Skip to main content

From Artificialization to the Ecologization of Cropping Systems

  • Chapter
  • First Online:
Cultivating Biodiversity to Transform Agriculture

Abstract

In 2050, agriculture will have to feed 9 billion people on Earth, 2 billion more than it does now. It is clear that actual agricultural practices have negative impacts on the environment and the natural resource base. The sustainability of agriculture needs to increase, and new approaches will be required, based on understanding and mobilization of agro-ecological processes, and specifically cultivating biodiversity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    However in recent years, the curve is inflecting and the trend of higher yields is stalling (Brisson et al. 2010).

  2. 2.

    The first agricultural revolution of modern times should not overshadow the intermediate events. These included the introduction of animal traction in its various forms and mastery over water supply, which led to leaps in productivity and simultaneous social reorganizations in some areas.

  3. 3.

    French General Association of Maize Producers (Association générale des producteurs de maïs).

  4. 4.

    http://www.fao.org/geonetwork/ (retrieved: 12 December 2012).

  5. 5.

    We do not cover here research initiatives currently underway that are working on stimulating mineral weathering of the bedrock. They contemplate using biological methods in order to introduce massive amounts of elements into the biogeochemical cycles to counteract the phenomena described.

  6. 6.

    However, some experts wonder whether cultivating acidity-tolerant varieties will not lead to further acidification of soils.

  7. 7.

    Recent studies have shown that, in the Brazilian Amazon, mercury pollution due to gold mining activities and deforestation in the last 30 years has contributed less than 3 % of cumulative mercury concentrations in surface soils (Roulet et al. 1999).

  8. 8.

    We talk about resistance to a product when we find that it is unable to fight pest infestation when used in recommended quantities.

  9. 9.

    Nevertheless, it is worth noting that in tropical Africa, where the mineral balance (external inputs of fertilizers minus exports by the crop production) is negative, the marginal efficiency of fertilization is direct and indisputable (Abuja Declaration, IFDC 2006, http://www.ifdc.org/About/Alliances/Abuja_Declaration). This reality places Africa in variance with respect to global calls for reduced input use. National and international public policies towards Africa often—and rightly so—encourage or subsidize the use of chemical fertilizers.

  10. 10.

    Characteristic cropping system of the humid tropics based on the planting of crops after slashing and burning a forest, most often secondary. The complete rotation period, including the cultivation period followed by the restoration of forest fallow, varies from 10 to 50 years.

  11. 11.

    Crop-livestock systems will be discussed in Chap. 5.

  12. 12.

    The plot is our main scope of study. However, the organization of cropping systems in space and their interactions remains a subject for further study in the future.

References

  • Affholder, F., Jourdain, D., Quang, D. D., Tuong, T. P., Morize, M., & Ricome, A. (2010). Constraints to farmers’ adoption of direct-seeding mulch-based cropping systems: a farm scale modeling approach applied to the mountainous slopes of Vietnam. Agricultural Systems, 103, 51–62.

    Google Scholar 

  • Albrecht, A., & Kandji, S. T. (2003). Carbon sequestration in tropical agroforestry systems. Agriculture, Ecosystems & Environment, 99, 15–27.

    CAS  Google Scholar 

  • Altieri, M. A. (1999). The ecological role of biodiversity in agroecosystems. Agriculture, Ecosystems & Environment, 74, 19–31.

    Google Scholar 

  • Altieri, M. A. (2002). Agroecology: the science of natural resource management for poor farmers in marginal environments. Agriculture, Ecosystems & Environment, 93, 1–24.

    Google Scholar 

  • Altieri, M. A. (2004). Linking ecologists and traditional farmers in the search for sustainable agriculture. Frontiers in Ecology and the Environment, 2(1), 35–42. doi:10.1890/1540-9295(2004)002, [0035:LEATFI] 2.0.CO;2.

  • Altieri, M. A., & Nicholls, C. I. (1999). Biodiversity, ecosystem function and insect pest management in agricultural systems. In W. W. Collins & C. O. Qualset (Eds.), Biodiversity in Agroecosystems. Boca Raton: CRC Press.

    Google Scholar 

  • Atiama-Nurbel, T., Deguine, J.-P., & Quilici, S. (2012). Maize more attractive than Napier grass as non-host plants for Bactrocera cucurbitae and Dacus demmerezi. Arthropod-Plant Interaction,. doi:10.1007/s11829-012-9185-4.

    Google Scholar 

  • Avelino, J., ten Hoopen, G. M., & DeClerck, F. (2011). Ecological mechanisms for pest and disease control in coffee and cacao agroecosystems of the neotropics. In B. Rapidel, F. DeClerck, J. F. Le Coq, & J. Beer (Eds.), Ecosystem Services from Agriculture and Agroforestry (pp. 91–118). London: Earthcan.

    Google Scholar 

  • Batáry, P., Báldi, A., Sárospataki, M., Kohler, F., Verhulst, J., Knop, E., et al. (2010). Effect of conservation management on bees and insect-pollinated grassland plant communities in three European countries. Agriculture, Ecosystems & Environment, 136, 35–39.

    Google Scholar 

  • Benbrook, C. M. (2012). Impacts of genetically engineered crops on pesticide use in the US: The first sixteen years. Environmental Sciences Europe, 24, 24.

    Google Scholar 

  • Bengtsson, J., Ahnström, J., & Weibull, A. C. (2005). The effects of organic agriculture on biodiversity and abundance: a meta-analysis. Journal of Applied Ecology, 42, 261–269.

