Skip to main content

Spread of Antibiotic Resistance in the Environment: Impact on Human Health

  • Chapter
  • First Online:
Environmental Deterioration and Human Health

Abstract

Antibiotic-resistant pathogenic bacteria pose a high threat to human health, but the environmental reservoirs of resistance genes are poorly understood. The origins of antibiotic resistance in the environment are relevant to human health because of the increasing importance of zoonotic diseases as well as the requirement for predicting emerging resistant pathogens. Only little is known about the antibiotic resistomes of the great majority of environmental bacteria, although there have been calls for a greater understanding of the environmental reservoirs of antibiotic resistance. The data on antibiotic resistance before the antibiotic era and in soil show how far away we are from a complete picture about the ecology of antibiotic resistance genes (ARGs). Most of the natural antibiotic producers reside in soil, but soil is a particularly challenging habitat due to its chemical and physical heterogeneity. The prevalence and diversity of ARGs in the environment led to hypotheses about the native roles of resistance genes in natural microbial communities.

This chapter gives an overview on the occurrence of antibiotic resistance determinants in different environments, discusses the environmental sources, the functions and roles of resistance determinants in microbial ecology, and the ways by which those genes may be disseminated in response to human antibiotic use. It also describes molecular methodologies used to study antibiotic resistance dissemination in the environment and attempts to assess the risks associated with resistance spread in the environment for human health.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aarestrup FM, Seyfarth AM, Emborg HD, Pedersen K, Hendriksen RS, Bager F (2001) Effect of abolishment of the use of antimicrobial agents for growth promotion on occurrence of antimicrobial resistance in fecal enterococci from food animals in Denmark. Antimicrob. Agents Chemother 45(7):2054–2059. doi:10.1128/AAC.45.7.2054–2059.2001

    Google Scholar 

  • Aarestrup FM, McNicholas PM (2002) Incidence of high-level evernimicin resistance in Enterococcus faecium among food animals and humans. Antimicrob Agents Chemother 46(9):3088–3090

    CAS  Google Scholar 

  • Acar JF, Moulin G (2006) Antimicrobial resistance at farm level. Rev—Off Int Epizoot 25(2):775–792

    CAS  Google Scholar 

  • Agersø Y, Bruun MS, Dalsgaard I, Larsen JL (2007) The tetracycline resistance gene tet(E) is frequently occurring and present on large horizontally transferable plasmids in Aeromonas spp. from fish farms. Aquaculture 266(1–4):47–52. doi:10.1016/j.aquaculture.2007.01.012

    Google Scholar 

  • Agersø Y, Petersen A (2007) The tetracycline resistance determinant Tet 39 and the sulphonamide resistance gene sulII are common among resistant Acinetobacter spp. isolated from integrated fish farms in Thailand. J Antimicrob Chemother 59(1):23–27. doi:10.1093/jac/dkl419

    Google Scholar 

  • Ahmed AM, Furuta K, Shimomura K, Kasama Y, Shimamoto T (2006) Genetic characterization of multidrug resistance in Shigella spp. from Japan. J Med Microbiol 55(Pt 12):1685–1691. doi:10.1099/jmm.0.46725-0

    Google Scholar 

  • Aires de Sousa M, Sanches IS, Ferro ML, Vaz MJ, Saraiva Z, Tendeiro T, Serra J, Lencastre H de (1998) Intercontinental spread of a multidrug-resistant methicillin-resistant Staphylococcus aureus clone. J Clin Microbiol 36(9):2590–2596

    Google Scholar 

  • Akinbowale OL, Peng H, Barton MD (2007) Diversity of tetracycline resistance genes in bacteria from aquaculture sources in Australia. J Appl Microbiol 103(5):2016–2025. doi:10.1111/j.1365-2672.2007.03445.x

    CAS  Google Scholar 

  • Aleem A, Isar J, Malik A (2003) Impact of long-term application of industrial wastewater on the emergence of resistance traits in Azotobacter chroococcum isolated from rhizospheric soil. Bioresour Technol 86(1):7–13

    CAS  Google Scholar 

  • Allen HK, Donato J, Wang HH, Cloud-Hansen KA, Davies J, Handelsman J (2010) Call of the wild: antibiotic resistance genes in natural environments. Nat Rev Microbiol 8(4):251–259. doi:10.1038/nrmicro2312

    CAS  Google Scholar 

  • Alpay-Karaoglu S, Ozgumus OB, Sevim E, Kolayli F, Sevim A, Yesilgil P (2007) Investigation of antibiotic resistance profile and TEM-type β-lactamase gene carriage of ampicillin-resistant Escherichia coli strains isolated from drinking water. Ann. Microbiol 57(2):281–288. doi:10.1007/BF03175221

    CAS  Google Scholar 

  • Alvarez-Martinez CE, Christie PJ (2009) Biological diversity of prokaryotic type IV secretion systems. Microbiol Mol Biol Rev 73(4):775–808. doi:10.1128/MMBR.00023-09

    CAS  Google Scholar 

  • Aminov RI (2009) The role of antibiotics and antibiotic resistance in nature. Environ Microbiol 11(12):2970–2988. doi:10.1111/j.1462-2920.2009.01972.x

    CAS  Google Scholar 

  • Andersson DI, Hughes D (2012) Evolution of antibiotic resistance at non-lethal drug concentrations. Drug Resist Updates 15(3):162–172. doi:10.1016/j.drup.2012.03.005

    CAS  Google Scholar 

  • Andersson DI (2003) Persistence of antibiotic resistant bacteria. Curr Opin Microbiol 6(5):452–456

    CAS  Google Scholar 

  • Angulo FJ, Nargund VN, Chiller TC (2004) Evidence of an association between use of anti-microbial agents in food animals and anti-microbial resistance among bacteria isolated from humans and the human health consequences of such resistance. J Vet Med B Infect Dis Vet Public Health 51(8-9):374–379. doi:10.1111/j.1439-0450.2004.00789.x

    CAS  Google Scholar 

  • Antwerpen MH, Schellhase M, Ehrentreich-Förster E, Bier F, Witte W, Nübel U (2007) DNA microarray for detection of antibiotic resistance determinants in Bacillus anthracis and closely related Bacillus cereus. Mol Cell Probes 21(2):152–160. doi:10.1016/j.mcp.2006.10.002

    CAS  Google Scholar 

  • APHA (1995) Standard methods for the examination of water, 19th edn. American Public Health Association, New York

    Google Scholar 

  • Araújo C, Torres C, Silva N, Carneiro C, Gonçalves A, Radhouani H, Correia S, da Costa PM, Paccheco R, Zarazaga M, Ruiz-Larrea F, Poeta P, Igrejas G (2010) Vancomycin-resistant enterococci from Portuguese wastewater treatment plants. J Basic Microbiol 50(6):605–609. doi:10.1002/jobm.201000102

    Google Scholar 

  • Arias CA, Murray BE (2012) The rise of the Enterococcus: beyond vancomycin resistance. Nat Rev Micro 10(4):266–278. doi:10.1038/nrmicro2761

    CAS  Google Scholar 

  • Auerbach EA, Seyfried EE, McMahon KD (2007) Tetracycline resistance genes in activated sludge wastewater treatment plants. Water Res 41(5):1143–1151. doi:10.1016/j.watres.2006.11.045

    CAS  Google Scholar 

  • Baquero F (2012) Metagenomic epidemiology: a public health need for the control of antimicrobial resistance. Clin Microbiol Infect 18:67–73. doi:10.1111/j.1469-0691.2012.03860.x

    CAS  Google Scholar 

  • Baquero F, Martínez J, Cantón R (2008) Antibiotics and antibiotic resistance in water environments. Curr Opin Biotechnol 19(3):260–265. doi:10.1016/j.copbio.2008.05.006

    CAS  Google Scholar 

  • Bartoloni A, Pallecchi L, Rodríguez H, Fernandez C, Mantella A, Bartalesi F, Strohmeyer M, Kristiansson C, Gotuzzo E, Paradisi F, Rossolini GM (2009) Antibiotic resistance in a very remote Amazonas community. Int J Antimicrob Agents 33(2):125–129. doi:10.1016/j.ijantimicag.2008.07.029

    CAS  Google Scholar 

  • Baurhoo B, Ferket PR, Zhao X (2009) Effects of diets containing different concentrations of mannanoligosaccharide or antibiotics on growth performance, intestinal development, cecal and litter microbial populations, and carcass parameters of broilers. Poult Sci 88(11):2262–2272. doi:10.3382/ps.2008-00562

    CAS  Google Scholar 

  • Boczek LA, Rice EW, Johnston B, Johnson JR (2007) Occurrence of antibiotic-resistant uropathogenic Escherichia coli clonal group A in wastewater effluents. Appl Environ Microbiol 73(13):4180–4184. doi:10.1128/AEM.02225-06

