Skip to main content

Eco-functional Intensification by Cereal-Grain Legume Intercropping in Organic Farming Systems for Increased Yields, Reduced Weeds and Improved Grain Protein Concentration

  • Chapter
  • First Online:
Organic Farming, Prototype for Sustainable Agricultures

Abstract

Intercropping, i.e., simultaneously growing two (or more) species in the same field for a significant period of time but without necessarily concomitant sowing or harvest, is a practice aimed at eco-functional intensification.

This chapter integrates a comprehensive amount of original data from field experiments conducted since 2001 on spring and winter cereal-grain legume intercrops in experimental and farm contexts in France and Denmark, in an attempt to generalise the findings and draw up common guidelines. We have shown that intercrops appear to be a useful agronomic solution for organic arable cropping, particularly in low-N input systems, to enhance: (i) yields because of a general improvement of environmental resource use; (ii) cereal grain protein concentration due to a non-proportional competition for soil mineral N and other plant growth factors; and (iii) weed control compared to legume sole crops.

Therefore, intercropping can be a way to successfully produce organic grain legumes and cereals. However, it is difficult to propose generic crop technical protocols because of the multitude of production objectives and, hence, of combinations of species, varieties, densities, structure and manuring strategies.

Consequently, it should be emphasized that: (i) the species and varietal traits suited to intercropping and organic farming will make it necessary to reconsider the varietal selection criteria; (ii) further mechanistic understanding of the behaviour of intercropping systems is required to be integrated into crop models; and (iii) the development of intercrops cannot take place without the participation of all of the actors in the value chain because of lock-in mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    We considered the data subset for which all the variables needed for the calculation were available.

  2. 2.

    YSC-Cereal = 2.9  ±  0.6 Mg ha−1 and YIC-Cereal = 2.0  ±  0.7 Mg ha−1on average.

  3. 3.

    The nitrogen accumulated in the shoots of the intercropped legume was on average 54  ±  36 kg N ha−1, of which only 21   ±  24 kg N ha−1 came from the soil (the percentage of plant N derived from N2 fixation was determined using the 15N natural abundance method for unfertilised treatments, according to Amarger et al. (1979), Unkovich et al. (2008) and Bedoussac and Justes (2010a).

  4. 4.

    Total available nitrogen (112  ±  38 kg N ha−1) was estimated as the sum of the N accumulated by the SC cereal (62  ±  21 kg N ha−1) and the soil N residue at harvest of the SC cereal (50  ±  28 kg N ha−1).

References

  • Altieri M (1999) The ecological role of biodiversity in agroecosystems. Agric Ecosyst Environ 74:19–31

    Article  Google Scholar 

  • Amarger N, Mariotti A, Mariotti F, Durr J, Bourguignon C, Lagacherie B (1979) Estimate of symbiotically fixed nitrogen in field grown soybeans using variations in 15N Natural abundance. Plant Soil 52:269–280

    Article  CAS  Google Scholar 

  • Andersen MK, Hauggaard-Nielsen H, Weiner J, Jensen ES (2007) Evaluating competitive dynamics in two and three component intercrops of Pisum sativum, Hordeum vulgare and Brassica napus. J Appl Ecol 44:545–551

    Article  Google Scholar 

  • Anil L, Park J, Phipps RH, Miller FA (1998) Temperate intercropping of cereals for forage: a review of the potential for growth and utilization with particular reference to the UK. Grass Forage Sci 53:301–317

    Article  Google Scholar 

  • Banik P, Midya A, Sarkar BK, Ghose SS (2006) Wheat and chickpea intercropping systems in an additive experiment. Advantages and weed smothering. Europ. J. Agron 24:325–332

    Google Scholar 

  • Bedoussac L (2009). Analyse du fonctionnement des performances des associations blé dur-pois d’hiver et blé dur-féverole d’hiver pour la conception d’itinéraires techniques adaptés à différents objectifs de production en systèmes bas-intrants. Mémoire de thèse, INP-Toulouse, 220 pages + annexes

