60.

    CAS  PubMed  Google Scholar 

  48. Rothendler JA, Boucher CA, Strauss W et al. Decrease in the ability to detect elevated lung thallium due to delay in commencing imaging after exercise. Am Heart J 1985; 110: 830–835.

    CAS  PubMed  Google Scholar 

  49. Brown KA, McKay R, Heller GV et al. Hemodynamic determinants of thallium-201 lung uptake in patients during atrial pacing stress. Am Heart J 1986; 111: 103–107.

    CAS  PubMed  Google Scholar 

  50. Gill JB, Ruddy TD, Newell JB et al. Prognostic importance of thallium uptake by the lungs during exercise in coronary artery disease. N Engl J Med 1987; 317: 1485–1489.

    Google Scholar 

  51. Kaul S, Finkelstein DM, Homma S et al. Superiority of quantitative exercise thallium-201 variables in determining long-term prognosis in ambulatory patients with chest pain: A comparison with cardiac catheterization. J Am Coll Cardiol 1988; 12: 25–34.

    CAS  PubMed  Google Scholar 

  52. Levy R, Rozanski A, Berman DS et al. Analysis of the degree of pulmonary thallium washout after exercise in patients with coronary artery disease. J Am Coll Cardiol 1983; 2: 719–728.

    CAS  PubMed  Google Scholar 

  53. Manno B, Hakki A, Kane SA et al. Usefulness of left ventricular wall thickness-to-diameter ratio in thallium-201 scintigraphy. Cath Cardiovasc Diag 1983; 9: 483–491.

    CAS  Google Scholar 

  54. Weiss AT, Berman DS, Lew AS et al. Transient ischemic dilation of the left ventricle on stress thallium-201 scintigraphy: A marker of severe and extensive coronary artery disease. J Am Coll Cardiol 1987; 9: 752–759.

    CAS  PubMed  Google Scholar 

  55. Forslund L, Hjemdahl P, Held C et al. Prognostic implications of results from exercise testing in patients with chronic stable angina pectoris treated with metoprolol or verapamil. A report from The angina Prognosis Study in Stockholm (APSIS). Eur Heart J 2000; 21: 901–910.

    CAS  PubMed  Google Scholar 

  56. Kwowk JMF, Christian TF, Miller TD, Hodge DO, Gibbons RJ. Identification of severe coronary artery disease in patients with a single abnormal coronary territory on exercise thallium-201 imaging. J Am Coll Cardiol 2000; 35: 335–344.

    Google Scholar 

  57. Canhasi B, Dae M, Botvinick E et al. Interaction of “supplementary” scintigraphic indicators of ischemia and stress electrocardiography in the diagnosis of multivessel coronary disease. J Am Coll Cardiol 1985; 6: 581–588.

    CAS  PubMed  Google Scholar 

  58. Castell-Conesa J, Santana-Boado C, Candell-Riera J et al. La tomogammagrafia miocárdica de esfuerzo en el diagnóstico de la enfermedad coronaria multivaso. Rev Esp Cardiol 1997; 50: 635–642.

    CAS  PubMed  Google Scholar 

  59. Iskandrian AS, Verani MS (1996) Exercise perfusion imaging in coronary artery disease: Physiology and diagnosis, in Iskandrian AS and Verani MS (eds.), Nuclear cardiac imaging, F.A. Davis Company, Philadelphia, pp. 73–143.

    Google Scholar 

  60. Detrano R, Gianrossi R, Mulvihill D et al. Exercise-induced ST depression in the diagnosis of coronary artery disease: A metaanalisis. J Am Coll Cardiol 1989; 14: 1501–1508.

    CAS  PubMed  Google Scholar 

  61. Morise AP. An incremental evaluation of the diagnostic value of thallium single-photon emission computed tomographic imaging and lung/heart ratio concerning both the presence and extent of coronary artery disease. J Nucl Cardiol 1995; 2: 238–245.

    CAS  PubMed  Google Scholar 

  62. Mazzanti M, Germano G, Kiat H et al. Identification of severe and extensive coronary artery disease by automatic measurement of transient ischemic dilation of the left ventricle in dual-isotope myocardial perfusion SPECT. J Am Coll Cardiol 1996; 27: 1612–1620.