    Google Scholar 

  • Bergez, J.-E., Colbach, N., Crespo, O., Garcia, F., Jeuffroy, M.-H., Justes, E., et al. (2010). Designing crop management systems by simulation. European Journal of Agronomy, 32, 3–9.

    Google Scholar 

  • Blanchart, E., Bernoux, M., Sarda, X., Siqueira, Neto M., Cerri, C. C., Piccolo, M., et al. (2007). Effect of direct seeding mulch-based systems on soil carbon storage and macrofauna in central Brazil. Agriculturae Conspectus Scientificus, 72, 81–87.

    Google Scholar 

  • Bloch, M. (1976). Les caractères originaux de l’histoire rurale française, coll. Économies-Sociétés-Civilisations, Paris: Armand Colin.

    Google Scholar 

  • Bonnal, P., Bonin, M., & Aznar, O. (2012). Les évolutions inversées de la multifonctionnalité de l’agriculture et des services environnementaux. Vertigo, 12(3).

    Google Scholar 

  • Boyce, J. K. (2004). A future for small farms? Biodiversity and sustainable agriculture. In J. K. Boyce, S. Cullenberg, P. K. Pattanaik, & R. Pollin (Eds.), Human development in the era of globalization: essays in honor of Keith B. Griffin (pp. 83–104). Northampton: Edward Elgar.

    Google Scholar 

  • Brisson, N., Gate, P., Gouache, D., Charmet, D., Oury, F. X., & Huard, F. (2010). Why are wheat yields stagnating in Europe? A comprehensive data analysis for France. Field Crops Research, 119(1), 201–212.

    Google Scholar 

  • Brussaard, L., Caron, P., Campbell, B., Lipper, L., Mainka, S., Rabbinge, R., et al. (2010). Reconciling biodiversity conservation and food security: scientific challenges for a new agriculture. Current Opinion in Environmental Sustainability, 2, 34–42.

    Google Scholar 

  • Calba, H., Cazevieille, P., & Jaillard, B. (1999). Modelling of the dynamics of Al and protons in the rhizosphere of maize cultivated in acid substrate. Plant and Soil, 209, 57–69.

    CAS  Google Scholar 

  • Cauderon, A. (1981). Sur les approches écologiques de l’agriculture. Agronomie, 1(8), 611–616.

    Google Scholar 

  • Celette, F., Gaudin, R., & Gary, C. (2008). Spatial and temporal changes to the water regime of a Mediterranean vineyard due to the adoption of cover cropping. European Journal of Agronomy, 29, 153–162.

    Google Scholar 

  • Cerdán, C. R., Rebolledo, M. C., Soto, G., Rapidel, B., & Sinclair, F. L. (2012). Local knowledge of impacts of tree cover on ecosystem services in smallholder coffee production systems. Agricultural Systems, 110, 119–130.

    Google Scholar 

  • Chaumet, J. M., Delpeuch F., Dorin, B., Ghersi, G., Hubert B., & Le Cotty,T., et al. (2009). Agrimonde. Agriculture et alimentations du monde en 2050: scénarios et défis pour un développement durable. Note de synthèse, Inra-Cirad: Paris. Retrieved April 21, 2013, from http://www.paris.inra.fr/prospective/projets/agrimonde

  • Cheverry, C. (2010). Dégradation des terres, comment l’évaluer. In: Les mots de l’agronomie, Inra Editions: Paris. Retrieved April 21, 2013, from http://mots-agronomie.inra.fr

  • Connor, D. J. (2001). Optimizing crop diversification. In J Nosberger, H. H. Geiger, & P. C. Struik (Eds.), Crop science: Progress and prospects, (pp. 191–211). Wallingford: CAB International.

    Google Scholar 

  • Conway G. (1997). The doubly Green Revolution: Food for all in the 21st Century. London: Penguin Books.

    Google Scholar 

  • Conway, G., Carsalade, H., & Griffon, M. (1994). Une agriculture durable pour la sécurité alimentaire mondiale. Paris: Cirad-Urpa/Ecopol.

    Google Scholar 

  • Cornelissen, J. H. C., Lavorel, J. S., Garnier, E., Díaz, S., Buchmann, N., Gurvich, D. E., et al. (2003). A handbook of protocols for standardised and easy measurement of plant functional traits worldwide. Australian Journal of Botany, 51, 335–380.

    Google Scholar 

  • Crétenet, M., & Titonell, P. (2010). Discontinuous fertiliser use affects soil responsiveness and widens yield gaps in cotton-based cropping systems of North Cameroon. In: Proceedings of Agro 2010: The XIth ESA Congress, August 29–September 3, 2010 (pp. 347–348). Montpellier: Agropolis International.

    Google Scholar 

  • Crovetto Lamarc, C. (2007–2008). Les fondements d’une agriculture durable. 1 et 2, Panam France, Villemur-sur-Tarn.

    Google Scholar 

  • Deberdt, P., Perrin, B., Coranson-Beaudu, R., Duyck, P. F., & Wicker, E. (2012). Effect of Allium fistulusum extract on Ralstonia solanacearum populations and tomato bacterial wilt. Plant Disease, 96(5), 687–692.

