Skip to main content

Storm-Erosivity Model for Addressing Hydrological Effectiveness in France

  • Chapter
  • First Online:
Storminess and Environmental Change

Part of the book series: Advances in Natural and Technological Hazards Research ((NTHR,volume 39))

Abstract

This chapter presents and assesses the Decadal Rainfall Erosive Multiscale Model-France (DREMM-F), in which extreme precipitation data (to the right of the 95th percentile) are used to estimate decadal-scale rainfall–runoff erosivity values compatible with the Universal Soil Loss Equation and its revision – (R)USLE. The model meets the need of estimating rainfall-runoff erosivity when sub-daily extremes rainfall data are missing. The test region is mainland France (and surrounding areas), in which 26 weather stations (ranging from about 27–1,300 m a.s.l.) with rain and (R)USLE rainfall-runoff erosivity data were available over multiple decades. The construction of the model is simplified to a location-explicit term and to the understanding that the most erosive rainfalls are those recorded during the summertime and the beginning of autumn (May–October) as known from the European climatology. In addition, the inclusion of a site-specific elevation term allowed to account for the specific features of mainland France. Once parameterized to capture decadal rainfall–runoff erosivity variability over the test area, the DREMM-F was run to produce the temporal pattern of rainfall-runoff erosivity in the Rhône river basin, and compared to the sequence of flash-floods events over 1951–2010. It was also tested in comparison with previous models at selected sites. Implications for rainfall-runoff erosivity modelling were also discussed concluding that a limited number of parameters may be sufficient to represent decadal rainfall-runoff erosivity in a region positioned at the crossing of a zone of contrasting precipitation patterns.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Arnaud-Fassetta G (2003) River channel changes in the Rhone Delta (France) since the end of the Little Ice Age: geomorphological adjustment to hydroclimatic change and natural resource management. Catena 51:141–172

    Article  Google Scholar 

  • Bagarello V, D’Asaro F (1994) Estimating single storm erosion index. Trans ASABE 3:785–791

    Article  Google Scholar 

  • Bollinne A (1979) L’érosion en region limoneuse. Colloque sur l’érosion des sols en milieu tempéré. Strasbourg-Colmar, pp 95–100 (in French)

    Google Scholar 

  • Braud I, Roux H, Anquetin S, Maubourguet MM, Manus C, Viallet P, Dartus D (2010) The use of distributed hydrological models for the Gard 2002 flash flood event: analysis of associated hydrological processes. J Hydrol 394:162–181

    Article  Google Scholar 

  • Brisson E, Demuzere M, Kwakernaak B, van Lipzig NPM (2011) Relations between atmospheric circulation and precipitation in Belgium. Meteorog Atmos Phys 111:27–39

    Article  Google Scholar 

  • Casalì J, Gastesi R, Álvarez-Mozos J, De Santisteban LM, Valle D, de Lersundi J, Giménez R, Larrañaga A, Goñi M, Agirre U, Campo MA, López JJ, Donézar M (2008) Runoff, erosion, and water quality of agricultural watersheds in central Navarre (Spain). Agric Water Manag 95:1111–1128

    Article  Google Scholar 

  • Catari G, Gallart F (2010) Rainfall erosivity in the upper Llobregat basin, SE Pyrenees. Pirineos: Revista de Ecología de Montaña 165:55–67

    Article  Google Scholar 

  • Charlton M, Fotheringham S (2009) Geographically weighted regression (White Paper). National Centre for Geocomputation National University of Ireland, Maynooth. http://www.geos.ed.ac.uk/~gisteac/fspat/gwr/arcgis_gwr/GWR_WhitePaper.pdf

  • Davison P, Hutchins MG, Anthony SG, Betson M, Johnson M, Lord EI (2005) The relationship between potentially erosive storm energy and daily rainfall quantity in England and Wales. Sci Total Environ 344:15–25

    Article  Google Scholar 

  • de Lima MIP, Coelho MFES, de Lima JLMP (2009) Spatial variation of the scaling structure of short-term rainfall over Portugal. Geophys Res Abstr 11:EGU2009–EGU13942

    Google Scholar 

  • Diodato N (2004a) Local models for rainstorm-induced hazard analysis on Mediterranean river-torrential geomorphological systems. Nat Hazards Earth Syst Sci 4:389–397

    Article  Google Scholar 

  • Diodato N (2004b) Estimating RUSLE’s rainfall factor in the part of Italy with a Mediterranean rainfall regime. Hydrol Earth Syst Sci 8:103–107

    Article  Google Scholar 

  • Diodato N (2006) Spatial uncertainty modeling of climate processes for extreme hydrogeomorphological events hazard monitoring. J Environ Eng 132:1530–1538