    CAS  Google Scholar 

  • Bolton LF, Kelley LC, Lee MD, Fedorka-Cray PJ, Maurer JJ (1999) Detection of multidrug-resistant Salmonella enterica serotype typhimurium DT104 based on a gene which confers cross-resistance to florfenicol and chloramphenicol. J Clin Microbiol 37(5):1348–1351

    CAS  Google Scholar 

  • Bonnet C, Diarrassouba F, Brousseau R, Masson L, Topp E, Diarra MS (2009) Pathotype and antibiotic resistance gene distributions of Escherichia coli isolates from broiler chickens raised on antimicrobial-supplemented diets. Appl Environ Microbiol 75(22):6955–6962. doi:10.1128/AEM.00375-09

    CAS  Google Scholar 

  • Brabban A, Hite E, Callaway T (2005) Evolution of foodborne pathogens via temperate bacteriophage-mediated gene transfer. Foodborne Pathog Dis 2(4):287–303. doi:10.1089/fpd.2005.2.287

    Google Scholar 

  • Brown EM, Linham V (1988) The importation of multiple-resistant bacterial pathogens into British hospitals. J Hosp Infect 12(2):138–139

    CAS  Google Scholar 

  • Burrus V, Pavlovic G, Decaris B, Guédon G (2002) Conjugative transposons: the tip of the iceberg. Mol Microbiol 46(3):601–610

    CAS  Google Scholar 

  • Burrus V, Waldor MK (2004) Shaping bacterial genomes with integrative and conjugative elements. Res Microbiol 155(5):376–386. doi:10.1016/j.resmic.2004.01.012

    CAS  Google Scholar 

  • Bystroń J, Podkowik M, Piasecki T, Wieliczko A, Molenda J, Bania J (2010) Genotypes and enterotoxin gene content of S. aureus isolates from poultry. Vet Microbiol 144(3-4):498–501. doi:10.1016/j.vetmic.2010.01.029

    Google Scholar 

  • Bywater RJ (2004) Veterinary use of antimicrobials and emergence of resistance in zoonotic and sentinel bacteria in the Eu J Vet Med B Infect Dis Vet Public Health 51(8-9):361–363. doi:10.1111/j.1439-0450.2004.00791.x

    Google Scholar 

  • Cabello FC (2006) Heavy use of prophylactic antibiotics in aquaculture: a growing problem for human and animal health and for the environment. Environ Microbiol 8(7):1137–1144. doi:10.1111/j.1462-2920.2006.01054.x

    CAS  Google Scholar 

  • Calabrese EJ (2005) Paradigm lost, paradigm found: the re-emergence of hormesis as a fundamental dose response model in the toxicological sciences. Environ Pollut 138(3):379–411. doi:10.1016/j.envpol.2004.10.001

    Google Scholar 

  • Call DR (2005) Challenges and opportunities for pathogen detection using DNA microarrays. Crit Rev Microbiol 31(2):91–99. doi:10.1080/10408410590921736

    CAS  Google Scholar 

  • Call DR, Borucki MK, Loge FJ (2003) Detection of bacterial pathogens in environmental samples using DNA microarrays. J Microbiol Methods 53(2):235–243

    CAS  Google Scholar 

  • Caplin JL, Hanlon GW, Taylor HD (2008) Presence of vancomycin and ampicillin-resistant Enterococcus faecium of epidemic clonal complex-17 in wastewaters from the south coast of England. Environ Microbiol 10(4):885–892. doi:10.1111/j.1462-2920.2007.01507.x

    CAS  Google Scholar 

  • Cernat R, Balotescu C, Ivanescu D, Nedelcu D, Lazar V, Bucur M, Valeanu D, Tudorache R, Mitache M, Dragoescu M (2007) Mechanisms of resistance in multiple-antibiotic-resistant Escherichia coli strains isolated from drinking and recreational, salmaster waters. Int J Antimicrob Agents 29:S274. doi:10.1016/S0924-8579(07)70865-8

    Google Scholar 

  • César CE, Machón C, de la Cruz F, Llosa M (2006) A new domain of conjugative relaxase TrwC responsible for efficient oriT-specific recombination on minimal target sequences. Mol Microbiol 62(4):984–996. doi:10.1111/j.1365-2958.2006.05437.x

    Google Scholar 

  • Cha MY, Lee HY, Ko Y, Shim H, Park SB (2011) Pharmacophore-based strategy for the development of general and specific scFv biosensors for abused antibiotics. Bioconjug Chem 22(1):88–94. doi:10.1021/bc1004153

    CAS  Google Scholar 

  • Chee-Sanford JC, Mackie RI, Koike S, Krapac IG, Lin Y, Yannarell AC, Maxwell S, Aminov RI (2009) Fate and transport of antibiotic residues and antibiotic resistance genes following land application of manure waste. J Environ Qual 38(3):1086–1108. doi:10.2134/jeq2008.0128

    CAS  Google Scholar 

  • Chen I, Dubnau D (2004) DNA uptake during bacterial transformation. Nat Rev Micro 2(3):241–249. doi:10.1038/nrmicro844

    CAS  Google Scholar 

  • Chen J, Yu Z, Michel FC, Wittum T, Morrison M (2007) Development and application of real-time PCR assays for quantification of erm genes conferring resistance to macrolides-lincosamides-streptogramin B in livestock manure and manure management systems. Appl Environ Microbiol 73(14):4407–4416. doi:10.1128/AEM.02799-06

    CAS  Google Scholar 

  • Christie PJ (2004) Type IV secretion: the Agrobacterium VirB/D4 and related conjugation systems. Biochim Biophys Acta 1694(1-3):219–234. doi:10.1016/j.bbamcr.2004.02.013

    CAS  Google Scholar 

  • Christie PJ, Atmakuri K, Krishnamoorthy V, Jakubowski S, Cascales E (2005) Biogenesis, architecture, and function of bacterial type IV secretion systems. Annu Rev Microbiol 59:451–485. doi:10.1146/annurev.micro.58.030603.123630

    CAS  Google Scholar 

  • Christie PJ, Cascales E (2005) Structural and dynamic properties of bacterial type IV secretion systems (review). Mol Membr Biol 22(1-2):51–61

    CAS  Google Scholar 

  • Colles FM, McCarthy ND, Sheppard SK, Layton R, Maiden, Martin CJ (2010) Comparison of Campylobacter populations isolated from a free-range broiler flock before and after slaughter. Int J Food Microbiol 137(2-3):259–264. doi:10.1016/j.ijfoodmicro.2009.12.021

    CAS  Google Scholar 

  • Council Directive 91/271/EEC (1991) Council directive 91/271/EEC of 21 May 1991 concerning urban waste-water treatment

    Google Scholar 

  • Czekalski N, Berthold T, Caucci S, Egli A, Bürgmann H (2012) Increased levels of multiresistant bacteria and resistance genes after wastewater treatment and their dissemination into Lake Geneva, Switzerland. Front. Microbio. 3. doi:10.3389/fmicb.2012.00106

    Google Scholar 

  • Dalkmann P, Broszat M, Siebe C, Willaschek E, Sakinc T, Huebner J, Amelung W, Grohmann E, Siemens J, Liles MR (2012) Accumulation of pharmaceuticals, Enterococcus, and resistance genes in soils irrigated with wastewater for zero to 100 years in Central Mexico. PLoS ONE 7(9):e45397. doi:10.1371/journal.pone.0045397

    CAS  Google Scholar 

  • Dalsgaard A, Forslund A, Serichantalergs O, Sandvang D (2000) Distribution and content of class 1 integrons in different Vibrio cholerae O-serotype strains isolated in Thailand. Antimicrob Agents Chemother 44(5):1315–1321

    CAS  Google Scholar 

  • Dang H, Ren J, Song L, Sun S, An L (2008) Dominant chloramphenicol-resistant bacteria and resistance genes in coastal marine waters of Jiaozhou Bay, China. World J Microbiol Biotechnol 24(2):209–217. doi:10.1007/s11274-007-9458-8

    CAS  Google Scholar 

  • Dantas G, Sommer MOA, Oluwasegun RD, Church GM (2008) Bacteria subsisting on antibiotics. Science 320(5872):100–103. doi:10.1126/science.1155157

    CAS  Google Scholar 

  • Davies J, Davies D (2010) Origins and evolution of antibiotic resistance. Microbiol Mol Biol Rev 74(3):417–433. doi:10.1128/MMBR.00016-10

    CAS  Google Scholar 

  • Davies J, Spiegelman GB, Yim G (2006) The world of subinhibitory antibiotic concentrations. Curr Opin Microbiol 9(5):445–453. doi:10.1016/j.mib.2006.08.006