    Google Scholar 

  • Bedoussac L, Justes E (2010a) The efficiency of a durum wheat-winter pea intercrop to improve yield and wheat grain protein concentration depends on N availability during early growth. Plant Soil 330:19–35

    Article  CAS  Google Scholar 

  • Bedoussac L, Justes E (2010b) Dynamic analysis of competition and complementarity for light and N use to understand the yield and the protein content of a durum wheat-winter pea intercrop. Plant Soil 330:37–54

    Article  CAS  Google Scholar 

  • Bellostas N, Hauggaard-Nielsen H, Andersen M, Jensen ES (2003) Early interference dynamics in intercrops of pea, barley and oilseed rape. Biol Agric Hort 21:337–348

    Article  Google Scholar 

  • Berntsen J, Hauggaard-Nielsen H, Olesen JE, Petersen BM, Jensen ES, Thomsen A (2004) Modelling dry matter production and resource use in intercrops of pea and barley. Field Crops Res 88:69–83

    Article  Google Scholar 

  • Brisson N, Bussière F, Ozier-Lafontaine H, Tournebize R, Sinoquet H (2004) Adaptation of the crop model STICS to intercropping. Theoretical basis and parameterisation. Agronomie 24:409–421

    Article  Google Scholar 

  • Carr PM, Martin GB, Caton JS, Poland W (1998) Forage and nitrogen yield of barley-pea and oat-pea intercrops. Agronomy J 90:79–84

    Article  Google Scholar 

  • Chen Y, Yu S, Yu Z (2003) Relationship between amount or distribution of PAR interception and grain output of wheat communities. Acta Agronomica Sinica 29:730–734

    Google Scholar 

  • Connolly J, Wayne P, Murray R (1990) Time course of plant-plant interactions in experimental mixtures of annuals—Density, frequency, and nutrient effects. Oecologia 82:513–526

    Article  Google Scholar 

  • Corre-Hellou G, Crozat Y (2005) N2 fixation and N supply in organic pea (Pisum sativum L.) cropping systems as affected by weeds and peaweevil (Sitona lineatus L.). Eur J Agron 22:449–458

    Article  CAS  Google Scholar 

  • Corre-Hellou G, Fustec J, Crozat Y (2006) Interspecific competition for soil N and its interaction with N2 fixation, leaf expansion and crop growth in pea-barley intercrops. Plant Soil 282:195–208

    Article  CAS  Google Scholar 

  • Corre-Hellou G, Faure M, Launay M, Brisson N, Crozat Y (2009) Adaptation of the STICS intercrop model to simulate crop growth and N accumulation in pea-barley intercrops. Field Crops Res 113:72–81

    Article  Google Scholar 

  • Corre-Hellou G, Dibet A, Hauggaard-Nielsen H, Crozat Y, Gooding M, Ambus P, Dahlmann C, von Fragstein P, Pristeri A, Monti M, Jensen ES (2011) Competitive ability of pea-barley intercrops against weeds and interactions with crop productivity and soil N availability. Field Crops Res 122:264–272

    Article  Google Scholar 

  • Crews TE, Peoples MB (2004) Legume versus fertilizer sources of nitrogen: ecological tradeoffs and human needs. Agric Ecosyst Environ 102:279–297

    Article  Google Scholar 

  • Dalal RC (1974) Effects of intercropping maize with pigeon peas on grain yield and nutrient uptake. Exp Agric 10:219–224

    Article  CAS  Google Scholar 

  • David C, Jeuffroy MH, Laurent F, Mangin M, Meynard JM (2005a) The assessment of a decision making tool for managing the nitrogen fertilization of organic winter wheat. Eur J Agron 23:225–242

    Article  CAS  Google Scholar 

  • David C, Jeuffroy MH, Henning J, Meynard JM (2005b) Yield variation in organic winter wheat: a diagnostic study in the Southeast of France. Agron Sust Dev 25:213–223