    Article  Google Scholar 

  • Diodato N, Bellocchi G (2010) MedREM, a rainfall erosivity model for the Mediterranean region. J Hydrol 387:119–127

    Article  Google Scholar 

  • Diodato N, Bellocchi G (2012) Decadal modelling of rainfall–runoff erosivity in the Euro-Mediterranean region using extreme precipitation indices. Glob Planet Chang 86–87:79–91

    Article  Google Scholar 

  • Diodato N, Petrucci O, Bellocchi G (2012) Scale-invariant rainstorm hazard modelling for slopeland warning. Meteorol Appl 19:279–288

    Article  Google Scholar 

  • Durbin J, Watson GS (1950) Testing for serial correlation in least squares regression, I. Biometrika 37:409–428

    Google Scholar 

  • Durbin J, Watson GS (1951) Testing for serial correlation in least squares regression, II. Biometrika 38:159–179

    Google Scholar 

  • Gaume E, Bain V, Bernardara P, Newinger O, Barbuc M, Bateman A, Blaškovičová L, Blöschl G, Borga M, Dumitrescu A, Daliakopoulos I, Garcia J, Irimescu A, Kohnova S, Koutroulis A, Marchi L, Matreata S, Medina V, Preciso E, Sempere-Torres D, Stancalie G, Szolgay J, Tsanis J, Velasco D, Viglione A (2009) A compilation of data on European flash floods. J Hydrol 367:70–78

    Article  Google Scholar 

  • Gazquez A, Llsat MC, Pena JC (2002) Gestión de las zonas agrícolas a partir de la red agrometeorológica de Catalunya (XAC). Estudio de la distribución de la agresividad de la lluvia. In: Guijarro Pastor JA, Grimalt Gelabert M, Laita Ruiz de Asúa M, Alonso Oroza S (eds) Publicaciones de la Asociación Española de Climatología (AEC), Serie A. Planográfica Balear, Marratxí (Mallorca), pp 417–426 (in Spanish)

    Google Scholar 

  • Glaser R, Riemann D, Schönbein J, Barriendos M, Brázdil R, Bertolin C, Camuffo D, Deutsch M, Dobrovolný P, van Engelen A, Enzi S, Halíčková M, Koenig S, Kotyza O, Limanówka D, Macková J, Sghedoni M, Martin B, Himmelsbach I (2010) The variability of European floods since AD 1500. Clim Chang 101:235–256

    Article  Google Scholar 

  • Goldstein H (1987) Multilevel models in educational and social research. Oxford University Press, New York

    Google Scholar 

  • Gozzini B, Maracchi G, Mazzanti B, Menduni G, Meneguzzo F, Pasqui M, Volpini F (2007) Acquisition and analysis of historical series of hourly pluviometric data. In: 19th conference on climate variability and change, 87th AMS annual meeting, San Antonio, TX, USA

    Google Scholar 

  • Grace RC (2004) Temporal context in concurrent chains: I. Terminal-link duration. J Exp Anal Behav 81:215–237

    Article  Google Scholar 

  • Granger CWJ, Hyung N, Jeon Y (2001) Spurious regressions with stationary series. Appl Econ 33:899–904

    Article  Google Scholar 

  • Haylock MR, Goodess CM (2004) Interannual variability of European extreme winter rainfall and links with mean large-scale circulation. Int J Climatol 24:759–776

    Article  Google Scholar 

  • Hennings V (2003) Erosionsgefährdung ackerbaulich genutzter Böden durch Wasser (Karte im Maßstab 1:2,750,000). In: Nationalatlas Bundesrepublik Deutschland, vol. 2: Relief, Boden und Wasser. Institut für Länderkunde [Hrsg.]. Spektrum Akademischer Verlag, Heidelberg/Berlin, p 107 (in German)

    Google Scholar 

  • James PM (2007) An objective classification method for Hess and Brezowsky Grosswetterlagen over Europe. Theor Appl Climatol 88:17–42

    Article  Google Scholar 

  • Julien PY, Gonzales del Tanago M (1991) Spatially varied soil erosion under different climates. Hydrol Sci J des Sciences Hydrologiques 36:511–514

    Article  Google Scholar 

  • Ledermann T, Herweg K, Liniger HP, Schneider F, Hurni H, Prasuhn V (2010) Applying erosion damage mapping to assess and quantify off-site effects of soil erosion in Switzerland. Land Degrad Dev 21:353–366

    Article  Google Scholar 

  • Llasat MC (2001) An objective classification of rainfall events on the basis of their convective features. Application to rainfall intensity in the North-East of Spain. Int J Climatol 21:1385–1400