    Google Scholar 

  • Deguine, J.-P., Rousse, P., & Atiama-Nurbel, T. (2012a). Agroecological crop protection: concepts and a case study from Reunion. In L. Larramendy & S. Soloneski (Eds.), Integrated Pest Management and Pest Control: Current and Future Tactics (pp. 63–76). San Antonio: Intech Publisher.

    Google Scholar 

  • Deguine, J.-P., Atiama-Nurbel, T., Douraguia, E., Chiroleu, F., & Quilici, S. (2012b). Species diversity within a community of the Cucurbit fruit flies Bactrocera cucurbitae, Dacus ciliatus and Dacus demmerezi roosting in corn borders near cucurbit production areas of Reunion Island. Journal of Insect Science, 12, 1–15.

    Google Scholar 

  • Deguine, J.-P., Douraguia, E., Atiama-Nurbel, T., Chiroleu, F., & Quilici, S. (2012c). Cage study of Spinosad-based bait efficacy on Bactrocera cucurbitae, Dacus ciliatus and Dacus demmerezi (Diptera: Tephritidae) in Reunion Island. Journal of Economic Entomology, 105, 1358–1365.

    PubMed  CAS  Google Scholar 

  • Deheuvels, O., Avelino, J., Somarriba, E., & Malézieux, E. (2012). Vegetation structure and productivity in cocoa-based agroforestry systems in Talamanca, Costa Rica. Agriculture, Ecosystems & Environment, 149, 181–188.

    Google Scholar 

  • Devendra, C., & Thomas, D. (2002). Smallholder farming systems in Asia. Agricultural Systems, 71, 17–25.

    Google Scholar 

  • Djigal, D., Chabrier, C., Duyck, P. F., Achard, R., Quénéhervé, P., & Tixier, P. (2012). Cover crops alter the soil nematode food web in banana agroecosystems. Soil Biology & Biochemistry, 48, 142–150.

    CAS  Google Scholar 

  • Doré, T., & Maraux, F. (2010). Les manières de produire en agriculture, état des lieux et controverses. In T. Doré & O. Réchauchère (Eds.), La question agricole mondiale: enjeux économiques, sociaux et environnementaux (pp. 115–134). Paris: Les études de La Documentation française.

    Google Scholar 

  • Doré, T., Makowski, D., Malézieux, E., Munier-Jolain, N., Tchamitchian, M., & Tittonell, P. (2011). Facing up to the paradigm of ecological intensification in agronomy: Revisiting methods, concepts and knowledge. European Journal of Agronomy, 34(4), 197–210.

    Google Scholar 

  • Dufumier, M. (2004). Agricultures et paysanneries des tiers-mondes, coll. Karthala éditions: Hommes et sociétés. 600 p.

    Google Scholar 

  • Duhautois, S. (2010). Structuration des communautés de Diptères sur le maïs, Zea mays, utilisés comme plante piège à la Réunion. Master 2 en Biologie de l’évolution et écologie (BEE), University of Montpellier 2, 37 p.

    Google Scholar 

  • Dupraz, C., & Liagre, F. (2008). Agroforesterie, des arbres et des cultures, éditions (p. 416). Paris: France Agricole.

    Google Scholar 

  • Duyck, P. F., Lavigne, A., Vinatier, F., Achard, R., Okolle, J. N., & Tixier, P. (2011). Addition of a new resource in agroecosystems: do cover crops alter the trophic positions of generalist predators? Basic and Applied Ecology, 12, 47–55.

    Google Scholar 

  • Ekström, G., & Ekbom, B. (2011). Pest control in agroecosystems: An ecological approach. Critical Reviews in Plan Sciences, 30, 74–94.

    Google Scholar 

  • Ellis, F. (2000). The determinants of rural livelihood diversification in developing countries. Journal of Agricultural Economics, 51, 289–302.

    Google Scholar 

  • Ewel, J. J. (1999). Natural systems as models for the design of sustainable systems of land use. Agroforestry Systems, 45, 1–21.

    Google Scholar 

  • FAO. (2009). Increasing Crop Production Sustainability: The Perspective of Biological Processes (p. 36). Rom: FAO.

    Google Scholar 

  • Feintrenie, L., Kian, Chong W., & Levang, P. (2010). Why do farmers prefer oil palm? Lessons learnt from Bungo District, Indonesia. Small-Scale Forestry, 9, 379–396.

    Google Scholar 

  • Feyt, H. (2007). Évolutions et ruptures en amélioration des plantes. In P. Robin, J. -P. Aeschlimann & C. Feller (Eds.), Histoire et agronomie. Entre ruptures et durée, coll. Colloques et Séminaires. Paris: IRD Éditions.

    Google Scholar 

  • Floret, C., & Pontanier, R. (2000). La jachère en Afrique tropicale : de la jachère naturelle à la jachère améliorée. 2. Le point des connaissances (p. 339). Montrouge: John Libbey Eurotext.

    Google Scholar 

  • Fok, M. (2011). Gone with transgenic cotton cropping in the USA: A perception of the presentations and interactions at the Beltwide Cotton Conferences, New Orleans (Louisiana, USA), January 4–7, 2010. Biotechnologie, agronomie, société et environnement, 15(4), 545–552.

    Google Scholar 

  • Freschet, G., Masse, D., Hien, E., Sall, S., & Chotte, J.-L. (2008). Long-term changes in organic matter and microbial properties resulting from manuring practices in an arid cultivated soil in Burkina Faso. Agriculture, Ecosystems & Environment, 123, 175–184.