    CAS  Google Scholar 

  • Davis MF, Price LB, Liu CM, Silbergeld EK (2011) An ecological perspective on U.S. industrial poultry production: the role of anthropogenic ecosystems on the emergence of drug-resistant bacteria from agricultural environments. Curr Opin Microbiol 14(3):244–250. doi:10.1016/j.mib.2011.04.003

    Google Scholar 

  • de-los-Santos-Alvarez N, Lobo-Castañón MJ, Miranda-Ordieres AJ, Tuñón-Blanco P (2009) SPR sensing of small molecules with modified RNA aptamers: detection of neomycin B. Biosens Bioelectron 24(8):2547–2553. doi:10.1016/j.bios.2009.01.011

    CAS  Google Scholar 

  • Denis M, Chidaine B, Laisney M, Kempf I, Rivoal K, Mégraud F, Fravalo P (2009) Comparison of genetic profiles of Campylobacter strains isolated from poultry, pig and Campylobacter human infections in Brittany, France. Pathol Biol 57(1):23–29. doi:10.1016/j.patbio.2008.04.007

    CAS  Google Scholar 

  • De-Soet F (1974) Agriculture and the environment. Agric Environ (1):1–15

    Google Scholar 

  • Diarra MS, Rempel H, Champagne J, Masson L, Pritchard J, Topp E (2010) Distribution of antimicrobial resistance and virulence genes in Enterococcus spp. and characterization of isolates from broiler chickens. Appl Environ Microbiol 76(24):8033–8043. doi:10.1128/AEM.01545-10

    CAS  Google Scholar 

  • Diarra MS, Silversides FG, Diarrassouba F, Pritchard J, Masson L, Brousseau R, Bonnet C, Delaquis P, Bach S, Skura BJ, Topp E (2007) Impact of feed supplementation with antimicrobial agents on growth performance of broiler chickens, Clostridium perfringens and Enterococcus counts, and antibiotic resistance phenotypes and distribution of antimicrobial resistance determinants in Escherichia coli isolates. Appl Environ Microbiol 73(20):6566–6576. doi:10.1128/AEM.01086-07

    CAS  Google Scholar 

  • Ding Z, Atmakuri K, Christie PJ (2003) The outs and ins of bacterial type IV secretion substrates. Trends Microbiol 11(11):527–535

    CAS  Google Scholar 

  • Dodd MC (2012) Potential impacts of disinfection processes on elimination and deactivation of antibiotic resistance genes during water and wastewater treatment. J Environ Monit 14(7):1754. doi:10.1039/c2em00006 g

    CAS  Google Scholar 

  • Dolliver H, Gupta S (2008) Antibiotic losses in leaching and surface runoff from manure-amended agricultural land. J Environ Qual 37(3):1227–1237. doi:10.2134/jeq2007.0392

    CAS  Google Scholar 

  • Dong Z, Huang G, Xu S, Deng C, Zhu J, Chen S, Yang X, Zhao S (2009) Real-time and label-free detection of chloramphenicol residues with specific molecular interaction. J Microsc 234(3):255–261. doi:10.1111/j.1365-2818.2009.03175.x

    CAS  Google Scholar 

  • Draper O, César CE, Machón C, de la Cruz F, Llosa M (2005) Site-specific recombinase and integrase activities of a conjugative relaxase in recipient cells. Proc Natl Acad Sci USA 102(45):16385–16390. doi:10.1073/pnas.0506081102

    CAS  Google Scholar 

  • Fajardo A, Martínez JL (2008) Antibiotics as signals that trigger specific bacterial responses. Curr Opin Microbiol 11(2):161–167. doi:10.1016/j.mib.2008.02.006

    CAS  Google Scholar 

  • FDA (2010) Summary report on antimicrobials sold or distributed for use in food-producing animals; section 105 of the Animal Drug User Fee Amendments of 2008 (ADUFA). http://www.fda.gov/AnimalVeterinary/NewsEvents/CVMUpdates/ucm236143.htm. Accessed 14 Jun 2013

  • Ferguson JP, Baxter GA, McEvoy JDG, Stead S, Rawlings E, Sharman M (2002) Detection of streptomycin and dihydrostreptomycin residues in milk, honey and meat samples using an optical biosensor. Analyst (7):951–956

    Google Scholar 

  • Ferreira da Silva M, Vaz-Moreira I, Gonzalez-Pajuelo M, Nunes OC, Manaia CM (2007) Antimicrobial resistance patterns in Enterobacteriaceae isolated from an urban wastewater treatment plant. FEMS Microbiol Ecol 60(1):166–176. doi:10.1111/j.1574-6941.2006.00268.x

    Google Scholar 

  • Fey PD, Safranek TJ, Rupp ME, Dunne EF, Ribot E, Iwen PC, Bradford PA, Angulo FJ, Hinrichs SH (2000) Ceftriaxone-resistant salmonella infection acquired by a child from cattle. N Engl J Med 342(17):1242–1249. doi:10.1056/NEJM200004273421703

    CAS  Google Scholar 

  • Figueira V, Serra E, Manaia CM (2011) Differential patterns of antimicrobial resistance in population subsets of Escherichia coli isolated from waste- and surface waters. Science of The Total Environment 409(6):1017–1023. doi:10.1016/j.scitotenv.2010.12.011

    CAS  Google Scholar 

  • Figueira V, Vaz-Moreira I, Silva M, Manaia CM (2011) Diversity and antibiotic resistance of Aeromonas spp. in drinking and waste water treatment plants. Water Res 45(17):5599–5611. doi:10.1016/j.watres.2011.08.021

    CAS  Google Scholar 

  • Furtula V, Farrell EG, Diarrassouba F, Rempel H, Pritchard J, Diarra MS (2010) Veterinary pharmaceuticals and antibiotic resistance of Escherichia coli isolates in poultry litter from commercial farms and controlled feeding trials. Poult Sci 89(1):180–188. doi:10.3382/ps.2009-00198

    CAS  Google Scholar 

  • Gajan EB, Abashov R, Aghazadeh M, Eslami H, Oskouei SG, Mohammadnejad D (2008) Vancomycin-resistant Enterococcus faecalis from a wastewater treatment plant in Tabriz, Iran. Pak J Biol Sci 11(20):2443–2446

    CAS  Google Scholar 

  • Galvin S, Boyle F, Hickey P, Vellinga A, Morris D, Cormican M (2010) Enumeration and characterization of antimicrobial-resistant Escherichia coli bacteria in effluent from municipal, hospital, and secondary treatment facility sources. Appl Environ Microbiol 76(14):4772–4779. doi:10.1128/AEM.02898-09

    CAS  Google Scholar 

  • Gilbride KA, Lee D, Beaudette LA (2006) Molecular techniques in wastewater: understanding microbial communities, detecting pathogens, and real-time process control. J Microbiol Methods 66(1):1–20. doi:10.1016/j.mimet.2006.02.016

    CAS  Google Scholar 

  • Gilliver MA, Bennett M, Begon M, Hazel SM, Hart CA (1999) Antibiotic resistance found in wild rodents. Nature 401(6750):233–234. doi:10.1038/45724

    CAS  Google Scholar 

  • Giroud F, Gorgy K, Gondran C, Cosnier S, Pinacho DG, Marco M, Sánchez-Baeza FJ (2009) Impedimetric based on a polypyrrole-antibiotic model film for the label-free picomolar detection of ciprofloxacin. Anal Chem 81(20):8405–8409. doi:10.1021/ac901290m

    CAS  Google Scholar 

  • Gonzalo MP, Arribas RM, Latorre E, Baquero F, Martinez JL (1989) Sewage dilution and loss of antibiotic resistance and virulence determinants in E. coli. FEMS Microbiol Lett 50(1-2):93–96

    CAS  Google Scholar 

  • Gould IM (2008) The epidemiology of antibiotic resistance. Int J Antimicro Agents 32:S2 doi:10.1016/j.ijantimicag.2008.06.016

    Google Scholar 

  • Graham JP, Evans SL, Price LB, Silbergeld EK (2009) Fate of antimicrobial-resistant enterococci and staphylococci and resistance determinants in stored poultry litter. Environ Res 109(6):682–689. doi:10.1016/j.envres.2009.05.005

    CAS  Google Scholar 

  • Graham JP, Nachman KE (2010) Managing waste from confined animal feeding operations in the United States: the need for sanitary reform. J Water Health 8(4):646–670. doi:10.2166/wh.2010.075

    Google Scholar 

  • Graham JP, Price LB, Evans SL, Graczyk TK, Silbergeld EK (2009) Antibiotic resistant enterococci and staphylococci isolated from flies collected near confined poultry feeding operations. Sci Total Environ 407(8):2701–2710. doi:10.1016/j.scitotenv.2008.11.056