    CAS  PubMed  Google Scholar 

  63. McClellan JR, Travin MI, Herman SD et al. Prognostic importance of scintigraphic left ventricular cavity dilation during intravenous dipyridamole technetium-99m sestamibi myocardial tomographic imaging in predicting coronary events. Am J Cardiol 1997; 79: 600–605.

    CAS  PubMed  Google Scholar 

  64. Lindsey H Jr, Cohn PF. “Silent” myocardial ischemia during and after exercise testing in patients with coronary artery disease. Am Heart J 1978; 95: 441–447.

    PubMed  Google Scholar 

  65. Deanfield JE, Maseri A, Selwyn AP et al. Myocardial ischemia during daily life in patients with stable angina: its relation to symptoms and heart rate changes. Lancet 1983; 2: 753–758.

    CAS  PubMed  Google Scholar 

  66. Cohn PF. Silent myocardial ischemia. Ann Intern Med 1988; 109: 312–317.

    CAS  PubMed  Google Scholar 

  67. Frishman WH, Teicher M. Antianginal drug therapy for silent myocardial ischemia. Am Heart J 1987; 114: 140–147.

    CAS  PubMed  Google Scholar 

  68. Pepine C, Cohn PF, Deedwania PC, Gibson R, Gottlieb S, Hill J. The pronostic and economic implications of a strategy to detect and treat asymptomatic ischemia: The Atenolol Silent Ischemia Trial (ASIST) protocol. Clin Cardiol 1991; 14: 457–461.

    CAS  PubMed  Google Scholar 

  69. ACIP investigators. Asymptomatic Cardiac Ischemia Pilot Study (ACIP). Am J Cardiol 1992; 70: 744–747.

    Google Scholar 

  70. Gasparetti CM, Burwell LR, Beller GA. Prevalence of and variables associated with silent myocardial ischemia on exercise thallium-201 stress testing. J Am Coll Cardiol 1990; 16: 115–123.

    Google Scholar 

  71. Vassiliadis IV, Machac J, O’Hara M, Sezhiyan T, Horowitz SF. Exercise-induced myocardial dysfunction in patients with coronary artery disease with and without angina. Am Heart J 1991; 121: 1403–1408.

    CAS  PubMed  Google Scholar 

  72. Travin MI, Flores AR, Boucher CA, Newell JB, LaRaia PJ. Silent versus symptomatic ischemia during a thallium-201 exercise test. Am J Cardiol 1991; 68: 1600–1608.

    CAS  PubMed  Google Scholar 

  73. Marwick TH, Nemec JJ, Torelli J, Salcedo EE, Stewart WJ. Extent and severity of abnormal left ventricular wall motion detected by exercise echocardiography during painful and silent ischemia. Am J Cardiol 1992; 69: 1483–1484.

    CAS  PubMed  Google Scholar 

  74. Nihoyannopoulos P, Marsonis A, Joshi J, Athanassopoulos G, Oakley CM. Magnitude of myocardial dysfunction is greater in painful than in painless myocardial ischemia: an exercise echocardiographic study. J Am Coll Cardiol 1995; 25: 1507–1512.

    CAS  PubMed  Google Scholar 

  75. Tamaki N, Yasuda T, Moore R et al. Continous monitoring of left ventricular function by an ambulatory radionuclide detector in patients with coronary artery disease. J Am Coll Cardiol 1988; 12: 669–679.

    CAS  PubMed  Google Scholar 

  76. Candell-Riera J (1994) Diagnosis of coronary artery disease, in Candell-Riera J and Ortega-Alcalde D (eds.), Nuclear cardiology in everyday practice, Kluwer Academic Publishers, Dordrecht, pp.187–215.

    Google Scholar 

  77. Williams KA, Taillon LA, Carter JE. Asymptomatic and electrically silent myocardial ischemia during upright leg cycle ergometry and treadmill exercise (clandestine myocardial ischemia). Am J Cardiol 1993; 72: 1114–1120.

    CAS  PubMed  Google Scholar 

  78. Upton MT, Rerych SK, Newman GE, Port S, Cobb FR, Jones RH. Detecting abnormalities in left ventricular function during exercise before angina and ST-segment depression. Circulation 1980; 62: 341–349.