    Article  Google Scholar 

  • Fares M, Magrini MB, Triboulet P (2012) Transition agroécologique, innovation et effets de verrouillage: le rôle de la structure organisationnelle des filières. Le cas de la filière blé dur française. Cah Agric 21:34–45

    Google Scholar 

  • Garrido-Lestache E, López-bellido RJ, López-bellido L (2004) Effect of N rate, timing and splitting and N type on bread-making quality in hard red spring wheat under rainfed Mediterranean conditions. Field Crops Res 85:213–236

    Article  Google Scholar 

  • Goldberg D (1990) Components of resource competition in plant communities. Perspectives on plant competition. Academic Press, San Diego, pp 27–50

    Google Scholar 

  • Gooding MJ, Kasynova E, Ruske R, Hauggaard-Nielsen H, Jensen ES, Dahlmann C, von Fragstein P, Dibet A, Corre Hellou G, Crozat Y, Pristeri A, Romeo M, Monti M, Launay M (2007) Intercropping with pulses to concentrate nitrogen and sulphur in wheat. J Agric Sci 145:469–479

    Article  CAS  Google Scholar 

  • Hauggaard-Nielsen H, Ambus P, Jensen ES (2001a) Temporal and spatial distribution of roots and competition for nitrogen in pea-barley intercrops—a field study employing P-32 technique. Plant Soil 236:63–74

    Article  CAS  Google Scholar 

  • Hauggaard-Nielsen H, Ambus P, Jensen ES (2001b) Interspecific competition, N use and interference with weeds in pea-barley intercropping. Field Crops Res 70:101–109

    Article  Google Scholar 

  • Hauggaard-Nielsen H, Ambus P, Jensen ES (2003) The comparison of nitrogen use and leaching in sole cropped versus intercropped pea and barley. Nutr Cycl Agroecosyst 65:289–300

    Article  CAS  Google Scholar 

  • Hauggaard-Nielsen H, Jørnsgaard B, Kinane J, Jensen ES (2007) Grain legume-cereal intercropping: the practical application of diversity, competition and facilitation in arable and organic cropping systems. Ren Agric Food Syst 23:3–12

    Google Scholar 

  • Hauggaard-Nielsen H, Gooding M, Ambus P, Corre-Hellou G, Crozat Y, Dahlmann C, Dibet A, von Fragstein P, Pristeri A, Monti M, Jensen ES (2009a) Pea-barley intercropping and short-term subsequent crop effects across European organic cropping conditions. Nutr Cycl Agroecosyst 85:141–155

    Article  Google Scholar 

  • Hauggaard-Nielsen H, Gooding M, Ambus P, Corre-Hellou G, Crozat Y, Dahlmann C, Dibet A, von Fragstein P, Pristeri A, Monti M, Jensen ES (2009b) Pea-barley intercropping for efficient symbiotic N2-fixation, soil N acquisition and use of other nutrients in European organic cropping systems. Field Crops Res 113:64–71

    Article  Google Scholar 

  • Hauggaard-Nielsen H, Jensen ES (2005) Facilitative root interactions in intercrops. Plant Soil 274:237–250

    Article  CAS  Google Scholar 

  • IAASTD (2009) International Assessment of Agricultural knowledge, Science and Technology for Development. Executive summary of the synthesis report. Intergovernmental plenary, 7–11 April 2008, Johannesburg, South Africa

    Google Scholar 

  • Jahansooz MR, Yunusa I, A M, Coventry DR, Palmer AR, Eamus D (2007) Radiation- and water-use associated with growth and yields of wheat and chickpea in sole and mixed crops. Eur J Agron 26:275–282

    Article  Google Scholar 

  • Jensen ES (1996a) Grain yield, symbiotic N2 fixation and interspecific competition for inorganic N in pea-barley intercrops. Plant Soil 182:25–38