    CAS  Google Scholar 

  • Grenet K, Guillemot D, Jarlier V, Moreau B, Dubourdieu S, Ruimy R, Armand-Lefevre L, Bau P, Andremont A (2004) Antibacterial resistance, Wayampis Amerindians, French Guyana. Emerging Infect Dis 10(6):1150–1153. doi:10.3201/eid1006.031015

    Google Scholar 

  • Grohmann E, Muth G, Espinosa M (2003) Conjugative plasmid transfer in gram-positive bacteria. Microbiol Mol Biol Rev 67(2):277–301

    CAS  Google Scholar 

  • Gullberg E, Cao S, Berg OG, Ilbäck C, Sandegren L, Hughes D, Andersson DI, Lipsitch M (2011) Selection of resistant bacteria at very low antibiotic concentrations. PLoS Pathog 7(7):e1002158. doi:10.1371/journal.ppat.1002158

    CAS  Google Scholar 

  • Gupta A, Nelson JM, Barrett TJ, Tauxe RV, Rossiter SP, Friedman CR, Joyce KW, Smith KE, Jones TF, Hawkins MA, Shiferaw B, Beebe JL, Vugia DJ, Rabatsky-Ehr T, Benson JA, Root TP, Angulo FJ (2004) Antimicrobial resistance among Campylobacter strains, United States, 1997-2001. Emerging Infect Dis 10(6):1102–1109. doi:10.3201/eid1006.030635

    Google Scholar 

  • Halling-Sørensen B, Nors Nielsen S, Lanzky PF, Ingerslev F, Holten Lützhøft HC, Jørgensen SE (1998) fate and effects of pharmaceutical substances in the environment-a review. Chemosphere 36(2):357–393

    Google Scholar 

  • Harnett N, McLeod S, AuYong Y, Wan J, Alexander S, Khakhria R, Krishnan C (1998) Molecular characterization of multiresistant strains of Salmonella typhi from South Asia isolated in Ontario, Canada. Can J Microbiol 44(4):356–363

    CAS  Google Scholar 

  • Hastings R, Colles FM, McCarthy ND, Maiden MCJ, Sheppard SK (2011) Campylobacter genotypes from poultry transportation crates indicate a source of contamination and transmission. J Appl Microbiol 110(1):266–276. doi:10.1111/j.1365-2672.2010.04883.x

    CAS  Google Scholar 

  • Helmuth R, Hensel A (2004) Towards the rational use of antibiotics: results of the first International on the Risk Analysis of Antibiotic Resistance. J Vet Med B Infect Dis Vet Public Health 51(8-9):357–360. doi:10.1111/j.1439-0450.2004.00778.x

    CAS  Google Scholar 

  • Henzler DJ, Opitz HM (1992) The role of mice in the epizootiology of Salmonella enteritidis infection on chicken layer farms. Avian Dis 36(3):625–631

    Google Scholar 

  • Hershberger E, Oprea SF, Donabedian SM, Perri M, Bozigar P, Bartlett P, Zervos MJ (2005) Epidemiology of antimicrobial resistance in enterococci of animal origin. J Antimicrob Chemother 55(1):127–130. doi:10.1093/jac/dkh508

    CAS  Google Scholar 

  • Heuer H, Krögerrecklenfort E, Wellington E, Egan S, Elsas J, Overbeek L, Collard J, Guillaume G, Karagouni A, Nikolakopoulou T, Smalla K (2002) Gentamicin resistance genes in environmental bacteria: prevalence and transfer. FEMS Microbiology Ecology 42(2):289–302. doi: 10.1111/j.1574-6941.2002.tb01019.

    Google Scholar 

  • Hirsch R, Ternes T, Haberer K, Kratz KL (1999) Occurrence of antibiotics in the aquatic environment. Sci Total Environ 225(1-2):109–118

    CAS  Google Scholar 

  • Hollenbeck BL, Rice LB (2012) Intrinsic and acquired resistance mechanisms in Enterococcus. Virulence 3(5):421–433. doi:10.4161/viru.21282

    Google Scholar 

  • Huang J, Hu H, Wu Y, Wei B, Lu Y (2013) Effect of chlorination and ultraviolet disinfection on tetA-mediated tetracycline resistance of Escherichia coli. Chemosphere 90(8):2247–2253. doi:10.1016/j.chemosphere.2012.10.008

    CAS  Google Scholar 

  • Hughes D, Andersson DI (2012) Selection of resistance at lethal and non-lethal antibiotic concentrations. Curr Opin Microbiol 15(5):555–560. doi:10.1016/j.mib.2012.07.005

    Google Scholar 

  • Ionescu RE, Jaffrezic-Renault N, Bouffier L, Gondran C, Cosnier S, Pinacho DG, Marco M, Sánchez-Baeza FJ, Healy T, Martelet C (2007) Impedimetric immunosensor for the specific label free detection of ciprofloxacin antibiotic. Biosens Bioelectron 23(4):549–555. doi:10.1016/j.bios.2007.07.014

    CAS  Google Scholar 

  • Iversen A, Kühn I, Franklin A, Möllby R (2002) High prevalence of vancomycin-resistant enterococci in Swedish sewage. Appl Environ Microbiol 68(6):2838–2842

    CAS  Google Scholar 

  • Iwane T, Urase T, Yamamoto K (2001) Possible impact of treated wastewater discharge on incidence of antibiotic resistant bacteria in river water. Water Sci Technol 43(2):91–99

    CAS  Google Scholar 

  • Jackson W, Piper J (1989) The necessary marriage between ecology and agriculture. Ecology 70:1091–1993

    Google Scholar 

  • Jacobs L, Chenia HY (2007) Characterization of integrons and tetracycline resistance determinants in Aeromonas spp. isolated from South African aquaculture systems. Int J Food Microbiol 114(3):295–306. doi:10.1016/j.ijfoodmicro.2006.09.030

    CAS  Google Scholar 

  • Juhas M, Crook DW, Dimopoulou ID, Lunter G, Harding RM, Ferguson DJ, Hood DW (2007) Novel type IV secretion system involved in propagation of genomic islands. J Bacteriol 189(3):761–771. doi:10.1128/JB.01327-06

    CAS  Google Scholar 

  • Juhas M, Crook DW, Hood DW (2008) Type IV secretion systems: tools of bacterial horizontal gene transfer and virulence. Cell Microbiol 10(12):2377–2386. doi:10.1111/j.1462-5822.2008.01187.x

    CAS  Google Scholar 

  • Kim S, Nonaka L, Suzuki S (2004) Occurrence of tetracycline resistance genes tet(M) and tet(S) in bacteria from marine aquaculture sites. FEMS Microbiol Lett 237(1):147–156. doi:10.1016/j.femsle.2004.06.026

    CAS  Google Scholar 

  • Kim S, Jensen JN, Aga DS, Weber AS (2007a) Fate of tetracycline resistant bacteria as a function of activated sludge process organic loading and growth rate. Water Sci Technol 55(1-2):291–297

    CAS  Google Scholar 

  • Kim S, Carlson K (2007b) Temporal and spatial trends in the occurrence of human and veterinary antibiotics in aqueous and river sediment matrices. Environ Sci Technol 41(1):50–57

    CAS  Google Scholar 

  • Kim S, Jensen JN, Aga DS, Weber AS (2007c) Tetracycline as a selector for resistant bacteria in activated sludge. Chemosphere 66(9):1643–1651. doi:10.1016/j.chemosphere.2006.07.066

    CAS  Google Scholar 

  • Kim YS, Niazi JH, Gu MB (2009) Specific detection of oxytetracycline using DNA aptamer-immobilized interdigitated array electrode chip. Anal Chim Acta 634(2):250–254. doi:10.1016/j.aca.2008.12.025

    CAS  Google Scholar 

  • Klare I, Konstabel C, Badstübner D, Werner G, Witte W (2003) Occurrence and spread of antibiotic resistances in Enterococcus faecium. Int J Food Microbiol 88(2-3):269–290

    CAS  Google Scholar 

  • Knapp CW, Dolfing J, Ehlert PA, Graham DW (2010) Evidence of increasing antibiotic resistance gene abundances in archived soils since 1940. Environ Sci Technol 44(2):580–587. doi:10.1021/es901221x

    CAS  Google Scholar 

  • Knapp CW, McCluskey SM, Singh BK, Campbell CD, Hudson G, Graham DW (2011) Antibiotic resistance gene abundances correlate with metal and geochemical conditions in archived Scottish soils. PLoS ONE 6(11):e27300. doi:10.1371/journal.pone.0027300

    CAS  Google Scholar 

  • Koch S, Hufnagel M, Theilacker C, Huebner J (2004) Enterococcal infections: host response, therapeutic, and prophylactic possibilities. Vaccine 22(7):822–830. doi:10.1016/j.vaccine.2003.11.027