    CAS  PubMed  Google Scholar 

  79. Williams KA, Sherwood DS, Fisher KM. The frequency of asymptomatic and electrically silent exercise-induced regional myocardial ischemia during first-pass radionuclide angiography with upright bicycle ergometry. J Nucl Med 1992; 33: 359–364.

    CAS  PubMed  Google Scholar 

  80. Hecht HS, BeBord L, Sotomayor N, Shaw R, Ryan C. Truly silent ischemia and the relationship of chest pain and ST segment changes to the amount of ischemic myocardium: evaluation by supine bicycle stress echocardiography. J Am Coll Cardiol 1994; 23: 369–376.

    CAS  PubMed  Google Scholar 

  81. Chierchia S, Lazzari M, Freedman B, Brunelli C, Maseri A. Impairment of myocardial perfusion and function during painless myocardial ischemia. J Am Coll Cardiol 1983; 1: 924–930.

    CAS  PubMed  Google Scholar 

  82. Klein J, Chao SY, Berman DS, Rozanski A. Is “silent” myocardial ischemia really as severe as symptomatic ischemia? The analytical effect of patient selection biases. Circulation 1994; 89: 1958–1966.

    CAS  PubMed  Google Scholar 

  83. Cohn PF, Brown EJ, Wynne J, Holman BL, Atkins HL. Global and regional left ventricular ejection fraction abnormalities during exercise in patients with silent myocardial ischemia. J Am Coll Cardiol 1983; 1: 931–933.

    CAS  PubMed  Google Scholar 

  84. Iskandrian AS, Hakki A. Left ventricular function in patients with coronary heart disease in the presence or absence of angina pectoris during exercise radionuclide ventriculography. Am J Cardiol 1984; 53: 1239–1243.

    CAS  PubMed  Google Scholar 

  85. Ouyang P, Shapiro EP, Chandra NC, Gottlieb SH, Chew PH, Gottlieb SO. An angiographie and functional comparison of patients with silent and symptomatic treadmill ischemia early after myocardial infarction. Am J Cardiol 1987; 59: 730–734.

    CAS  PubMed  Google Scholar 

  86. Hecht HS, Shaw RE, Bruce T, Myler RK. Silent ischemia: evaluation by exercise and redistribution tomographic thallium-201 myocardial imaging. J Am Coll Cardiol 1989; 14: 895–900.

    CAS  PubMed  Google Scholar 

  87. Mark DB, Hlatky MA, Califf RM et al. Painless exercise ST deviation on the treadmill: long-term-prognosis. J Am Coll Cardiol 1989; 14: 885–892.

    CAS  PubMed  Google Scholar 

  88. Mahmarian JJ, Pratt CM, Cocanougher MK, Verani MS. Altered myocardial perfusion in patients with angina pectoris or silent ischemia during exercise as assessed by quantitative thallium-201 single-photon emission tomography. Circulation 1990; 82: 1305–1315.

    CAS  PubMed  Google Scholar 

  89. Bruschke AVG, Proudfit WL, Sones FM. Progress study of 590 consecutive nonsurgical cases of coronary disease followed 5–9 years. I. Arteriographic correlations. Circulation 1973; 47: 1147–1153.

    CAS  PubMed  Google Scholar 

  90. Humphries JO, Kuller L, Ross RS et al. Natural history of ischemic heart disease in relation to arteriographic findings. A twelve year study of 224 patients. Circulation 1974; 49: 489–497.

    CAS  PubMed  Google Scholar 

  91. Burggraf GW, Parker JO. Prognosis in coronary artery disease. Angiographie, hemodynamic, and clinical factors. Circulation 1975; 51: 146–156.

    CAS  PubMed  Google Scholar 

  92. Hutter AM. Is there a left main equivalent? Circulation 1980; 62: 207–211.

    PubMed  Google Scholar 

  93. Folland ED, Vogel RA, Hartigan P et al. Relation between coronary artery stenosis assessed by visual, caliper, and computer methods and exercise capacity in patients with single-vessel coronary artery disease. Circulation 1994; 89: 2005–2014.

    CAS  PubMed  Google Scholar 

  94. Califf RM, Phillips HR, Hindman MC et al. Prognostic value of a coronary artery jeopardy score. J Am Coll Cardiol 1985; 5: 1055–1063.