    Google Scholar 

  • Friedrich T., Kienzle J., & kassam A. H. (2009). Conservation agriculture in developing countries: the role of mechanization. Paper Presented at the Club of Bologna Meeting on Innovation for Sustainable Mechanisation, Hannover, Germany, November 2, 2009. Retrieved April 21, 2013, from http://www.clubofbologna.org/ew/documents/Friedrich_MF.pdf

  • Ganry, F., & Gueye, F. (1992). La mise en valeur des bas-fonds de la zone soudano-sahélienne par Sesbania rostrata est-elle possible ? L’Agron Trop, 46(2), 155–159.

    Google Scholar 

  • Ganry, F., Barthès, B., & Gigou, J. (2011). Les défis du maintien de la fertilité des sols tropicaux: cas de l’Afrique de l’Ouest. In M. C. Girard (Ed.), Environnement et sols. Paris: Dunod.

    Google Scholar 

  • Gastal, F., & Lemaire, G. (2002). N uptake and distribution in crops: an agronomical and ecophysiological perspective. Journal of Experimental Botany, 53(370), 789–799.

    PubMed  CAS  Google Scholar 

  • Gaudin, R., Celette, F., & Gary, C. (2010). Contribution of run-off to incomplete off season soil water refilling in a Mediterranean vineyard. Agricultural Water Management, 97, 1534–1540.

    Google Scholar 

  • Gay, J. P. (1984). Fabuleux maïs : histoire et avenir d’une plante, Éditions. Pau: AGPM, Association générale des producteurs de maïs.

    Google Scholar 

  • Giller, K. E., Witter, E., Corbeels, M., & Tittonell, P. (2009). Conservation agriculture and smallholder farming in Africa: The heretics’ view. Field Crops Research, 114, 23–34.

    Google Scholar 

  • Giller, K. E., Corbeels, M., Nyamangara, J., Triomphe, B., Affholder, F., Scopel, E., et al. (2011). A research agenda to explore the role of conservation agriculture in African smallholder farming systems. Field Crops Research, 124, 468–472.

    Google Scholar 

  • Gitay, H., & Noble, I.R. (1997). What are functional types and how should we seek them? In T. M. Smith, H. H. Shugart, & F. I. Woodward (Eds.), Plant functional types: Their relevance to ecosystem properties and global change (pp. 3–19). Cambridge: Cambridge University Press.

    Google Scholar 

  • Godfray, H. C. J., Beddington, J. R., Crute, R. I., Haddad, L., Lawrence, H., Lawrence, D., et al. (2010). Food security: The challenge of feeding 9 billion people. Science, 327(5967), 812–818. doi:10.1126/science.1185383.

    PubMed  CAS  Google Scholar 

  • Gomiero, T., Pimentel, D., & Paoletti, M. G. (2011a). Environmental impact of different agricultural management practices: Conventional vs organic agriculture. Critical Reviews in Plant Science, 30(1), 95–124.

    Google Scholar 

  • Gomiero, T., Pimentel, D., & Paoletti, M. G. (2011b). Is there a need for a more sustainable agriculture? Critical Reviews in Plant Science, 30, 6–23.

    Google Scholar 

  • Gourlet-Fleury, S., Blanc, L., Picard, D., Sist, P., Dick, J., Nasi, R., et al. (2005). Grouping species for predicting mixed tropical forest dynamics: Looking for a strategy. Annals of Forest Science, 62, 785–796.

    Google Scholar 

  • Griffon, M. (1995). Towards a doubly green revolution. In: Proceedings of a seminar, Poitiers, Futuroscope. Paris: Cirad-FPI.

    Google Scholar 

  • Griffon, M. (2002). Révolution verte, révolution doublement verte: quelles technologies, quelles institutions et quelle recherche pour les agricultures de l’avenir ? Colloque Nature, sociétés et développement durable, August 29, 2002. Montpellier.

    Google Scholar 

  • Griffon, M. (2006). Nourrir la planète (p. 456). New York: Odile Jacob.

    Google Scholar 

  • Grivetti, L. E., & Ogle, B. M. (2000). Value of traditional foods in meeting macro and micronutrient needs: The wild plant connection. Nutrition Research Reviews, 13(1), 31–46.

    PubMed  CAS  Google Scholar 

  • Hector, A., Schmid, B., Beierkuhnlein, C., Caldeira, M. C., Diemer, M., Dimitrakopoulos, P. G. et al. (1999). Plant diversity and productivity experiments in European grasslands. Science, 286, 1123–1127.

    Google Scholar 

  • Hien, E., Ganry, F., & Oliver, R. (2006). Carbon sequestration in a savannah soil in Southwestern Burkina as affected by cropping and cultural practices. Arid Land Research and Management, 20(2), 133–146.

    Google Scholar 

  • Hooper, D. U., Bignell, D. E., Brown, V. K., Brussard, L., Dangerfield, J. M., Wall, D. H., et al. (2000). Interaction between aboveground and belowground biodiversity in terrestrial ecosystems: Patterns, mechanisms, and feedbacks. BioScience, 50, 1049–1061.

    Google Scholar 

  • Hubert, B., & Caron, P. (2009). Imaginer l’avenir pour agir aujourd’hui, en alliant prospective et recherche : l’exemple de la prospective Agrimonde. Natures Sciences Sociétés, 17, 417–423.