    Article  CAS  Google Scholar 

  • Jensen ES (1996b) Barley uptake of N deposited in the rhizosphere of associated field pea. Soil Biol Biochem 28:159–168

    Article  CAS  Google Scholar 

  • Jensen ES, Ambus P, Bellostas N, Boisen S, Brisson N, Corre-Hellou G, Crozat Y, Dahlmann C, Dibet A, von Fragstein P, Gooding M, Hauggaard-Nielsen H, Kasyanova E, Launay M, Monti M, Pristeri A (2006). Intercropping of cereals and grain legumes for increased production, weed control, improved product quality and prevention of N-losses in European organic farming systems. European Joint Organic Congress, 30–31 May, Odense, Denmark, 180–181

    Google Scholar 

  • Kiniry J, Jones C, O’Toole J, Blanchet R, Cabelguenne M, Spanel D (1989) Radiation-use efficiency in biomass accumulation prior to grain-filling for five grain-crop species. Field Crops Res 20:51–64

    Article  Google Scholar 

  • Knudsen T, Hauggaard-Nielsen H, Jørnsgard B, Jensen ES (2004) Comparison of interspecific competition and N use in pea-barley, faba bean-barley and lupin-barley intercrops grown at two temperate locations. J Agric Sci 142:617–627

    Article  CAS  Google Scholar 

  • Launay M, Brisson N, Satger S, Hauggaard-Nielsen H, Corre-Hellou G, Kasynova E, Ruske R, Jensen ES, Gooding MJ (2009) Exploring options for managing strategies for pea-barley intercropping using a modeling approach. Eur J Agron 31:85–98

    Article  Google Scholar 

  • Liebman M (1988) Ecological suppression of weeds in intercropping systems: a review. In: Altieri M, Liebman M (eds) Weed management in agroecosystems: ecological approaches. CRC Press, pp. 197–212

    Google Scholar 

  • Liebman M, Davis A (2000) Integration of soil, crop and weed management in low-external-input farming systems. Weed Res 40:27–47

    Article  Google Scholar 

  • Lithourgidis AS, Vasilakoglou IB, Dhima KV, Dordas CA, Yiakoulaki MD (2006) Forage yield and quality of common vetch mixtures with oat and triticale in two seeding ratios. Field Crops Res 99:106–113

    Article  Google Scholar 

  • Loomis RS, Williams WA (1963) Maximum crop productivity: an estimate. Crop Sci 3:67–72

    Article  Google Scholar 

  • Malézieux E, Crozat Y, Dupraz C, Laurans M, Makowski D, Ozier-Lafontaine H, Rapidel B, de Tourdonnet S, Valantin-Morison M (2008) Mixing plant species in cropping systems: concepts, tools and models. A review. Agron Sustain Dev 29:43–62

    Article  Google Scholar 

  • Mcdonald GK (2003) Competitiveness against grass weeds in field pea genotypes. Weed Res 43:48–58

    Article  Google Scholar 

  • Mohta NK, De R (1980) Intercropping maize and sorghum with soya beans. J Agric Sci 95:117–122

    Article  Google Scholar 

  • Monteith J (1977) Climate and the efficiency of crop production in Britain. Phil Trans R Soc Lond B 281:277–294

    Article  Google Scholar 

  • Natarajan M, Willey R (1980) Sorghum-pigeonpea intercropping and the effects of plant population density. 2. Resource use. J Agric Sci 95:59–65

    Article  Google Scholar 

  • Naudin C, Aveline A, Corre-Hellou G, Dibet A, Jeuffroy M-H, Crozat Y (2009) Agronomic analysis of the performance of spring and winter cereal-legume intercrops in organic farming. J Agric Sci Technol 3:17–28

    Google Scholar 

  • Naudin C, Corre-Hellou G, Pineau S, Crozat Y, Jeuffroy MH (2010) The effect of various dynamics of N availability on winter pea-wheat intercrops: crop growth, N partitioning and symbiotic N2 fixation. Field Crops Res 119:2–11