    CAS  Google Scholar 

  • Koksal F, Oguzkurt N, Samasti M, Altas K (2007) Prevalence and antimicrobial resistance patterns of Aeromonas strains isolated from drinking water samples in Istanbul, Turkey. Chemotherapy 53(1):30–35. doi:10.1159/000098248

    CAS  Google Scholar 

  • Kopec J, Bergmann A, Fritz G, Grohmann E, Keller W (2005) TraA and its N-terminal relaxase domain of the -positive plasmid pIP501 show specific oriT binding and behave as dimers in solution. Biochem J 387(Pt 2):401–409. doi:10.1042/BJ20041178

    Google Scholar 

  • Kruse H, Sørum H (1994) Transfer of multiple drug resistance plasmids between bacteria of diverse origins in natural microenvironments. Appl Environ Microbiol 60(11):4015–4021

    CAS  Google Scholar 

  • Kumar K, Gupta S, Chander J, Singh H (2005) Antibiotic use in agriculture and its impact on the terrestrial environment. Adv Agron 87

    Google Scholar 

  • Kümmerer K (2003) Significance of antibiotics in the environment. J Antimicrob Chemother 52(1):5–7. doi:10.1093/jac/dkg293

    Google Scholar 

  • Kümmerer K (2009) Antibiotics in the aquatic environment–a review–part I. Chemosphere 75(4):417–434. doi:10.1016/j.chemosphere.2008.11.086

    Google Scholar 

  • Kümmerer K (2009) Antibiotics in the aquatic environment–a review–part II. Chemosphere 75(4):435–441. doi:10.1016/j.chemosphere.2008.12.006

    Google Scholar 

  • Kurenbach B, Kopeć J, Mägdefrau M, Andreas K, Keller W, Bohn C, Abajy MY, Grohmann E (2006) The TraA relaxase autoregulates the putative type IV secretion-like system encoded by the broad-host-range Streptococcus agalactiae plasmid pIP501. Microbiology 152(Pt 3):637–645. doi:10.1099/mic.0.28468-0

    Google Scholar 

  • Lawley TD, Klimke WA, Gubbins MJ, Frost LS (2003) F factor conjugation is a true type IV secretion system. FEMS Microbiol Lett 224(1):1–15

    CAS  Google Scholar 

  • Lees P, Concordet D, Aliabadi FS, Toutain P (2006) Drug selection and optimization of dosage schedules to minimize antimicrobial resistance. In: Antimicrobial resistance in bacteria of animal origin. ASM Press, Washington, DC, pp 49–71

    Google Scholar 

  • Leibler JH, Carone M, Silbergeld EK (2010) Contribution of company affiliation and social contacts to risk estimates of between-farm transmission of avian influenza. PLoS ONE 5(3):e9888. doi:10.1371/journal.pone.0009888

    Google Scholar 

  • Leibler JH, Otte J, Roland-Holst D, Pfeiffer DU, Soares Magalhaes R, Rushton J, Graham JP, Silbergeld EK (2009) Industrial food animal production and global health risks: exploring the ecosystems and economics of avian influenza. Ecohealth 6(1):58–70. doi:10.1007/s10393-009-0226-0

    Google Scholar 

  • Levin BR (2002) Models for the spread of resistant pathogens. Neth J Med 60(7 Suppl):58–64; discussion 64–6

    Google Scholar 

  • Levy SB, McMurry LM, Barbosa TM, Burdett V, Courvalin P, Hillen W, Roberts MC, Rood JI, Taylor DE (1999) Nomenclature for new tetracycline resistance determinants. Antimicrob Agents Chemother 43(6):1523–1524

    CAS  Google Scholar 

  • Linares JF, Gustafsson I, Baquero F, Martinez JL (2006) Antibiotics as intermicrobial signaling agents instead of weapons. Proc Natl Acad Sci USA 103(51):19484–19489. doi:10.1073/pnas.0608949103

    Google Scholar 

  • Lindberg RH, Björklund K, Rendahl P, Johansson MI, Tysklind M, Andersson BAV (2007) Environmental risk assessment of antibiotics in the Swedish environment with emphasis on sewage treatment plants. Water Res 41(3):613–619. doi:10.1016/j.watres.2006.11.014

    CAS  Google Scholar 

  • Liu A, Fong A, Becket E, Yuan J, Tamae C, Medrano L, Maiz M, Wahba C, Lee C, Lee K, Tran KP, Yang H, Hoffman RM, Salih A, Miller JH (2011) Selective advantage of resistant strains at trace levels of : a simple and ultrasensitive color test for detection of antibiotics and genotoxic agents. Antimicrob Agents Chemother 55(3):1204–1210. doi:10.1128/AAC.01182–10

    CAS  Google Scholar 

  • Livermore DM (2005) Minimising antibiotic resistance. Lancet Infect Dis 5(7):450–459. doi:10.1016/S1473-3099(05)70166-3

    Google Scholar 

  • Lorenz MG, Wackernagel W (1994) Bacterial gene transfer by natural genetic transformation in the environment. Microbiol Rev 58(3):563–602

    CAS  Google Scholar 

  • Love DC, Davis MF, Bassett A, Gunther A, Nachman KE (2011) Dose imprecision and resistance: free-choice medicated feeds in industrial food animal production in the United States. Environ Health Perspect 119(3):279–283. doi:10.1289/ehp.1002625

    Google Scholar 

  • Łuczkiewicz A, Jankowska K, Fudala-Książek S, Olańczuk-Neyman K (2010) Antimicrobial resistance of fecal indicators in municipal wastewater treatment plant. Water Res 44(17):5089–5097. doi:10.1016/j.watres.2010.08.007

    Google Scholar 

  • Mackie RI, Koike S, Krapac I, Chee-Sanford J, Maxwell S, Aminov RI (2006) Tetracycline residues and tetracycline resistance genes in groundwater impacted by swine production facilities. Anim. Biotechnol 17(2):157–176. doi:10.1080/10495390600956953

    CAS  Google Scholar 

  • Malik A, Celik E, Bohn C, Böckelmann U, Knobel K, Grohmann E (2008) Detection of conjugative plasmids and antibiotic resistance genes in anthropogenic soils from Germany and India. FEMS Microbiol Lett 279(2):207–216. doi:10.1111/j.1574-6968.2007.01030.x

    CAS  Google Scholar 

  • Manaia CM, Vaz-Moreira I, Nunes OC (2012) Antibiotic resistance in waste water and surface water and human health implications. In: Barceló D (ed) Emerging organic contaminants. Springer, pp 173–212

    Google Scholar 

  • Martinez JL (2009) Environmental pollution by antibiotics and by antibiotic resistance determinants. Environ Pollut 157(11):2893–2902. doi:10.1016/j.envpol.2009.05.051

    CAS  Google Scholar 

  • Martinez JL, Fajardo A, Garmendia L, Hernandez A, Linares JF, Martínez-Solano L, Sánchez MB (2009) A global view of antibiotic resistance. FEMS Microbiol Rev 33(1):44–65. doi:10.1111/j.1574–6976.2008.00142.x

    CAS  Google Scholar 

  • Martinez S Vertical coordination of marketing systems: lessons from the poultry, egg, and pork industries. Electronic Report from the Economic Research Service 2002. Available from http://www.ers.usda.gov/publications/AER807/.

  • Martínez JL, Baquero F, Andersson DI (2007) Predicting antibiotic resistance. Nat Rev Microbiol 5(12):958–965. doi:10.1038/nrmicro1796

    Google Scholar 

  • Martinez, J. L. (2008): Antibiotics and Antibiotic Resistance Genes in Natural Environments. In: Science 321 (5887), S. 365–367. DOI: 10.1126/science.1159483

    Google Scholar 

  • Martins da Costa P, Vaz-Pires P, Bernardo F (2006) Antimicrobial resistance in Enterococcus spp. isolated in inflow, effluent and sludge from municipal sewage water treatment plants. Water Res 10(8):1735–1740. doi:10.1016/j.watres.2006.02.025

    Google Scholar 

  • McEwen SA, Prescott JF, Boerlin P (2010) Antibiotics and poultry—A comment. Can Vet J 51(6):561–562

    Google Scholar 

  • McManus PS, Stockwell VO, Sundin GW, Jones AL (2002) Antibiotic use in plant agriculture. Annu Rev Phytopathol 40:443–465. doi:10.1146/annurev.phyto.40.120301.093927

    CAS  Google Scholar 

  • Mendez B, Tachibana C, Levy SB (1980) Heterogeneity of tetracycline resistance determinants. Plasmid 3(2):99–108