    Google Scholar 

  • IAASTD. (2008). International assessment of agricultural knowledge, science and technology for development Global report. Retrieved April 21, 2013, from http://www.agassessment.org

  • Jackson, W. (2002). Natural systems agriculture: A truly radical alternative. Agriculture, Ecosystems & Environment, 88, 111–117.

    Google Scholar 

  • Jackson, L. E., Pascual, U., & Hodgkin, T. (2007). Utilizing and conserving agrobiodiversity in agricultural landscapes. Agriculture, Ecosystems & Environment, 121(3), 196–210.

    Google Scholar 

  • Jackson, L., Bawa, K., Pascual, U., & Perrings, C. (2005). Agrobiodiversity: A new science agenda for biodiversity in support of sustainable agroecosystems. Diversitas.

    Google Scholar 

  • Jackson, L., van Noordwijk, M., Bengtsson, J., Foster, W., Lipper, L., Pulleman, M., et al. (2010). Biodiversity and agricultural sustainagility: From assessment to adaptive management. Current Opinion in Environmental Sustainability, 2, 80–87.

    Google Scholar 

  • Jagoret, P., Michel-Dounias, I., & Malézieux, E. (2011). Long-term dynamics of cocoa agroforests: A case study in central Cameroon. Agroforestry Systems, 81, 267–278.

    Google Scholar 

  • Jagoret, P., Michel-Dounias, I., Snoeck, D., Todem, Ngnogue H., & Malézieux, E. (2012). Afforestation of savannah with cocoa agroforestry systems: A small-farmer innovation in central Cameroon. Agroforestry Systems, 86(3), 493–504. doi:10.1007/s10457-012-9513-9.

    Google Scholar 

  • Jagoret, P., Ngogue, H. T., Bouambi, E., Battini, J. L., & Nyasse, S. (2009). Diversification des exploitations agricoles à base de cacaoyer au centre Cameroun: mythe ou réalité ? Biotechnologie, Agronomie, Societe et Environnement, 13, 271–280.

    Google Scholar 

  • Jannoyer-Lesueur, M., Le Bellec, F., Lavigne, C., Achard, R., & Malézieux, E. (2011). Choosing cover crops to enhance ecological services in orchards: A multiple criteria and systemic approach applied to tropical areas. Procedia Environmental Sciences, 9, 104–112.

    Google Scholar 

  • Jarvis, D. I., Hodgkin, T., Sthapit, B. R., Fadda, C., & Lopez-Noriega, I. (2011). An heuristic framework for identifying multiple ways of supporting the conservation and use of traditional crop varieties within the agricultural production system. Critical Reviews in Plant Sciences, 30(1–2), 125–176.

    Google Scholar 

  • Johns, T., & Eyzaguirre, P. B. (2006). Linking biodiversity, diet and health in policy and practice. In: Proceedings of the Nutrition Society (Vol. 65, pp. 182–189). DOI: 10.1079/PNS2006494.

  • Jose, S. (2009). Agroforestry for ecosystem services and environmental benefits: an overview. Agroforest Systems, 76, 1–10.

    Google Scholar 

  • Kintche, K. (2011). Analyse et modélisation de l’évolution des indicateurs de la fertilité des sols cultivés en zone cotonnière du Togo. Thèse en Sciences de la Terre et de l’Environnement, University of Bourgogne, 192 p.

    Google Scholar 

  • Kristjanson, P., Reid, R. S., Dickson, N., Clark, W. C., Romney, D., & Puskur, R. et al. (2009). Linking international agricultural research knowledge with action for sustainable development. In: Proceedings of the National Academy of Sciences of the USA (Vol. 106 (13), pp. 5047–5052).

    Google Scholar 

  • Kumar, B. M., & Nair, P. K. R. (2004). The enigma of tropical homegardens. Agroforestry Systems, 61–62, 135–152.

    Google Scholar 

  • Laboucheix, J. (1987). Évaluation de l’efficacité du méthyl parathion vis-à-vis d’Anthonomus grandis Boheman en culture cotonnière au Nicaragua. Coton et fibres tropicales, 42(1), 41–53.

    CAS  Google Scholar 

  • Lavigne Delville, P., Broutin, C., & Castellanet, C. (2004). Jachères, fertilité, dynamiques agraires, innovations paysannes et collaborations chercheurs/paysans. Coopérer aujourd’hui, 36, GRET.

    Google Scholar 

  • Lavorel, S., & Garnier, E. (2002). Predicting changes in community composition and ecosystem functioning from plant traits: Revisiting the Holy Grail. Functional Ecology, 16, 545–556.

    Google Scholar 

  • Le Bellec, F., Dubois, P., Sarthou, J.P., Malézieux, E. (2011). Predicting the nectar provisioning capacity of weeds to beneficial arthropods using an integrative indicator: an application to tropical orchards. In: Reconception et évaluation des systèmes de culture: le cas de la gestion de l’enherbement en vergers d’agrumes en Guadeloupe (F. Le Bellec). Thèse, université des Antilles-Guyane, 125–145.

    Google Scholar 

  • Lenné, J. M., & Wood, D. (2011). Agricultural revolutions and their enemies: lessons for policy makers. In J. M. Lenné & D. Wood (Eds.), Agrobiodiversity Management for Food Security: A critical review (pp. 212–227). Wallingford: CABI.

    Google Scholar 

  • Liebman, M., & Dyck, E. (1993). Crop rotation and intercropping strategies for weed management. Ecological Applications, 3, 92–122.