    CAS  PubMed  Google Scholar 

  95. Marwick T, D’Hondt AM, Baudhuin T et al. Optimal use of dobutamine stress for the detection and evaluation of coronary artery disease: Combination with echocardiography or scintigraphy, or both? J Am Coll Cardiol 1993; 22: 159–167.

    CAS  PubMed  Google Scholar 

  96. Austen WG, Edwards JE, Frye RL et al. A reporting system on patients evaluated for coronary artery disease. Report of the Ad Hoc Committee for grading of coronary artery disease, Council on Cardiovascular Surgery, American Heart Association. Circulation 1975; 51 (suppl 51): 5–40.

    CAS  PubMed  Google Scholar 

  97. Leaman DM, Brower RW, Meester GT et al. Coronary artery atherosclerosis: severity of the disease, severity of angina pectoris and compromised left ventricular function. Circulation 1981; 63: 285–292.

    CAS  PubMed  Google Scholar 

  98. Favaloro RG. Computerized tabulation of cine coronary angiograms. Circulation 1990; 81: 1992–2003.

    CAS  PubMed  Google Scholar 

  99. Ellis SG, Cowley MJ, DiSciascio et al. Determinants of 2-year outcome after coronary angioplasty in patients with multivessel disease on the basis of comprehensive preprocedural evaluation. Implications for patient selection. Circulation 1991; 83: 1905–1914.

    CAS  PubMed  Google Scholar 

  100. Weyner DA, Ryan TJ, McCabe CH et al. The role of exercise testing in identifying patients with improved survival after coronary artery bypass surgery. J Am Coll Cardiol 1986; 8: 741–748.

    Google Scholar 

  101. Plotnick GD. Coronary artery bypass surgery to prolong life?: Less anatomy/more physiology. J Am Coll Cardiol 1986; 8: 749–751.

    CAS  PubMed  Google Scholar 

  102. Mahmarian JJ, Pratt CM, Boyce TM et al. The variable extent of jeopardized myocardium in patients with single vessel coronary artery disease: quantification by thallium-201 single photon emission computed tomography. J Am Coll Cardiol 1991; 17: 355–362.

    CAS  PubMed  Google Scholar 

  103. Iskandrian AS. Relation between functional and anatomic descriptors of coronary artery disease. J Am Coll Cardiol 1991; 17: 363–364.

    CAS  PubMed  Google Scholar 

  104. Ritchie JL, Bateman TM, Bonow RO et al. Guidelines for clinical use of cardiac radionuclide imaging. A report of the American Heart Association/American College of Cardiology Task Force on assessment of diagnostic and therapeutic cardiovascular procedures, Committee on Radionuclide imaging, developed in collaboration with the American Society of Nuclear Cardiology. Circulation 1995; 91: 1278–1303.

    CAS  PubMed  Google Scholar 

  105. Wackers FJTh, Russo DJ, Russo D et al. Prognostic significance of normal quantitative planar thallium-201 stress scintigrafhy in patients wiht chest pain. J Am Coll Cardiol 1985; 6: 27–30.

    CAS  PubMed  Google Scholar 

  106. Santana-Boado C, Candell-Riera J, Castell-Conesa J et al. Lesión culpable y miocardio en riesgo. Correlación entre la coronariografia y la tomogammagrafia de perfusión con tecnecio-99m-MIBI. Rev Esp Cardiol 1995; 48: 89. (Abstr.).

    Google Scholar 

  107. Van Train KF, Berman DS, Garcia EV et al. Quantitative analysis of stress thallium-201 myocardial scintigrams: a multicenter trial. J Nucl Med 1986; 27:17–25.

    PubMed  Google Scholar 

  108. Pereztol O, Batista L, Senra L et al. Valor del análisis cuantitativo de la perfusión miocárdica empleando 201T1 SPECT en la enfermedad coronaria multivaso. Rev Esp Med Nucl 1995; 14: 18–22.

    Google Scholar 

  109. Garcia E, Maddahi J, Berman D et al. Space/time quantitation of thallium-201 myocardial scintigraphy. J Nucl Med 1981; 22: 309–317.

    CAS  PubMed  Google Scholar 

  110. Ceriani L, Vema E, Giovanella L et al. Assessment of myocardial area at risk by technetium-99 sestamibi during coronary artery occlusion: comparison between three tomographic methods of quantification. Eur J Nucl Med 1996; 23: 31–39.