    CAS  Google Scholar 

  • Mezrioui N, Baleux B (1994) Resistance patterns of E. coli strains isolated from domestic sewage before and after treatment in both aerobic lagoon and activated sludge. Water Res 28(11):2399–2406. doi:10.1016/0043-1354(94)90056-6

    Google Scholar 

  • M′ikanatha NM, Sandt CH, Localio AR, Tewari D, Rankin SC, Whichard JM, Altekruse SF, Lautenbach E, Folster JP, Russo A, Chiller TM, Reynolds SM, McDermott PF (2010) Multidrug-resistant Salmonella isolates from retail chicken meat compared with human clinical isolates. Foodborne Pathog. Dis 7(8):929–934. doi:10.1089/fpd.2009.0499

    Google Scholar 

  • Miranda CD, Kehrenberg C, Ulep C, Schwarz S, Roberts MC (2003) Diversity of tetracycline resistance genes in bacteria from Chilean salmon farms. Antimicrob Agents Chemother 47(3):883–888

    Google Scholar 

  • Mohapatra H, Mohapatra SS, Mantri CK, Colwell RR, Singh DV (2008) Vibrio cholerae non-O1, non-O139 strains isolated before 1992 from Varanasi, India are multiple drug resistant, contain intSXT, dfr18 and aadA5 genes. Environ Microbiol 10(4):866–873. doi:10.1111/j.1462-2920.2007.01502.x

    CAS  Google Scholar 

  • Mulders MN, Haenen APJ, Geenen PL, Vesseur PC, Poldervaart ES, Bosch T, Huijsdens XW, Hengeveld PD, Dam-Deisz WDC, Graat EAM, Mevius D, Voss A, Van De Giessen AW (2010) Prevalence of livestock-associated MRSA in broiler flocks and risk factors for slaughterhouse personnel in The Netherlands. Epidemiol Infect 138(5):743–755. doi:10.1017/S0950268810000075

    CAS  Google Scholar 

  • Munir M, Wong K, Xagoraraki I (2011) Release of antibiotic resistant bacteria and genes in the effluent and biosolids of five wastewater utilities in Michigan. Water Res 45(2):681–693. doi:10.1016/j.watres.2010.08.033

    CAS  Google Scholar 

  • Murray BE, Mathewson JJ, DuPont HL, Ericsson CD, Reves RR (1990) Emergence of resistant fcal Escherichia coli in travelers not taking prophylactic antimicrobial agents. Antimicrob Agents Chemother 34(4):515–518

    CAS  Google Scholar 

  • M’Zali FH, Heritage J, Gascoyne-Binzi DM, Denton M, Todd NJ, Hawkey PM (1997) Transcontinental importation into the UK of Escherichia coli expressing a plasmid-mediated AmpC-type beta-lactamase exposed during an outbreak of SHV-5 extended-spectrum beta-lactamase in a Leeds hospital. J Antimicrob Chemother 40(6):823–831

    Google Scholar 

  • Nandi S, Maurer JJ, Hofacre C, Summers AO (2004) Gram-positive bacteria are a major reservoir of Class 1 antibiotic resistance integrons in poultry litter. Proc. Natl. Acad. Sci. U. SA 101(18):7118–7122. doi:10.1073/pnas.0306466101

    CAS  Google Scholar 

  • Nonaka L, Ikeno K, Suzuki S (2007) Distribution of tetracycline resistance gene, tet(M), in Gram-positive and Gram-negative bacteria isolated from sediment and seawater at a coastal aquaculture site in Japan. Microb Environ (22):355–364

    Google Scholar 

  • Novo A, Manaia CM (2010) Factors influencing antibiotic resistance burden in municipal wastewater treatment plants. Appl Microbiol Biotechnol 87(3):1157–1166. doi:10.1007/s00253-010-2583-6

    CAS  Google Scholar 

  • O′Brien TF, Pla MP, Mayer KH, Kishi H, Gilleece E, Syvanen M, Hopkins JD (1985) Intercontinental spread of a new antibiotic resistance gene on an epidemic plasmid. Science 230(4721):87–88

    Google Scholar 

  • Obst U, Schwartz T, Volkmann H (2006) Antibiotic resistant pathogenic bacteria and their resistance genes in bacterial biofilms. Int J Artif Organs 29(4):387–394

    CAS  Google Scholar 

  • Okeke IN, Edelman R (2001) Dissemination of antibiotic-resistant bacteria across geographic borders. Clin Infect Dis 33(3):364–369. doi:10.1086/321877

    CAS  Google Scholar 

  • Öncü NB, Menceloğlu YZ, Balcioğlu IA (2011) Comparison of the effectiveness of chlorine, ozone, and photocatalytic disinfection in reducing the risk of antibiotic resistance pollution. J Adv Oxid Technol (14):196–203

    Google Scholar 

  • Ozgumus OB, Celik-Sevim E, Alpay-Karaoglu S, Sandalli C, Sevim A (2007) Molecular characterization of antibiotic resistant Escherichia coli strains isolated from tap and spring waters in a coastal region in Turkey. J Microbiol 45(5):379–387

    Google Scholar 

  • Pallecchi L, Bartoloni A, Paradisi F, Rossolini GM (2008) Antibiotic resistance in the absence of antimicrobial use: mechanisms and implications. Expert Rev Anti Infect Ther 6(5):725–732. doi:10.1586/14787210.6.5.725

    Google Scholar 

  • Pansegrau W, Lanka E (1996) Enzymology of DNA transfer by conjugative mechanisms. Prog Nucleic Acid Res Mol Biol 54:197–251

    CAS  Google Scholar 

  • Parsley LC, Consuegra EJ, Kakirde KS, Land AM, Harper WF, Liles MR (2010) Identification of diverse antimicrobial resistance determinants carried on bacterial, plasmid, or viral metagenomes from an activated sludge microbial assemblage. Appl Environ Microbiol 76(11):3753–3757. doi:10.1128/AEM.03080-09

    CAS  Google Scholar 

  • Patterson AJ, Colangeli R, Spigaglia P, Scott KP (2007) Distribution of specific tetracycline and erythromycin resistance genes in environmental samples assessed by macroarray detection. Environ Microbiol 9(3):703–715. doi:10.1111/j.1462-2920.2006.01190.x

    CAS  Google Scholar 

  • Pei R, Kim S, Carlson KH, Pruden A (2006) Effect of river landscape on the sediment concentrations of antibiotics and corresponding antibiotic resistance genes (ARG). Water Res 40(12):2427–2435. doi:10.1016/j.watres.2006.04.017

    CAS  Google Scholar 

  • Peterson AE, Vegosen L, Leibler J, Davis MF, Feingold B, Silbergeld E (2010) Emerging infectious diseases and the environment. Determinantes Ambientales y Sociales de la Salud [Environmental and social determinants of health]

    Google Scholar 

  • Price LB, Graham JP, Lackey LG, Roess A, Vailes R, Silbergeld E (2007) Elevated risk of carrying gentamicin-resistant Escherichia coli among U.S. poultry workers. Environ Health Perspect 115(12):1738–1742. doi:10.1289/ehp.10191

    Google Scholar 

  • Price LB, Lackey LG, Vailes R, Silbergeld E (2007) The persistence of fluoroquinolone-resistant Campylobacter in poultry production. Environ Health Perspect 115(7):1035–1039. doi:10.1289/ehp.10050

    CAS  Google Scholar 

  • Qu A, Brulc JM, Wilson MK, Law BF, Theoret JR, Joens LA, Konkel ME, Angly F, Dinsdale EA, Edwards RA, Nelson KE, White BA (2008) Comparative metagenomics reveals host specific metavirulomes and horizontal gene transfer elements in the chicken cecum microbiome. PLoS ONE 3(8):e2945. doi:10.1371/journal.pone.0002945

    Google Scholar 

  • Rahman MH, Nonaka L, Tago R, Suzuki S (2008) Occurrence of two genotypes of tetracycline (TC) resistance gene tet(M) in the TC-resistant bacteria in marine sediments of Japan. Environ Sci Technol 42(14):5055–5061

    CAS  Google Scholar 

  • Ram S, Vajpayee P, Shanker R (2007) Contamination of potable water distribution system by multi-antimicrobial resistant enterohaemorrhagic Escherichia coli. Environ Health Perspect. doi:10.1289/ehp.10809

    Google Scholar 

  • Rebe Raz S, Bremer MGEG, Giesbers M, Norde W (2008) Development of a biosensor microarray food screening, using imaging surface plasmon resonance. Biosens Bioelectron 24(4):552–557. doi:10.1016/j.bios.2008.05.010

    Google Scholar 

  • Reder-Christ K, Bendas G (2011) Biosensor applications in the field of antibiotic research-a review of recent developments. Sensors 11(12):9450–9466. doi:10.3390/s111009450