    Google Scholar 

  • Lienhard, P., Tivet, F., Chabanne, A., Dequiedt, S., Lelièvre, M., Sayphoummie, S., et al. (2012). No-till and cover crops shift soil microbial abundance and diversity in Laos tropical grasslands. Agronomy for Sustainable Development,. doi:10.1007/s13593-012-0099-4.

    Google Scholar 

  • Lin, B. B. (2011). Resilience in agriculture through crop diversification: Adaptive management for environmental change. BioScience, 61, 183–193.

    Google Scholar 

  • Loreau, M., Naeem, S., Inchausti, P., Bengtsson, J., Grime, J.-P., Hector, A., et al. (2001). Biodiversity and ecosystem functioning: Current knowledge and future challenges. Science, 294, 804–808.

    PubMed  CAS  Google Scholar 

  • Mailloux, J., Le Bellec, F., Kreiter, S., Tixier, M. S., & Dubois, P. (2010). Influence of ground cover management on diversity and density of phytoseiid mites (Acari: Phytoseiidae) in Guadeloupean citrus orchards. Experimental and Applied Acarology, 52(3), 275–290. Retrieved April 21, 2013, from http://dx.doi.org/10.1007/s10493-010-9367-7

  • Malézieux, E. (2012). Designing croping systems from nature. Agronomy for Sustainable Development, 32(1), 15–29. doi:10.1007/s13593-011-0027-z.

    Google Scholar 

  • Malézieux, E., Crozat, Y., Dupraz, C., Laurans, M., Makowski, D., Ozier-Lafontaine, H., et al. (2009). Mixing plant species in cropping systems: concepts, tools and models: A review. Agronomy for Sustainable Development, 29, 43–62.

    Google Scholar 

  • Maltas, A., Corbeels, M., Scopel, E., Macena Da Silva, F.-A., & Wery, J. (2009). Cover crop effects on nitrogen supply and maize productivity in no-tillage systems of the Brazilian Cerrados. Agronomy Journal, 101, 1036–1046.

    CAS  Google Scholar 

  • Maraux, F. (1994). Modélisation mécaniste et fonctionnelle du bilan hydrique des cultures : le cas des sols volcaniques du Nicaragua. Thèse de doctorat en Agronomie, Montpellier, Cirad, Paris, INAPG, 285 p.

    Google Scholar 

  • Marlet, S., Barbiero, L., & Valles, V. (1998). Soil alkalinization and irrigation in the sahelian zone of Niger. 2: Agronomic consequences of alkalinity and sodicity. Arid Soil Research and Rehabilitation (now Arid Land Research and Management), 12(2), 139–152.

    Google Scholar 

  • Mazoyer, M., & Roudart, L. (1997). Histoire des agricultures du monde. Du Néolithique à la crise contemporaine, Paris, coll. Points Histoire, Éditions du Seuil, 705 p.

    Google Scholar 

  • McNeely, J. A., & Scherr, S. J. (2003). Ecoagriculture: Strategies to Feed the World and Save Wild Biodiversity (p. 323). London: Island Press.

    Google Scholar 

  • MEA (Millenium Ecosystems Assessment). (2005). Ecosystems and Human Well-Being: Biodiversity Synthesis. MA. Retrieved April 21, 2013 from http://www.unep.org/maweb/documents/document.356.aspx.pdf.

  • Metay, A., Alves Moreira, J. A., Bernoux, M., Boyer, T., Douzet, J.-M., Feigl, B., et al. (2007). Storage and forms of organic carbon in a no-tillage under cover crops system on clayey Oxisol in dryland rice production (Cerrados, Brazil). Soil and Tillage Research, 94(1), 122–132.

    Google Scholar 

  • Meylan, L. (2012). Design of cropping systems combining production and ecosystem services: developing a methodology combining numerical modeling and participation of farmers. Application to coffee-based agroforestry in Costa Rica (p.122). Ph.D. thesis, Montpellier SupAgro, Montpellier.

    Google Scholar 

  • Meylan, L., Mérot, A., Gary, C., & Rapidel, B. (2013). Combining a typology and a conceptual model of cropping system to explore the diversity of relationships between ecosystem services: The case of erosion control in coffee-based agroforestry systems in Costa Rica. Agricultural Systems, 118, 52–64.

    Google Scholar 

  • Molle, F., & Maraux, F. (2008). A-t-on assez d’eau pour nourrir le planète ? Pour la Science, dossier, 58, 98–102.

    Google Scholar 

  • Morton, J. F. (2007). The impact of climate change on smallholder and subsistence agriculture: Proceedings of the National Academy of Sciences of the United States of America (Vol. 104, pp. 19680–19685).

    Google Scholar 

  • Paillard, S., Treyer, S., & Dorin, B. (coord.) (2010). Agrimonde. Scénarios et défis pour nourrir le monde en 2050, Éditions Quae, 288 p.

    Google Scholar 

  • Passioura, J. B. (1999). Can we bring a perennially peopled and productive countryside? Agroforestry Systems, 45, 411–421.

    Google Scholar 

  • Peltier, R. (Éd.). (1996). Les parcs à Faidherbia albida. Cahiers scientifiques, 12, Montpellier: Cirad-Forêt, Centre international de Baillarguet.

    Google Scholar 

  • Perfecto, I., Rice, R. A., Greenberg, R., & van der Voort, M. E. (1996). Shade coffee: A disappearing refuge for biodiversity. BioScience, 46(8), 598–608.