    Article  Google Scholar 

  • Llasat MC, Llasat-Botija M, Prat MA, Price C, Mugnai A, Lagouvardos K, Kotroni V (2010) High-impact floods and flash floods in Mediterranean countries: the FLASH preliminary database. Adv Geosci 23:47–55

    Article  Google Scholar 

  • López-Vicente M, Navas A, Machín J (2007) Identifying erosive periods by using RUSLE factors in mountain fields of the Central Spanish Pyrenees. Hydrol Earth Syst Sci Discuss 4:2111–2142

    Article  Google Scholar 

  • Loureiro NS, Couthino MA (2001) A new procedure to estimate the RUSLE EI30 index, based on monthly rainfall data and applied to the Algarve region, Portugal. J Hydrol 250:12–18

    Article  Google Scholar 

  • Macklin MG, Benito G, Gregory KJ, Johnstone E, Lewin J, Soja R, Starkel L, Thorndycraft VR (2006) Past hydrological events reflected in the Holocene fluvial history of Europe. Catena 66:145–154

    Article  Google Scholar 

  • Mannaerts CM, Gabriels D (2000) Rainfall erosivity in Cape Verde. Soil Till Res 55:207–212

    Article  Google Scholar 

  • Meusburger K, Konz N, Schaub M, Alewell C (2010) Soil erosion modelled with USLE and PESERA using QuickBird derived vegetation parameters in an alpine catchment. Int J Appl Earth Observ Geoinf 12:208–215

    Article  Google Scholar 

  • Mikoš M, Jošt D, Petrovšek G (2006) Rainfall and runoff erosivity in the alpine climate of north Slovenia: a comparison of different estimation methods. Hydrol Sci J 51:115–126

    Article  Google Scholar 

  • Miramont C, Guilbert X (1997) Variations historiques de la fréquence des crues et évolution de la morphogenèse fluviale en moyenne Durance (France du Sud-Est). Géomorphol Relief Process Environ 4:325–338 (in French)

    Article  Google Scholar 

  • Mulligan M, Wainwright J (2004) Modelling and model building. In: Wainwright J, Mulligan M (eds) Environmental modelling. Finding simplicity in complexity. Wiley, Chichester, pp 7–73

    Google Scholar 

  • Nash JE, Sutcliffe JV (1970) River flow forecasting through conceptual models Part I – A discussion of principles. J Hydrol 10:282–290. doi: 10.1016/0022-1694(70)90255-6

    Article  Google Scholar 

  • Nikulin G, Kjellström E, Hansson U, Strandberg G, Ullerstig A (2011) Evaluation of future projections of temperature, and wind extremes over Europe in an ensemble of regional climate simulations. Tellus 63A:41–55

    Article  Google Scholar 

  • Parajka J, Kohnová S, Bálint G, Barbuc M, Borga M, Claps P, Cheval S, Gaume E, Hlavcˇová K, Merz R, Pfaundler M, Stancalie G, Szolgay J, Blöschl G (2010) Seasonal characteristics of flood regimes across the Alpine-Carpathian range. J Hydrol 394:78–89

    Article  Google Scholar 

  • Petrovšek G, Mikoš M (2004) Estimating the R factor from daily rainfall data in the sub-Mediterranean climate of southwest Slovenia. Hydrol Sci J 49:869–877

    Google Scholar 

  • Petrucci O, Polemio M (2003) The use of historical data for the characterisation of multiple damaging hydrogeological events. Nat Hazards Earth Syst Sci 3:17–30

    Article  Google Scholar 

  • Petrucci O, Polemio M (2009) The role of meteorological and climatic conditions in the occurrence of damaging hydro-geologic events in Southern Italy. Nat Hazards Earth Syst Sci 9:105–118

    Article  Google Scholar 

  • Pichard G (1995) Les crues sur le bas Rhône de 1500 à nos jours. Pour une histoire hydro-climatique. 506 Méditerranée 3-4:105-116 (in French)

    Google Scholar 

  • Pihan J (1978) Risques climatiques d’érosion hydrique des sols en France. Colloque sur l’érosion agricole des sols en milieu tempéré non méditerran éen. Strasbourg/Colmar, Université Louis Pasteur, INRA Colmar, France, pp 13–18 (in French)

    Google Scholar 

  • Renard KG, Foster GR, Weesies GA, McCool DK, Yoder DC (1997) Predicting soil erosion by water: a guide to conservation planning with the Revised Universal Soil Loss Equation (RUSLE), USDA agriculture handbook 703. U.S. Dept. of Agriculture, Agricultural Research Service, Washington, DC, pp 27–28

    Google Scholar 

  • Renschler CS, Mannaerts C, Diekkrueger B (1999) Evaluating spatial, temporal variability in soil erosion risk; rainfall erosivity, soil loss ratios in Andalusia, Spain. Catena 34:209–225