    Google Scholar 

  • Reinthaler FF, Posch J, Feierl G, Wüst G, Haas D, Ruckenbauer G, Mascher F, Marth E (2003) Antibiotic resistance of E. coli in sewage and sludge. Water Res. 37(8):1685–1690. doi:10.1016/S0043-1354(02)00569-9

    CAS  Google Scholar 

  • Rhodes G, Huys G, Swings J, McGann P, Hiney M, Smith P, Pickup RW (2000) Distribution of oxytetracycline resistance plasmids between aeromonads in hospital and aquaculture environments: implication of Tn1721 in dissemination of the tetracycline resistance determinant tet A. Appl Environ Microbiol 66(9):3883–3890

    CAS  Google Scholar 

  • Rizzo L, Manaia C, Merlin C, Schwartz T, Dagot C, Ploy MC, Michael I, Fatta-Kassinos D (2013) Urban wastewater treatment plants as hotspots for antibiotic resistant bacteria and genes spread into the environment: a review. Sci Total Environ 447:345–360. doi:10.1016/j.scitotenv.2013.01.032

    CAS  Google Scholar 

  • Roberts AP, Mullany P (2010) Oral biofilms: a reservoir of transferable, bacterial, antimicrobial resistance. Expert Rev Anti Infect Ther 8(12):1441–1450. doi:10.1586/eri.10.106

    CAS  Google Scholar 

  • Roberts MC, Kenny GE (1986) Dissemination of the tetM tetracycline resistance determinant to Ureaplasma urealyticum. Antimicrob Agents Chemother 29(2):350–352

    CAS  Google Scholar 

  • Rodríguez-Rojas A, Rodríguez-Beltrán J, Couce A, Blázquez J (2013) Antibiotics and antibiotic resistance: a bitter fight against evolution. Int J Med Microb. doi:10.1016/j.ijmm.2013.02.004

    Google Scholar 

  • Rowe AA, Miller EA, Plaxco KW (2010) Reagentless measurement of aminoglycoside antibiotics in blood serum via an electrochemical, ribonucleic acid aptamer-based biosensor. Anal Chem 82(17):7090–7095. doi:10.1021/ac101491d

    CAS  Google Scholar 

  • Rule AM, Evans SL, Silbergeld EK (2008) Food animal transport: a potential source of community exposures to health hazards from industrial farming (CAFOs). J Infect Public Health 1(1):33–39. doi:10.1016/j.jiph.2008.08.001

    Google Scholar 

  • Rüssmann H, Adler K, Haas R, Gebert B, Koletzko S, Heesemann J (2001) Rapid and accurate determination of genotypic clarithromycin resistance in cultured Helicobacter pylori by fluorescent in situ hybridization. J Clin Microbiol 39(11):4142–4144. doi:10.1128/JCM.39.11.4142-4144.2001

    Google Scholar 

  • Sabaté M, Prats G, Moreno E, Ballesté E, Blanch AR, Andreu A (2008) Virulence and antimicrobial resistance profiles among Escherichia coli strains isolated from human and animal wastewater. Res Microbiol 159(4):288–293. doi:10.1016/j.resmic.2008.02.001

    Google Scholar 

  • Salyers AA, Amábile-Cuevas CF (1997) Why are antibiotic resistance genes so resistant to elimination? Antimicrob Agents Chemother 41(11):2321–2325

    CAS  Google Scholar 

  • Sandaa RA, Enger O (1994) Transfer in marine sediments of the naturally occurring plasmid pRAS1 encoding multiple antibiotic resistance. Appl Environ Microbiol 60(12):4234–4238

    CAS  Google Scholar 

  • Sapkota AR, Lefferts LY, McKenzie S, Walker P (2007) What do we feed to food-production animals? A eview of animal feed ingredients and their potential impacts on human health. Environ Health Perspect 115(5):663–670. doi:10.1289/ehp.9760

    CAS  Google Scholar 

  • Sarmah AK, Meyer MT, Boxall ABA (2006) A global perspective on the use, sales, exposure pathways, occurrence, fate and effects of veterinary antibiotics (VAs) in the environment. Chemosphere 65(5):725–759. doi:10.1016/j.chemosphere.2006.03.026

    CAS  Google Scholar 

  • Schlüter A, Szczepanowski R, Pühler A, Top EM (2007) Genomics of IncP-1 antibiotic resistance plasmids isolated from wastewater treatment plants provides evidence for a widely accessible drug resistance gene pool. FEMS Microbiol Rev 31(4):449–477. doi:10.1111/j.1574-6976.2007.00074.x

    Google Scholar 

  • Schmidt AS, Bruun MS, Dalsgaard I, Larsen JL (2001) Incidence, distribution, and spread of tetracycline resistance determinants and integron-associated antibiotic resistance genes among motile aeromonads from a fish farming environment. Appl Environ Microbiol 67(12):5675–5682. doi:10.1128/AEM.67.12.5675-5682.2001

    CAS  Google Scholar 

  • Schröder G, Lanka E (2005) The mating pair formation system of conjugative plasmids-A versatile secretion machinery for transfer of proteins and DNA. Plasmid 54(1):1–25. doi:10.1016/j.plasmid.2005.02.001

    Google Scholar 

  • Schwartz T, Kohnen W, Jansen B, Obst U (2003) Detection of antibiotic-resistant bacteria and their resistance genes in wastewater, surface water, and drinking water biofilms. FEMS Microbiol Ecol 43(3):325–335. doi:10.1111/j.1574-6941.2003.tb01073.x

    CAS  Google Scholar 

  • Seitz P, Blokesch M (2013) Cues and regulatory pathways involved in natural competence and transformation in pathogenic and environmental Gram-negative bacteria. FEMS Microbiol Rev 37(3):336–363. doi:10.1111/j.1574-6976.2012.00353.x

    CAS  Google Scholar 

  • Silbergeld EK, Graham J, Price LB (2008) Industrial food animal production, antimicrobial resistance, and human health. Annu Rev Public Health 29:151–169. doi:10.1146/annurev.publhealth.29.020907.090904

    Google Scholar 

  • Simjee S, McDermott PF, White DG, Hofacre C, Berghaus RD, Carter PJ, Stewart L, Liu T, Maier M, Maurer JJ (2007) Antimicrobial susceptibility and distribution of antimicrobial-resistance genes among Enterococcus and coagulase-negative Staphylococcus isolates recovered from poultry litter. Avian Dis 51(4):884–892

    Google Scholar 

  • Singer RS, Finch R, Wegener HC, Bywater R, Walters J, Lipsitch M (2003) Antibiotic resistance–the interplay between antibiotic use in animals and human beings. Lancet Infect Dis 3(1):47–51

    Google Scholar 

  • Slavin MA, Jennens I, Tee W (1996) Infection with ciprofloxacin-resistant Campylobacter jejuni in travellers returning from Asia. Eur J Clin Microbiol Infect Dis 15(4):348–350

    CAS  Google Scholar 

  • Smalla K, Sobecky PA (2002) The prevalence and diversity of mobile genetic elements in bacterial of different environmental habitats: insights gained from different methodological approaches. FEMS Microbiol Ecol 42(2):165–175. doi:10.1111/j.1574-6941.2002.tb01006.x

    CAS  Google Scholar 

  • Smith DL, Harris AD, Johnson JA, Silbergeld EK, Morris JG (2002) Animal antibiotic use has an early but mportant impact on the emergence of antibiotic resistance in human commensal bacteria. Proc Natl Acad Sci USA 99(9):6434–6439. doi:10.1073/pnas.082188899

    CAS  Google Scholar 

  • Smith HW (1970) Effect of antibiotics on bacterial ecology in animals. Am J Clin Nutr 23(11):1472–1479

    CAS  Google Scholar 

  • Smith MS, Yang RK, Knapp CW, Niu Y, Peak N. Hanfelt MM (2004) Quantification of tetracycline resistance genes in feedlot lagoons by real-time PCR. In: Appl. Environ. Microbiol. 70(12):7372–7377. doi:10.1128/AEM.70.12.7372–7377.2004

    Google Scholar 

  • Smith P (2001) Towards assessing the risks associated with the use of antimicrobial agents in aquaculture. In: Rodgers CJ (ed) Risk analysis in aquatic animal health. World Organisation for Animal Health (OIE), Paris, pp 175–184

    Google Scholar 

  • Smith P (2008) Antimicrobial resistance in aquaculture. Rev Sci Tech 27(1):243–264

    CAS  Google Scholar 

  • Smith TC, Pearson N (2011) The emergence of Staphylococcus aureus ST398. Vector Borne Zoonotic Dis 11(4):327–339. doi:10.1089/vbz.2010.0072