    CAS  PubMed  Google Scholar 

  111. Verani MS, Jeoroundi MO, Mahamarian JJ et al. Quantification of myocardial infartion during coronary occlusion and myocardial salvage after reperfusion using cardiac imaging wiht technetium-99m hexaquis-2-methoxyisobutil isonitrile. J Am Coll Cardiol 1988; 12: 1573–1581.

    CAS  PubMed  Google Scholar 

  112. Tamaki S, Nakajima H, Murakami T et al. Estimation of infarct size by myocardial emission computed tomography with thallium 201 and its relation to creatine kinase-MB release after myocardial infarction in man. Circulation 1982; 66: 994–1001.

    CAS  PubMed  Google Scholar 

  113. O’Connor MK, Hammel T, Gibbsons RJ. In vitro validation of a simple tomographic technique for estimation of percentage myocardium at risk using methoxyisobutil isonitrile technetium 99m (sestamibi). Eur J Nucl Med 1990; 16: 69–76.

    Google Scholar 

  114. Beller GA (1995) Detection of coronary artery disease, in G.A. Beller (ed.), Clinical Nuclear Cardiology, W. B. Saunders Company, Philadelphia, pp. 82–136.

    Google Scholar 

  115. Herrington DM, Siebes M, Sokol DK et al. Variability in measures of coronary lumen dimensions using quantitative coronary angiography. J Am Coll Cardiol 1993; 22: 1068–1074.

    CAS  PubMed  Google Scholar 

  116. Haronian HL, Remetz MS, Sinusas AJ et al. Myocardial risk area defined by technetium-99m sestamibi imaging during percutaneous transluminal coronary angioplasty: comparison with coronary angiography. J Am Coll Cardiol 1993; 22: 1033–1043.

    CAS  PubMed  Google Scholar 

  117. Beller GA (1995) Radionuclide evaluation of coronary bypass surgery and percutaneous trasluminal coronary angioplasty, in Beller GA (ed.), Clinical Nuclear Cardiology, W. B. Saunders Company, pp. 337–372.

    Google Scholar 

  118. Candell-Riera J, de la Hera JM, Santana-Boado C et al. Eficacia diagnóstica de la tomogammagrafia miocárdica en la detección de reestenosis coronaria postangioplastia. Rev Esp Cardiol 1998; 51: 648–654.

    CAS  PubMed  Google Scholar 

  119. Carballo J, Candell-Riera J, Aguadé-Bruix S et al. Eficacia de la tomogammagrafia miocárdica en la valoración de la permeabilidad de los injertos aortocoronarios. Rev Esp Cardiol 2000; 53: 611–616.

    CAS  PubMed  Google Scholar 

  120. Little WC, Constantinescu M, Applegate RJ et al. Can coronary angiography predict the site of a subsequent myocardial infarction in patients with mild-to-moderate coronary artery disease? Circulation 1988; 78: 1157–1166.

    CAS  PubMed  Google Scholar 

  121. Ambrose JA, Tannenbaum MA, Alexopoulos D et al. Angiographic progression of coronary artery disease and the development of myocardial infarction. J Am Coll Cardiol 1988; 12: 56–62.

    CAS  PubMed  Google Scholar 

  122. Giroud D, Li JM, Urban P et al. Relation of the site of acute myocardial infarction to the most severe coronary arterial stenosis at prior angiography. Am J Cardiol 1992; 69: 729–732.

    CAS  PubMed  Google Scholar 

  123. Beller GA. Myocardial perfusion imaging with thallium-201. J Nucl Med 1994; 35: 674–680.

    CAS  PubMed  Google Scholar 

  124. Iskandrian AS, Johnson J, Le TT, Wasserleben V, Cave V, Heo J. Comparison of the treadmill exercise score and single-photon emission computed tomographic thallium imaging in risk assessment. J Nucl Cardiol 1994; 1: 144–149.

    CAS  PubMed  Google Scholar 

  125. Petretta M, Cuocolo A, Carpinelli A et al. Prognostic value of myocardial hypoperfusion indexes in patients with suspected or known coronary artery disease. J Nucl Cardiol 1994; 1: 325–337.