    Article  Google Scholar 

  • Romero R, Guijarro JA, Ramis C, Alonso S (1998) A 30-year (1964-1993) daily rainfall data base for the Spanish Mediterranean regions: first exploratory study. Int J Climatol 18:541–560

    Article  Google Scholar 

  • Romero R, Miquel G, Doswell CA III (2007) European climatology of severe convective storm environmental parameters: a test for significant tornado events. Atmos Res 83:389–404

    Article  Google Scholar 

  • Ruin I, Creutin JD, Anquetin S, Lutoff C (2008) Human exposure to flash-floods relation between flood parameters and human vulnerability during a storm of September 2002 in Southern France. J Hydrol 361:199–213

    Article  Google Scholar 

  • Salles C, Poesen J, Sempere-Torres D (2002) Kinetic energy of rain and its functional relationship with intensity. J Hydrol 257:256–270

    Article  Google Scholar 

  • Sauquet E (2004) Mapping mean annual and monthly river discharges: geostatistical developments for incorporating river network dependencies. BALWOIS 2004 Ohrid, FY Republic of Macedonia, 25–29 May 2004, 11 p

    Google Scholar 

  • Schuepp M (1975) Objective weather forecasts using statistical aids in Alps. Rivista Italiana di Geofisica e Scienze Affini 1:32–36

    Google Scholar 

  • Schweikle V, Müller M, Zuck B, Pitsch R, Dörr D, Timmerberg K, Buchleitner Y (1985) Regen- und Oberflächenabflußfaktoren (R) sowie Bodenerodierbarkeitsfaktoren (K) zur quantitativen Abschätzung des Bodenabtrags durch Wasser in Baden-Württemberg nach dem Verfahren von Wischmeier und Smith.- Anlage zum Bericht der LfU vom 11.11.85 (in German)

    Google Scholar 

  • Strauss P, Paschen A, Vogt H, Blum WEH (1997) Evaluation of R-factors as exemplified by the Alsace region (France). Arch Acker Pflanzenernahrung und Bodenkunde 42:119–127

    Google Scholar 

  • Sukhanovski YP, Ollesch G, Khan KY, Meiβner R (2002) A new index for rainfall erosivity on a physical basis. J Plant Nutr Soil Sci 165:51–57

    Article  Google Scholar 

  • Twrdosz R (2007) Diurnal variation of precipitation frequency in the warm half of the year according to circulation types in Krakow, South Poland. Theor Appl Climatol 89:229–238

    Article  Google Scholar 

  • Van Delden A (2001) The synoptic setting of thunderstorms in western Europe. Atmos Res 56:89–110

    Article  Google Scholar 

  • Van Dijk AIJM, Bruijnzeel LA, Eisma EH (2003) A methodology to study rain splash and wash processes under natural rainfall. Hydrol Process 17:153–167

    Article  Google Scholar 

  • Van Oldenborgh GJ, Drijfhout S, van Ulden A, Haarsma R, Sterl A, Severijns C, Hazeleger W, Dijkstra H (2009) Western Europe is warming much faster than expected. Clim Past 5:1–12

    Article  Google Scholar 

  • Verstraeten G, Poesen J, Demarée G, Salles C (2006) Long-term (105 years) variability in rain erosivity as derived from 10-min rainfall depth data for Ukkel (Brussels, Belgium): implications for assessing soil erosion rates. J Geophys Res 11:D22109

    Article  Google Scholar 

  • Ward PJ, van Balen RT, Verstraeten G, Renssen H, Vandenberghe J (2009) The impact of land use and climate change on late Holocene and future suspended sediment yield of the Meuse catchment. Geomorphology 103:389–400

    Article  Google Scholar 

  • Wurbs D, Steininger M (2011) Wirkungen der Klimaänderungen auf die Böden – Untersuchungen zu Auswirkungen des Klimawandels auf die Bodenerosion durch Wasser Text Nr. 16/2011 UBA-FBNr: 001463 Förderkennzeichen: 3708 71 205. http://www.uba.de/uba-info-medien/4089.html (in German)

  • Yu B, Hashim GM, Eusof Z (2001) Estimating the R-factor with limited rainfall data: a case study from peninsular Malaysia. J Soil Water Conserv 56:101–105

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gianni Bellocchi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Bellocchi, G., Diodato, N. (2014). Storm-Erosivity Model for Addressing Hydrological Effectiveness in France. In: Diodato, N., Bellocchi, G. (eds) Storminess and Environmental Change. Advances in Natural and Technological Hazards Research, vol 39. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-7948-8_9

Download citation

Publish with us

Policies and ethics