    Google Scholar 

  • Piper, J. K. (1999). Natural systems agriculture. In W. W. Collins & C. O. Qualset (Eds.), Biodiversity in Agroecosystems (pp. 167–189). Boca Raton: CRC Press.

    Google Scholar 

  • Rapidel, B., Traoré, B. S., Sissoko, F., Lançon, J., & Wery, J. (2009). Experiment based prototyping to design and assess cotton management systems in West Africa. Agronomy for Sustainable Development, 29(4), 545–546.

    Google Scholar 

  • Ratnadass, A., Fernandes, P., Avelino, J., & Habib, R. (2012). Plant species diversity for sustainable management of crop pests and diseases in agroecosystems: A review. Agronomy for Sustainable Development, 32, 273–303.

    Google Scholar 

  • Ratnadass, A., Ryckewaert, P., Claude, Z., Nikiema, A., Pasternak, D., Woltering, L., et al. (2011). New ecological options for the management of horticultural crop pests in sudano-sahelian agrosystems of West Africa. Acta Horticulturae, 917, 85–91.

    Google Scholar 

  • Rice, R. A., & Greenberg, R. (2000). Cacao cultivation and the conservation of biological diversity. Ambio, 29, 167–173.

    Google Scholar 

  • Ricketts, T. H. (2004). Tropical forest fragments enhance pollinator activity in nearby coffee crops. Conservation Biology, 18, 1262–1271.

    Google Scholar 

  • Rivest, D., Cogliastro, A., Bradley, R. L., & Olivier, A. (2010). Intercropping hybrid poplar with soybean increases soil microbial biomass, mineral N supply and tree growth. Agroforestry Systems, 80, 33–40.

    Google Scholar 

  • Roulet, M., Lucan, E. M., Fareila, N., Serique, G., Coelho, H., & Sousa Passis, C. J., et al. (1999). Effects of recent human colonization on the presence of mercury in Amazonian ecosystems. Water, Air, & Soil Pollution, 112, 297–313.

    Google Scholar 

  • Ruf, F. O. (2011). The myth of complex cocoa agroforests: The case of Ghana. Human Ecology, 39, 373–388.

    Google Scholar 

  • Rusch, A., Valantin-Morison, M., Sarthou, J. P., & Roger-Estrade, J. (2010). Biological control of insect pests in agroecosystems: Effects of crop management, farming systems, and seminatural habitats at the landscape scale: A review. Advances in Agronomy, 109, 219–259.

    Google Scholar 

  • Russel, A. E. (2002). Relationships between crop-species diversity and soil characteristics in southwest Indian agroecosystems. Agriculture, Ecosystems & Environment, 92, 235–249.

    Google Scholar 

  • Sachs, J. D., Baillie, J. E. M., & Sutherland, W. J. (2009). Biodiversity conservation and the millenium development goals. Science, 325, 1502–1503.

    PubMed  CAS  Google Scholar 

  • Sanogo, Z. J. -L. (1997). Maîtrise de l’azote dans un système cotonnier-sorgho : prévision de la fumure organique et azotée en zone Mali-Sud. Thèse de doctorat, Ensam de Montpellier, France, 72 p. + appendices.

    Google Scholar 

  • Schroth, G., & Harvey, C. A. (2007). Biodiversity conservation in cocoa production landscapes: An overview. Biodiversity and Conservation, 16, 2237–2244.

    Google Scholar 

  • Scopel, E., Douzet, J. M., Macena Da Silva, F. A., Cardoso, A., Alves Moreira, J. A., Findeling, A., et al. (2005). Impacts des systèmes de culture en semis direct avec couverture végétale (SCV) sur la dynamique de l’eau, de l’azote minéral et du carbone du sol dans les cerrados brésiliens. Cahiers Agricultures, 14(1), 71–75.

    Google Scholar 

  • Scopel, E., Triomphe, B., Affholder, F., Macena Da Silva, F. A., Corbeels, M., Valadares Xavier, J. H., et al. (2012). Conservation agriculture cropping systems in temperate and tropical conditions, performances and impacts. A review. Agronomy for Sustainable Development,. doi:10.1007/s13593-012-0106-9.

    Google Scholar 

  • Seguy, L., Bouzinac, S., & Maronezzi, A. C. (2001). Cropping systems and organic matter dynamics: direct seeding on plant cover, an agricultural revolution. Retrieved April 21, 2013, from http://agroecologie.cirad.fr/content/download/6886/32983/file/999900043.pdf

  • Smits, N., Dupraz, C., & Dufour, L. (2012). Surprising lack of influence of tree rows on the dynamics of wheat aphids and their natural enemies in a temperate agroforestry system. Agroforestry Systems, 85, 153–164.

    Google Scholar 

  • Snaddon, J., & Vodouhe, R. (2010). Biodiversity and agricultural sustainagility: from assessment to adaptive management. Current Opinion in Environmental Sustainability, 2, 80–87.

    Google Scholar 

  • Snoeck, D., Abolo, D., & Jagoret, P. (2010). Temporal changes in VAM fungi in the cocoa agroforestry systems of central Cameroon. Agroforestry Systems, 78, 323–328.

    Google Scholar 

  • Snoeck, D., Lacote, R., Kéli, J., Doumbia, A., Chapuset, T., Jagoret, P., et al. (2013). Association of hevea with other tree crops can be more profitable than hevea monocrop during first 12 years. Industrial Crops and Products, 43, 578–586.

    Google Scholar 

  • Söderström, B., Svensson, B., Vessby, K., & Glimskar, A. (2001). Plants, insects and birds in semi-natural pastures in relation to local habitat and landscape factors. Biodiversity and Conservation, 10, 1839–1863.

    Google Scholar 

  • Stamps, W. T., & Linit, M. J. (1998). Plant diversity and arthropod communities: implications for temperate agroforestry. Agroforestry Systems, 39, 73–89.

    Google Scholar 

  • Staver, C., Guharay, F., Monterroso, D., & Muschler, R. G. (2001). Designing pest-suppressive multistrata perennial crop systems: Shade-grown coffee in Central America. Agroforestry Systems, 53, 151–170.

    Google Scholar 

  • Steenwerth, K. L., & Belina, K. M. (2008). Cover crops enhance soil organic matter, carbon dynamics and microbiological function in a vineyard agroecosystem. Applied Soil Ecology, 40, 359–369.

    Google Scholar 

  • Swift, M. J., Izac, A. M., & Van Noordwijk, M. (2004). Biodiversity and ecosystem services in agricultural landscapes: are we asking the right questions ? Agriculture, Ecosystems & Environment, 104, 113–114.

    Google Scholar 

  • Tabashnik, B. E., Van Rensburg, J. B. J., & Carrière, Y. (2009). Field-evolved insect resistance to Bt crops: Definition, theory, and data. Journal of Economic Entomology, 102(6), 2011–2025.

    PubMed  CAS  Google Scholar 

  • Tilman, D., Wedin, D., & Knops, J. (1996). Productivity and sustainability influenced by biodiversity in grassland ecosystems. Nature, 379, 718–720.

    CAS  Google Scholar 

  • Tilman, D., Cassman, K. G., Matson, P. A., Naylor, R., & Polasky, S. (2002). Agricultural sustainability and intensive production practices. Nature, 418 (8).

    Google Scholar 

  • Tingem, M., Rivington, M., & Bellocchi, G. (2009). Adaptation assessments for crop production in response to climate change in Cameroon. Agronomy for Sustainable Development, 29, 247–256.

    Google Scholar 

  • Tixier, P., Lavigne, C., Alvarez, S., Gauquier, A., Blanchard, M., Ripoche, A., et al. (2011). Model evaluation of cover crops, application to eleven species for banana cropping systems. European Journal of Agronomy, 34, 53–61.

    Google Scholar 

  • Traoré, K. (2003). Le parc à karité, sa contribution à la durabilité de l’agrosystème : cas d’une toposéquence à Konobougou (Mali-Sud). Thèse de doctorat en Sciences du sol, Ensam de Montpellier, France, 188 p. + appendices.

    Google Scholar 

  • Tscharntke, T., Klein, A. M., Kruess, A., Steffan-Dewente, I., & Thies, C. (2005). Landscape perspectives on agricultural intensification and biodiversity: ecosystem service management. Ecology Letters, 8, 857–874.

    Google Scholar 

  • van der Werf, H. M. G., Kanyarushoki, C., & Corson, M. S. (2011). L’analyse de cycle de vie : un nouveau regard sur les systèmes de production agricole. Innovations agronomiques, 12, 121–133.

    Google Scholar 

  • van Oijen, M., Dauzat, J., Harmand, J.-M., Lawson, G., & Vaast, P. (2010). Coffee agroforestry systems in Central America. 2: Development of a simple process-based model and preliminary results. Agroforestry Systems, 80, 361–378.

    Google Scholar 

  • Vandermeer, J., van Noordwijk, M., Anderson, J., Ong, C., & Perfecto, I. (1998). Global change and multi-species agroecosystems: Concepts and issues. Agriculture, Ecosystems & Environment, 67, 1–22.

    Google Scholar 

  • Vitousek, P. M., & Hooper, D. U. (1993). Biological diversity and terrestrial ecosystem biogeochemistry. In E. D. Schulze & H. A. Mooney (Eds.), Biodiversity and Ecosystem Function (pp. 3–14). Berlin: Springer Verlag.

    Google Scholar 

  • Wardle, D. A., Bardgett, R. D., Klironomos, J. N., Setälä, H., van der Putten, W. H., & Wall, D. H. (2004). Ecological linkages between aboveground and belowground biota. Science, 304, 1629–1633.

    PubMed  CAS  Google Scholar 

  • Weibull, A. C., Ostman, O., & Granqvist, A. (2003). Species richness in agroecosystems: The effect of landscape, habitat and farm management. Biodiversity and Conservation, 12, 1335–1355.

    Google Scholar 

  • Wheelock, J. (1980). Nicaragua, imperialismo y dictadura. Editorial de Ciencias Sociales: Ciudad de La Habana.

    Google Scholar 

  • Wood, D., Lenné, J. M. (1999). Agrobiodiversity: Characterization, Utilization and Management. UK: CABI, 490 p.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Florent Maraux .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Éditions Quæ, 2013

About this chapter

Cite this chapter

Maraux, F., Malézieux, É., Gary, C. (2013). From Artificialization to the Ecologization of Cropping Systems. In: Hainzelin, É. (eds) Cultivating Biodiversity to Transform Agriculture. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-7984-6_3

Download citation

Publish with us

Policies and ethics