    CAS  PubMed  Google Scholar 

  126. Raiker K, Sinusas AJ, Wackers FJT, Zaret BL. One-year prognosis of patients with normal planar or single-photon emission computed tomographic technetium 99m-labeled sestamibi exercise imaging. J Nucl Cardiol 1994; 1: 449–456.

    CAS  PubMed  Google Scholar 

  127. Gibbons RJ. Role of nuclear cardiology for determining management of patients with stable coronary artery disease. J Nucl Cardiol 1994; 1: S118–130.

    CAS  PubMed  Google Scholar 

  128. Bateman TM, O’Keefe JH, Dong VM, Barnhart C, Ligon RW. Coronary angiographic rates after stress single-photon emission computed tomographic scintigraphy. J Nucl Cardiol 1995; 2: 217–223.

    CAS  PubMed  Google Scholar 

  129. Berman DS, Hachamovitch R, Kiat H et al. Incremental value of prognostic testing in patients with known or suspected ischemic heart disease: A basis for optimal utilization of exercise technetium-99m sestamibi myocardial perfusion single-photon emission computed tomography. J Am Coll Cardiol 1995; 26: 639–647.

    CAS  PubMed  Google Scholar 

  130. Marie PY, Danchin N, Durand JF et al. Long-term prediction of major ischemic events by exercise thallium-201 single photon emission computed tomography. Incremental prognostic value compared with clinical, exercise testing, catheterization and radionuclide angiographie data. J Am Coll Cardiol 1995; 26: 879–886.

    CAS  PubMed  Google Scholar 

  131. Stratmann HG, Younis LT, Wittry MD, Amato M, Miller DD. Exercise technetium-99m myocardial tomography for the risk stratification of men with medically treated unstable angina pectoris. Am J Cardiol 1995; 76: 236–240.Nallamothu N, Pancholy SB, Lee KR, Heo J, Iskandrian AS. Impact on exercise single-photon emission computed tomographie thallium imaging on patient management and outcome. J Nucl Cardiol 1995; 2: 334–338.

    Google Scholar 

  132. Blumenthal RS, Becker DM, Moy TF, Coresh J, Wilder LB, Becker LC. Exercise thallium tomography predicts future clinically manifest coronary heart disease in a high-risk assymptomatic population. Circulation 1996; 93: 915–923.

    CAS  PubMed  Google Scholar 

  133. Hachamovitch R, Berman DS, Kiat H et al. Exercise myocardial perfusion SPECT in patients without known coronary artery disease. Incremental prognostic value and use in risk stratification. Circulation 1996; 93: 905–914.

    CAS  PubMed  Google Scholar 

  134. Bateman TM, O’Keefe ill, Williams ME. Incremental value of myocardial perfusion scintigraphy in prognosis and outcomes of patients with coronary artery disease. Current Opinion in Cardiology 1996;11:613–620.

    CAS  PubMed  Google Scholar 

  135. Pavin D, Delonca J, Siegenthaler M, Doat M, Rutishauser W, Righetti A. Long-term (10 years) prognostic value of a normal thallium-201 myocardial exercise scintigraphy in patients with coronary artery disease documented by angiography. Eur Heart J 1997; 18: 69–77.

    CAS  PubMed  Google Scholar 

  136. Beller GA, Zaret BL. Contributions of nuclear cardiology to diagnosis and prognosis of patients with coronary artery disease. Circulation 2000; 101: 1465–1478.

    CAS  PubMed  Google Scholar 

  137. Boyne TS, Koplan BA, Parsons WJ, Smith WH, Watson DD, Beller GA. Predicting adverse outcome with exercise SPECT technetium-99m sestamibi imaging in patients with suspected or known coronary artery disease. Am J Cardiol 1997; 79: 270–274.

    CAS  PubMed  Google Scholar 

  138. Candell-Riera J, Permanyer-Miralda G, Castell J et al. Uncomplicated first myocardial infarction: Strategy for comprehensive prognostic studies. J Am Coll Cardiol 1991; 18: 1207–1219.

    CAS  PubMed  Google Scholar 

  139. Olona M, Candell-Riera J, Permanyer-Miralda G et al. Strategies for prognostic assessment of uncomplicated first myocardial infarction: A 5-years follow up study. J Am Coll Cardiol 1995; 25: 815–822.