    Google Scholar 

  • Sørum H (2006) Antimicrobial drug resistance in fish pathogens. In: Aarestrup FM (ed) Antimicrobial resistance in bacteria of animal origin, chapter 13. ASM press, pp 213–238

    Google Scholar 

  • Starr MP, Reynolds DM (1951) Streptomycin resistance of coliform bacteria from turkeys fed streptomycin. Am J Public Health Nations Health 41(11 Pt 1):1375–1380

    Google Scholar 

  • Sukul P, Spiteller M (2007) Fluoroquinolone antibiotics in the environment. Rev Environ Contam Toxicol 191:131–162

    CAS  Google Scholar 

  • Szczepanowski R, Linke B, Krahn I, Gartemann K, Gutzkow T, Eichler W, Puhler A, Schluter A (2009) Detection of 140 clinically relevant antibiotic-resistance genes in the plasmid metagenome of wastewater treatment plant bacteria showing reduced susceptibility to selected antibiotics. Microbiology 155(7):2306–2319. doi:10.1099/mic.0.028233-0

    CAS  Google Scholar 

  • Szczepanowski R, Krahn I, Linke B, Goesmann A, Pühler A, Schlüter A (2004) Antibiotic multiresistance plasmid pRSB101 isolated from a wastewater treatment plant is related to plasmids residing in phytopathogenic bacteria and carries eight different resistance determinants including a multidrug transport system. Microbiology 150(Pt 11):3613–3630. doi:10.1099/mic.0.27317-0

    Google Scholar 

  • Taviani E, Ceccarelli D, Lazaro N, Bani S, Cappuccinelli P, Colwell RR, Colombo MM (2008) Environmental Vibrio spp., isolated in Mozambique, contain a polymorphic group of integrative conjugative elements and lass 1 integrons. FEMS Microbiol Ecol 64(1):45–54. doi:10.1111/j.1574-6941.2008.00455.x

    CAS  Google Scholar 

  • Tétart T, Szczepanowski R, Braun S, Pühler A, Schlueter A (2003) Occurrence of integron-associated resistance gene cassettes located on antibiotic resistance plasmids isolated from a wastewater treatment plant. FEMS Microbiol Ecol 45(3):239–252. doi:10.1016/S0168-6496(03)00164-8

    Google Scholar 

  • Tétart F, Desplats C, Kutateladze M, Monod C, Ackermann H, Krisch HM (2001) Phylogeny of the major head and tail genes of the wide-ranging T4-type bacteriophages. J Bacteriol 183(1):358–366. doi:10.1128/JB.183.1.358-366.2001

    CAS  Google Scholar 

  • Teuber M (2001) Veterinary use and antibiotic resistance. Curr Opin Microbiol 4(5):493–499

    CAS  Google Scholar 

  • Thompson SA, Maani EV, Lindell AH, King CJ, McArthur JV (2007) Novel tetracycline resistance determinant isolated from an environmental strain of Serratia marcescens. Appl Environ Microbiol 73(7):2199–2206. doi:10.1128/AEM.02511-06

    CAS  Google Scholar 

  • Tilman D, Cassman KG, Matson PA, Naylor R, Polasky S (2002) Agricultural sustainability and intensive production practices. Nature 418(6898):671–677. doi:10.1038/nature01014

    CAS  Google Scholar 

  • van den Bogaard AE (1997) Antimicrobial resistance–relation to human and animal exposure to antibiotics. J Antimicrob Chemother 40(3):453–454

    Google Scholar 

  • Varela AR, Manaia CM (2013) Human health implications of clinically relevant bacteria in wastewater habitats. Environ Sci Pollut Res 20(6):3550–3569. doi:10.1007/s11356-013-1594-0

    CAS  Google Scholar 

  • Volkmann H, Schwartz T, Bischoff P, Kirchen S, Obst U (2004) Detection of clinically relevant antibiotic-resistance genes in municipal wastewater using real-time PCR (TaqMan). J Microbiol Methods 56(2):277–286

    CAS  Google Scholar 

  • Wassenaar TM (2005) Use of antimicrobial agents in veterinary medicine and implications for human health. Crit Rev Microbiol 31(3):155–169. doi:10.1080/10408410591005110

    Google Scholar 

  • Werner G, Bartel M, Wellinghausen N, Essig A, Klare I, Witte W, Poppert S (2007) Detection of mutations conferring resistance to linezolid in Enterococcus spp. by fluorescence in situ hybridization. J Clin Microbiol 45(10):3421–3423. doi:10.1128/JCM.00179-07

    CAS  Google Scholar 

  • WHO (2013) Report of a joint FAO/OIE/WHO expert consultation on antimicrobial use in aquaculture and antimicrobial resistance, Seoul, Republic of Korea, 13-16 June 2006. http://www.who.int/topics/foodborne_diseases/aquaculture_rep_13_16june2006%20.pdf. Accessed 15 Jun 2013

  • Wilson ME (2003) The traveller and emerging infections: sentinel, courier, transmitter. J Appl Microbiol 94 Suppl:1S–11S

    Google Scholar 

  • Witte W, Cuny C, Klare I, Nübel U, Strommenger B, Werner G (2008) Emergence and spread of antibiotic-resistant Gram-positive bacterial pathogens. Int J Med Microbiol 298(5-6):365–377. doi:10.1016/j.ijmm.2007.10.005

    CAS  Google Scholar 

  • Witte W, Heier H, Klare I, Ludwig H, Hummel R, Ziesché K, Lüdke H, Schmidt S, Rische H (1984) Untersuchungen zur Frage der Entwicklung von Antibiotikaresistenz bei koliformen Bakterien in Verbindung mit der nutritiven Anwendung von Nourseothrizin bei Schweinen (The development of antibiotic resistance of coliform bacteria in connection with the nutritional use of nourseothricin in swine). Arch Exp Veterinarmed 38(6):807–815

    CAS  Google Scholar 

  • Wright GD (2007) The antibiotic resistome: the nexus of chemical and genetic diversity. Nat Rev Microbiol 5(3):175–186. doi:10.1038/nrmicro1614

    CAS  Google Scholar 

  • Wright GD (2010) Antibiotic resistance in the environment: a link to the clinic? Curr Opin Microbiol 13(5):589–594. doi:10.1016/j.mib.2010.08.005

    CAS  Google Scholar 

  • Yang S, Carlson K (2003) Evolution of antibiotic occurrence in a river through pristine, urban and agricultural landscapes. Water Res. 37(19):4645–4656. doi:10.1016/S0043-1354(03)00399-3

    CAS  Google Scholar 

  • Yezli S, Li H (2012) Antibiotic resistance amongst healthcare-associated pathogens in China. Int J Antimicrob Agents 40(5):389–397. doi:10.1016/j.ijantimicag.2012.07.009

    CAS  Google Scholar 

  • Yim G, Wang HH, Davies J (2007) Antibiotics as signalling molecules. Philos Trans R Soc Lond B Biol Sci 362(1483):1195–1200. doi:10.1098/rstb.2007.2044

    CAS  Google Scholar 

  • Yu Z, Michel FC, Hansen G, Wittum T, Morrison M (2005) Development and application of real-time PCR assays for quantification of genes encoding tetracycline resistance. Appl Environ Microbiol 71(11):6926–6933. doi:10.1128/AEM.71.11.6926-6933.2005

    CAS  Google Scholar 

  • Yuan J, Addo J, Aguilar M, Wu Y (2009) Surface plasmon resonance assay for chloramphenicol without surface regeneration. Anal Biochem 390(1):97–99. doi:10.1016/j.ab.2009.04.003

    CAS  Google Scholar 

  • Zhang J, Zhang B, Wu Y, Jia S, Fan T, Zhang Z, Zhang C (2010) Fast determination of the tetracyclines in milk samples by the aptamer biosensor. Analyst 135(10):2706–2710. doi:10.1039/c0an00237b

    CAS  Google Scholar 

  • Zhang X, Zhang T, Fang HHP (2009) Antibiotic resistance genes in water environment. Appl Microbiol Biotechnol 82(3):397–414. doi:10.1007/s00253-008-1829-z

    CAS  Google Scholar 

  • Zhu B (2007) Abundance dynamics and sequence variation of neomycin phosphotransferase gene (nptII) homologs in river water. Aquat Microb Ecol 48:131–140. doi:10.3354/ame048131

    Google Scholar 

Download references

Acknowledgements

We sincerely thank Karsten Arends for critical reading of the manuscript. We apologize for not having been able to include all valuable contributions of colleagues in the field due to space limitations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elisabeth Grohmann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Broszat, M., Grohmann, E. (2014). Spread of Antibiotic Resistance in the Environment: Impact on Human Health. In: Malik, A., Grohmann, E., Akhtar, R. (eds) Environmental Deterioration and Human Health. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-7890-0_7

Download citation

Publish with us

Policies and ethics