    Article  Google Scholar 

  • Niggli U, Fliessbach A, Hepperly P (2008) Low greenhouse gas agriculture: mitigation and adaptation potential of sustainable farming systems. FAO, Rome

    Google Scholar 

  • Sebillotte M (1974) Agronomie et agriculture. Essai d’analyse des tâches de l’agronome. Cahiers ORSTOM série Biol 24:3–25

    Google Scholar 

  • Shibles RM, Weber CR (1966) Interception of solar radiation and dry matter production by various soybean planting patterns. Crop Sci 6:55–59

    Article  Google Scholar 

  • Sivakumar MV, Virmani S (1984) Crop productivity in relation to interception of photosynthetically active radiation. Agric Forest Meteorol 31:131–141

    Article  Google Scholar 

  • Stern W (1993) Nitrogen fixation and transfer in intercrop systems. Field Crops Res 34:335–356

    Article  Google Scholar 

  • Townley-Smith L, Wright AT (1994) Field pea cultivar and weed response to crop seed rate in western Canada. Can J Plant Sci 76:907–914

    Google Scholar 

  • Trenbath BR (1986) Resource use by intercrops. In: Francis CA (ed) Multiple cropping systems. MacMillan, New York, pp 57–81

    Google Scholar 

  • Trenbath BR (1993) Intercropping for the management of pests and diseases. Field Crops Res 34:381–405

    Article  Google Scholar 

  • Tsubo M, Walker S (2002) A model of radiation interception and use by a maize-bean intercrop canopy. Agric Forest Meteorol 110:203–215

    Article  Google Scholar 

  • Tsubo M, Walker S, Mukhala E (2001) Comparisons of radiation use efficiency of mono-/inter-cropping systems with different row orientations. Field Crops Res 71:17–29

    Article  Google Scholar 

  • Unkovich M, Herridge D, Peoples M, Cadisch G, Boddey R, Giller K, Alves B, Chalk P (2008) Measuring plant-associated nitrogen fixation in agricultural systems. Clarus design, Canberra

    Google Scholar 

  • Vandermeer J (1989) The ecology of intercropping. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Vandermeer J, van Noordwijk M, Anderson J, Ong C, Perfecto I (1998) Global change and multi-species agroecosystems: concepts and issues. Agric Ecosyst Environ 67:1–22

    Article  Google Scholar 

  • Vasilakoglou IB, Lithourgidis AS, Dhima KV (2005) Assessing common vetch-cereal intercrops for suppression of wild oat, Proceedings of 13th International Symposium, Session S5 European Weed Research Society, Bari, Italy

    Google Scholar 

  • Wall D, Friesen GH, Bhati TK (1991) Wild mustard interference in traditional and semi-leafless field peas. Can J Plant Sci 71:473–480

    Article  Google Scholar 

  • Willey R (1979) Intercropping—its importance and research needs. 1. Competition and yield advantages. Field Crop Abstr 32:1–10

    Google Scholar 

  • Willey R, Osiru D (1972) Studies on mixtures of maize and beans (Phaseolus vulgaris) with particular reference to plant population. J Agric Sci 79:517–529

    Article  Google Scholar 

  • Xiao Y, Li L, Zhang F (2004) Effect of root contact on interspecific competition and N transfer between wheat and fababean using direct and indirect 15N techniques. Plant Soil 262:45–54

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laurent Bedoussac .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Bedoussac, L. et al. (2014). Eco-functional Intensification by Cereal-Grain Legume Intercropping in Organic Farming Systems for Increased Yields, Reduced Weeds and Improved Grain Protein Concentration. In: Bellon, S., Penvern, S. (eds) Organic Farming, Prototype for Sustainable Agricultures. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-7927-3_3

Download citation

Publish with us

Policies and ethics