    CAS  PubMed  Google Scholar 

  140. Gimple LW, Beller GA. Assessing prognosis after acute myocardial infarction in the thrombolytic era. J Nucl Cardiol 1994; 1: 198–209.

    CAS  PubMed  Google Scholar 

  141. Di Bello V, Gori E, Bellina CR et al. Incremental diagnostic value of dipyridamole echocardiography and exercise thallium 201 scintigraphy in the assessment of presence and extent of coronary artery disease. J Nucl Cardiol 1994; 1: 372–381.

    PubMed  Google Scholar 

  142. Kamal AM, Fattah AA, Pancholy S et al. Prognostic value of adenosine single-photon emission computed tomographic thallium imaging in medically treated patients with angiographie evidence of coronary artery disease. J Nucl Cardiol 1994; 1: 254–261.

    CAS  PubMed  Google Scholar 

  143. Geleijnse ML, Elhendy A, Van Domburg RT et al. Prognostic value of dobutamine-atropine stress technetium-99m sestamibi perfusion scintigraphy in patients with chest pain. J Am Coll Cardiol 1996; 28: 447–454.

    CAS  PubMed  Google Scholar 

  144. Di Bello V, Bellina CR, Gori E et al. Incremental diagnostic value of dobutamine stress echocardiography and dobutamine scintigraphy (technetium 99m-labeled sestamibi single-photon emission computed tomography) for assessment of presence and extent of coronary artery diasease. J Nucl Cardiol 1996; 3: 212–220.

    PubMed  Google Scholar 

  145. Senior R, Raval U, Lahiri A. Prognostic value of stress dobutamine technetium-99m sestamibi single-photon emission computed tomography (SPECT) in patients with suspected coronary artery disease. Am J Cardiol 1996; 78: 1092–1096.

    CAS  PubMed  Google Scholar 

  146. Machecourt J, Longère P, Fagret D et al. Prognostic value of thallium-201 single-photon emission computed tomographic myocardial perfusion imaging according to extent of myocardial defect. Study in 1,926 patients with a follow-up at 33 months. J Am Coll Cardiol 1994; 23: 1090–1106.

    Google Scholar 

  147. Iskandrian A, Chae S, Hea J, Stanberry C, Wasserleben V, Cave V. Independent and incremental prognostic value of exercise in single-photon emission computed tomography (SPECT) thallium imaging in coronary artery disease. J Am Coll Cardiol 1993; 22: 665–670.

    CAS  PubMed  Google Scholar 

  148. Stratmann HG, Williams GA, Wittry MD, Chaitman BR, Miller DD. Exercise technetium-99m sestamibi tomography for cardiac risk stratification of patients with stable chest pain. Circulation 1994; 89: 30: 441–449.

    Google Scholar 

  149. Candell-Riera J, Santana-Boado C, Bermejo B et al. Prognosis of clandestine myocardial ischemia, silent myocardial ischemia and angina pectoris in medically treated patients. Am J Cardiol 1998; 82: 1333–1338.

    CAS  PubMed  Google Scholar 

  150. Santana-Boado C, Figueras J, Candell-Riera J et al. Pronóstico de los pacientes con angina y con isquemia silente en la tomogammagrafia de esfuerzo con 99mTc-MIBI. Rev Esp Cardiol 1998; 51: 297–301.

    CAS  PubMed  Google Scholar 

  151. Kulick DL, Rahimtoola SH. Risk stratification in survivors of acute myocardial infarction: routine cardiac catheterization and angiography is a reasonable approach in most patients. Am Heart J 1991; 121: 641–656.

    CAS  PubMed  Google Scholar 

  152. Rouleau JL, Moyé LA, Pfeffer MA et al. for the SAVE investigators. A comparison of management patterns after acute myocardial infarction in Canada and the United States. N Engl J Med 1993; 328: 779–784.

    CAS  PubMed  Google Scholar 

  153. Every NR, Larson EB, Litwin PE et al. for the Myocardial Infarction Triage and Intervention Project Investigators. The association between on-site cardiac catheterization facilities and the use of coronary angiography after acute myocardial infarction. N Engl J Med 1993; 329: 546–551.

    CAS  PubMed  Google Scholar 

  154. Marrugat J, Sanz G, Masiá R et al. for the RESCATE investigators. Six-month outcome in patients with myocardial infarction initially admitted to tertiary and nontertiary hospitals. J Am Coll Cardiol 1997; 30: 1187–1192.

    CAS  PubMed  Google Scholar 

  155. Boden WE, O’Rourke RA, Crawford MH et al. for the Veterans Affairs Non-Q-Wave Infarction Strategies in Hospital (VANQWISH) Trial Investigators. Outcomes in patients with acute non-Qwave myocardial infarction randomly assigned to an invasive as compared with a conservative management strategy. N Engl J Med 1998; 338: 1785–1792.

    CAS  PubMed  Google Scholar 

  156. Candell-Riera J, Llevadot J, Santana C et al. Prognostic assessment of uncomplicated first myocardial infarction by exercise echocardiography and 99mTc-tetrofosmin gated SPECT. J Nucl Cardiol (in press).

    Google Scholar 

  157. Jaarsma W, Visser CA, Kupper AJF, Res JCJ, Van Eenige MJV, Roos JP. Usefulness of two-dimensional exercise echocardiography shortly after myocardial infarction. Am J Cardiol 1986; 57: 86–90.

    CAS  PubMed  Google Scholar 

  158. Applegate RJ, Dell’Italia LJ, Crawford MH. Usefulness of two-dimensional echocardiography during low-level exercise testing early after uncomplicated acute myocardial infarction. Am J Cardiol 1987; 60: 10–14.

    CAS  PubMed  Google Scholar 

  159. Quintana M, Lindvall K, Ryden L, Brolund F. Prognostic value of predischarge exercise stress echocardiography after acute myocardial infarction. Am J Cardiol 1995; 76: 1115–1121.

    CAS  PubMed  Google Scholar 

  160. González-Alujas T, Armada E, Alijarde M et al. Valor pronóstico de la ecocardiografia de esfuerzo postinfarto agudo de miocardio antes del alta hospitalaria. Rev Esp Cardiol 1998; 51: 21–26.

    PubMed  Google Scholar 

  161. Brown KA. Do stress echocardiography and myocardial perfusion imaging have the same ability to identify the low-risk patient with known or suspected coronary artery disease? Am J Cardiol 1998; 81:1050–1053.

    CAS  PubMed  Google Scholar 

  162. Poldermans D, Fioretti PM, Boersma E et al.. Dobutamine-atropine stress echocardiography and clinical data for predicting late cardiac events with suspected coronary artery disease. Am J Med 1994; 97: 119–125.

    CAS  PubMed  Google Scholar 

  163. Sicari R, Picano E, Landi P et al. Prognostic value of dobutamine-atropine stress echocardiography early after acute myocardial infarction. J Am Coll Cardiol 1997; 29: 254–260.

    CAS  PubMed  Google Scholar 

  164. Khattar RS, Basu SK, Raval U, Senior R, Lahiri A. Prognostic value of predischarge exercise testing, ejection fraction, and ventricular ectopic activity in acute myocardial infarction treated with streptokinase. Am J Cardiol 1996; 78: 136–141.

    CAS  PubMed  Google Scholar 

  165. Pozzoli MMA, Fioretti PM, Salustri A, Reijs AEM; Roelandt JRTC. Exercise echocardiography and technetium-99m MIBI single-photon emission computed tomography in the detection of coronary artery disease. Am J Cardiol 1991; 67: 350–355.

    CAS  PubMed  Google Scholar 

  166. O’Keefe JH, Barnhart CS, Bateman TM. Comparison of stress echocardiography and stress myocardial perfusion scintigraphy for diagnosing coronary artery disease and assessing its severity. Am J Cardiol 1995;75:25D–34D.

    PubMed  Google Scholar 

  167. Zanco P, Zampiero A, Favero A et al. Prognostic evaluation of patients after myocardial infarction: Incremental value of sestamibi single-photon emission computed tomography and echocardiography. J Nucl Cardiol 1997; 4: 117–124.

    CAS  PubMed  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Candell-Riera, J., Santana-Boado, C. (2001). Myocardium in Jeopardy. In: Candell-Riera, J., Castell-Conesa, J., Aguadé-Bruix, S. (eds) Myocardium at Risk and Viable Myocardium. Developments in Cardiovascular Medicine, vol 234. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0906-5_6

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-0906-5_6

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-3806-5

  • Online ISBN: 978-94-010-0906-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics