Skip to main content

Integration of Different Bioindication Methods for Chemical Elements: The Multi-Markered-Bioindication-Concept (MMBC)

  • Chapter
  • First Online:
Phytoremediation for Green Energy

Abstract

Before entering the field of integrating different bioindication methods, clear-cut definitions of the terms bioindication, biomonitoring and others are given. For purposes of bioindication and biomonitoring of chemical elements obviously, both a highly specific approach concerning each single chemical species of an element and a comprehensive treatment of general features are required. The latter is given in the Biological System of Elements. To observe the quality of our environment the use of living organisms in biotests, bioindication and biomonitoring activities is an established method of determining inorganic and organic contaminants. To achieve a more public-related prophylactic healthcare feature derived from these biotechniques in the future, all existing tools of analytical and biological investigations of the past must be concentrated on a common focus. A first approach, including an example for transferring trace elements from food into children via the nursering mother, is given in a so called Multi-Markered-Bioindication-Concept (MMBC). Further on, the collaboration between analytical scientists, ecotoxicologists and especially medical people is of elementary importance. For reaching this communication and exchange of essential information, different forms of education and teaching of students on an international level combined with common research projects are key functions for a global success.

Definitions, strategies and scientific results of this review article correspond to Markert, (1996); Markert et al. (2003a); Markert (2007); Wünschmann (2007) and Wuenschmann et al. (2008) of the reference list

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    4.000 l/day additional blood circulation times a carryover of 0.4 mg/l correspond to 1.6 mg/day, the transfer being irreversible (see above).

References

  • Adriano DC (ed) (1992) Biogeochemistry of trace metals. Lewis, Boca Raton

    Google Scholar 

  • Anke M, Angelov L (2004) Rubidium. In: Merian E, Anke M, Ihnat M, Stoeppler M (eds) Elements and their compounds in the environment. VCH-Wiley, Berlin, pp 547–563

    Chapter  Google Scholar 

  • Bargagli R (ed) (1998) Trace elements in terrestrial plants—an ecophysiological approach to biomonitoring and biorecovery. Springer, Berlin

    Google Scholar 

  • Boese-O’Reilly S, Helbich HM, Mersch-Sundermann V (1999) Frauenmilch (Stillen). In: Mersch-Sundermann V (ed) Umweltmedizin. Grundlagen der Umweltmedizin, klinische Umweltmedizin, ökologische Medizin. Thieme-Verlag, Stuttgart, pp 359–372

    Google Scholar 

  • Breulmann G, Ogino K, Ninomiya I, Ashton PS, La Frankie JV, Leffler U, Weckert V, Lieth H, Konschak R, Markert B (1998) Chemical chracterisation of dipterocarpaceae by use of chemical fingerprinting—a multi-element approach at Sarawak, Malaysia. Sci Total Environ 215:85–100

    Article  CAS  Google Scholar 

  • Broadley MR, White PJ, Hammond JP, Zelko I, Lux A (2007) Zinc in plants. New Phytol 173(4):677–702

    Article  PubMed  CAS  Google Scholar 

  • Cakmak I (2008) Enrichment of cereal grains with zinc: agronomic or genetic biofortification? Plant Soil 302(1–2):1–17

    CAS  Google Scholar 

  • Carreras HA, Gudino GL, Pignata ML (1998) Comparative biomonitoring of atmospheric quality in five zones of Cordoba city (Argentina) employing the transplanted lichen Usnea sp. Environ Pollut 103:317

    Article  CAS  Google Scholar 

  • Chaney RL, Chen KY, Li YM, Angle JS, Baker AJM (2008) Effects of calcium and nickel tolerance and accumulation in Alyssum species and cabbage grown in nutrient solution. Plant Soil 311(1–2):131–140

    Article  CAS  Google Scholar 

  • Czub G (2004) Modellierung der Bioakkumulation persistenter organischer Umweltchemikalien im Menschen. Dissertation. Leibnitz-Institut für Ostseeforschung, Warnemünde

    Google Scholar 

  • DaSilva JRF, Williams RJP (2001) The biological chemistry of the elements: the inorganic chemistry of life. Oxford University Press, Oxford

    Google Scholar 

  • De Bruyn U, Linders HW, Mohr K (2009) Epiphytische Flechten im Wandel von Immissionen und Klima-Ergebnisse einer Vergleichskartierung 1989/2007. Nordwestdeutschland 21:63–75

    CAS  Google Scholar 

  • Djingova R, Kuleff I (2000) Instrumental techniques for trace analysis. In: Markert B, Friese K (eds) Trace elements, their distribution and effects in the environment. Elsevier, Amsterdam, pp 137–185

    Chapter  Google Scholar 

  • Duvigneaud P, Denayer-De Smet S (1973) Biological cycling of minerals in temperate deciduos forests. Ecol Stud 1:199

    Article  Google Scholar 

  • Ellenberg H, Mayer R, Schauermann J (1986) Ökosystemforschung, Ergebnisse des Solling Projektes. Ulmer Verlag, Stuttgart

    Google Scholar 

  • Farago ME (ed) (1994) Plants and the chemical elements. VCH, Weinheim

    Book  Google Scholar 

  • Fargašová A (1994) Comparative toxicity of five metals on various biological subjects. Bull Environ Contam Toxicol 53:317–324

    Article  PubMed  Google Scholar 

  • Fargašová A, Beinrohr E (1998) Metal-metal interactions in accumulation of V5+, Ni2+, Mo6+, Mn2+, and Cu2+ in under- and above-ground parts of Sinapis alba. Chemosphere 36:1305–1317

    Article  Google Scholar 

  • Figueiredo A, Nogueira C, Markert B, Heidenreich H, Fraenzle S, Liepelt G, Saiki M, Domingos M, Millian F, Herpin U (2007) The use of an epiphytice (Tillandsia usneoides L.) as bioindicator of heavy metal pollution in Sao Paulo, Brazil. In: Morrison G, Rauch S (eds) Highway and urban environment. Proceedings of the 8th Highway and Urban Symposium, Springer, pp 249–257

    Google Scholar 

  • Fomin A, Oehlmann J, Markert B (2003) Praktikum zur Ökotoxikologie. Grundlagen und Anwendungen biologischer Testverfahren. Ecomed Verlagsgesellschaft, Landsberg

    Google Scholar 

  • Fraenzle O (1993) Contaminants in terrestrial environments. Springer, Berlin

    Book  Google Scholar 

  • Fraenzle S (2009) Prinzipien und Mechanismen der Verteilung und Essentialität von chemischen Elementen in pflanzlicher Biomasse-Ableitungen aus dem Biologischen System der Elemente. Habilitation Thesis; Vechta (engl. title: Chemical Elements in Plants and Soil). Springer, Weinheim

    Google Scholar 

  • Fraenzle S, Markert B (2007) Metals in biomass: from the biological system of elements to reasons of fractionation and element use. Env Sci Pollut Res 14(6):404–413

    Article  CAS  Google Scholar 

  • Fraenzle S, Markert B, Wuenschmann S (2004) Quantitative aspect of interaction between metal ions and living matter: a novel method and applications for biomonitoring and phytoremediation. Abstract der 12. Tagung EcOPOLE, Duzhniki Zdroj, 21.-23.10.2004

    Google Scholar 

  • Fraenzle S, Markert B, Wuenschmann S (2007) Dynamics of trace metals in organisms and ecosystem: prediction of metal bioconcentration in different organisms and estimation of exposure risks. Environ Pollut 150:22–33

    Google Scholar 

  • Fraenzle S, Markert B, Fraenzle O, Lieth H (2008) The biological system of elements: trace element concentration and abundance in plants give hints on biochemical reasons of sequestration an essentiality Chapter 1. In: Prasad MNV (ed) Trace elements-nutritional benefits, environmental contamination, and health implications. Wiley, New York, pp 1–22

    Google Scholar 

  • França EJ, De Nadai Fernandes EA, Bacchi MA, Tagliaferro FS, Saiki M (2007) Soil-leaf transfer of chemical elements for the Atlantic Forest. J Radioanalyt Nucl Chem 271:405–411

    Article  Google Scholar 

  • Freitas MC, Pacheco AMG, Vieira BJ, Rodrigues AF (2006) Neutron activation analysis of atmospheric biomonitors from the Azores: a comparative study of lower and higher plants. J Radioanalyt Nuclear Chem 270:21–27

    Article  CAS  Google Scholar 

  • Garty J (1998) Airborne elements, cell membranes, and chlorophyll in transplanted lichens. J Environ Qual 27:973

    Article  CAS  Google Scholar 

  • Golan-Goldhirsh A, Barazani O, Nepovim A, Soudek P, Smrcek S, Dufkova L, Krenkova S, Yrjala K, Schroeder P, Vanek T (2004) Plant response to heavy metals and organic pollutants in cell culture and at whole plant level. J Soil Sediment 4:133–140

    Article  CAS  Google Scholar 

  • Greger M (2008) Trace elements and radionuclides in edible plants Chapter 6. In: Prasad MNV (ed) Trace elements-nutritional benefits, environmental contamination, and health implications. Wiley, New York, pp 21–136

    Google Scholar 

  • Griffiths M (1988) Das Schnabeltier. Spektrum der Wissenschaft 7:76–83

    Google Scholar 

  • Grzimek B (1965) Mit Grzimek durch Australien. Vierfüßige Australier. Bertelsmann-Mohn, Stuttgart

    Google Scholar 

  • Herpin U, Siewers U, Kreimes K, Markert B (2001) Biomonitoring-evaluation and assessment of heavy metal concentrations from two German moss surveys. In: Burga CA, Kratochwil A (eds) General and applied aspects on regional and global scales. Kluwer Academic Publishers, Tasks for Vegetation Science 35:73–95

    Google Scholar 

  • Herzig R, Urech M, Liebenhöfer L, Ammann K, Guecheva M, Landolt W (1990) Lichens as biological indicators of air pollution in Switzerland: passive biomonitoring as a part of an integrated measuring system for monitoring air pollution. In: Lieth H, Markert B (eds) Element concentration cadasters in ecosystems: methods of assessment and evaluation. VCH, Weinheim, pp 317–332

    Google Scholar 

  • Hirano S, Suzuki T (1996) Environmental health issues. Environ Health Perspect Suppl 104(S1):1–19

    Google Scholar 

  • Huang X, Zhuang Z, Frenkel K, Klein CB, Costa M (1994) The role of nickel and nickel-mediated reactive oxygen species in the mechanism of nickel carcinogenesis. Environ Health Perspect 102:281–284

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • IAEA (International Atomic Energy Agency) (2001) Co-ordinated research. Project on validation and application of plants as biomonitors of trace elements atmospheric: pollution, analyzed by nuclear and related techniques. IAEA, NAHRES-63,Vienna

    Google Scholar 

  • Irtelli B, Navari-Izzo F (2008) Uptake kinetics of different arsenic species by Brassica carinata. Plant Soil 303(1):105–113

    Article  CAS  Google Scholar 

  • Irving H, Williams RJP (1953) The stability series for complexes of divalent ions. J Chem Soc 3192–3210

    Google Scholar 

  • Jeran Z, Smodis B, Jacimovic R (1993) Multi-elemental analysis of transplanted lichens (Hypogymnia physodes L. Nyl.) by instrumental neutron activation analysis. Acta Chim Slov 40:289–299

    CAS  Google Scholar 

  • Kaim W, Schwederski B (1993) Bioanorganische Chemie. Teubner, Stuttgart

    Google Scholar 

  • Keith LH (ed) (1988) Principles of environmental sampling. ACS Professional Reference Book, American Chemical Society, Washington, DC

    Google Scholar 

  • Lepp NW, Madejon P (2007) Cadmium and zinc in vegetation and litter of a voluntary woodland that has developed on contaminated sediment-derived soil. J Environ Qual 36(4):1123–1131

    Article  PubMed  CAS  Google Scholar 

  • Lieth H (1998) Ecosystem principles for ecotoxicological analyses. In: Schüürmann G, Markert B (eds) Ecotoxicology-ecological fundamentals, chemical exposure and biological effects. Wiley, Spectrum Akademischer Verlag, New York, Stuttgart, pp 17–73

    Google Scholar 

  • Loppi S, Bonini I (2000) Lichens and mosses as biomonitors of trace elements in areas with thermal springs and fumarole activity (Mt. Amiata, central Italy). Chemosphere 41:1333–1336

    Article  PubMed  CAS  Google Scholar 

  • Lux A, Šottníková A, Opatrná J, Greger M (2004) Differences in structure of adventitious roots in Salix clones with contrasting characteristics of cadmium accumulation and sensitivity. Physiol Plant 120:537–545

    Article  PubMed  CAS  Google Scholar 

  • Markert B (1996) Instrumental element and multi-element analysis of plant samples. Wiley-VCH, Weinheim

    Google Scholar 

  • Markert B (2007) Definitions and principles for bioindication and biomonitoring of trace metals in the environment. J Trace Elem Med Biol 21(S1):77–82

    Article  PubMed  Google Scholar 

  • Markert B, Oehlmann J, Roth M (1997) General aspects of heavy metal monitoring by plants and animals. In: Subramanian KS, Iyengar GV (eds) Biomonitoring, exposure assessment and specimen banking. Environmental ACS Symp. Ser. 654. American Chemical Society, Washington, DC

    Google Scholar 

  • Markert B, Breure A, Zechmeister H (eds) (2003a) Bioindicators and biomonitors. principles, concepts and applications. Elsevier, Amsterdam

    Google Scholar 

  • Markert B, Breure A, Zechmeister H (2003b) Definitions, strategies and principles for bioindication/biomonitoring of the environment. In: Markert B, Breure A (eds) Bioindicators and biomonitors. principles, concepts and applications. Elsevier, Amsterdam, pp 3–39

    Chapter  Google Scholar 

  • Markert B, Wuenschmann S, Fränzle S, Wappelhorst O, Weckert V, Breulmann G, Djingova R, Herpin U, Lieth H, Schroeder W, Siewers U, Steiness E, Wolterbeek B, Zechmeister H (2008) On the road from environmental biomonitoring to human health aspects: monitoring atmospheric heavy metal deposition by epiphytic/epigeic plants: present status and future needs. Int J Environ Pollut 32(4):486–498

    Article  CAS  Google Scholar 

  • Marmiroli N, Maestri E (2008) Health implications of trace elements in the environment and the food chain Chapter 2. In: Prasad MNV (ed) Trace elements-nutritional benefits, environmental contamination, and health implications. Wiley, New York, pp 23–54

    Google Scholar 

  • Marschner H (1983) General introduction to the mineral nutrition of plants. In: Läuchli A, Bieleski RL (eds) Encyclopaedia of plant physiology, new series, Vol 15. Springer, Berlin, pp 5–60

    Google Scholar 

  • Mench M, Vangronsveld J, Beckx C, Ruttens A (2006) Progress in assisted natural remediation of an arsenic contaminated agricultural soil. Environ Pollut 144(1):51–61

    Article  PubMed  CAS  Google Scholar 

  • Mohr K (2007) Biomonitoring von Stickstoffimmissionen-Möglichkeiten und Grenzen von Bioindikationsverfahren. Umweltwiss. Schadst Forsch 19:255–264

    Google Scholar 

  • Muckle G, Ayotte P, Dewailly E, Jacobson S, Jacobson J (2001) Prenatal exposure of the Northern Québec Inuit infants to environmental contaminants. Environ Health Perspect 109(12):1291–1299

    PubMed  CAS  PubMed Central  Google Scholar 

  • Neville MC (1991) Appendix C: summary of composition data for macronutrients of human milk. In: Nutrition during lactation. National Academic Press, pp 279–86

    Google Scholar 

  • Oehlmann J, Markert B (1997) Humantoxikologie. Eine Einführung für Apotheker, Ärzte, Natur- und Ingenieurwissenschaftler. Wissenschaftliche Verlagsgesellschaft mbH, Stuttgart

    Google Scholar 

  • Pla RR, Moreno MA, Adler M (2000) The use of biomonitors and neutron activation analysis in the study of air pollution of Buenos Aires city. In: BioMAP, IAEA (ed) Biomonitoring of atmospheric pollution (with emphasis on trace elements). IAEA, Lisbon, pp 122–128

    Google Scholar 

  • Prasad MNV (ed) (2008) Tace elements as contaminants and nutrients. Cosequences in ecosystems and human health. Wiley, New York

    Google Scholar 

  • Quevauviller P, Borchrs U, Thompson C, Simonart T (eds) (2008) The water framework directive. Ecological and chemical status monitoring water quality measurements. Wiley, New York

    Google Scholar 

  • Rossipal E, Krachler M, Li F, Micetic-Turk D (2000) Investigation of the transport of trace elements across barriers in humans: studies of placental and mammary transfer. Acta Paediatr 89:1190–1195

    Article  PubMed  CAS  Google Scholar 

  • Saiki M, Chaparro CG, Vasconcellos MBA, Marcelli MP (1997) Determination of trace elements in lichens by instrumental neutron activation analysis. J Radioanalyt Nucl Chem 217(1):111–115

    Article  CAS  Google Scholar 

  • Schroeder W, Schmidt G, Pesch R (2003) Harmonization of environmental monitoring. Tools for examination of methodical comparability and spatial representatively, Gate to Environmental and Health Sciences, pp 1–13

    Google Scholar 

  • Schroeder P, Herzig R, Bojinov B, Ruttens A, Nehnevajova E, Stamatiadis S, Memon A, Vassilev A, Caviezel M, Vangronsveld J (2008) Bioenergy to save the world-Producing novel energy plants for growth on abandoned land. Environ Sci Pollut Res 15(3):196–204

    Article  CAS  Google Scholar 

  • Schroeder W, Hornsmann I, Pesch R, Schmidt G, Fraenzle S, Wuenschmann S, Heidenreich H, Markert B (2008) Moosmonitoring als Spiegel der Landnutzung? Stickstoff- und Metallakkumulation zweier Regionen Mitteleuropas. Z Umweltchem Ökotox 20(1):62–74

    Article  CAS  Google Scholar 

  • Schwitzguébel JP, Braillard S, Page V, Aubert S (2008) Accumulation and transformation of sulfonated aromatic compounds by higher plants-Toward the phytotreatment of wastewater from dye and textile industries Chapter 16. In: Khan NA, Singh S, Umar S (eds) Sulfur assimilation and abiotic stress in plants. Springer Verlag, Berlin

    Google Scholar 

  • Smodis B (2003) IAEA approaches to assessment of chemical elements in atmosphere. In: Markert BA, Breure AM, Zechmeister HG (eds) Bioindicators and biomonitors. Principles, concepts and applications. Elsevier, Amsterdam, pp 875–902

    Chapter  Google Scholar 

  • Suchara I, Sucharova J, Hola M (2007) Bio-Monitoring of the atmospheric deposition of elements using moss analysis in the Czech Republic. Acta Pruhon 87:186

    Google Scholar 

  • Szárazová K, Fargašová A, Hiller E, Velická Z, Pastierová J (2008) Phytotoxic effects and translocation of Cr and Ni in washing wastewaters from cutlery production line to mustard (Sinapis alba L.) seedlings. Fresenius Environ Bull 17:58–65

    Google Scholar 

  • Tabata M, Sarkar B (1992) Specific nickel(II)-transfer process between the native sequence peptide representing the nickel(II)-transport site of human serum albumin and l-histidine. J Inorg Biochem 45:93–104

    Article  PubMed  CAS  Google Scholar 

  • Trapp S, Feificova D, Rasmussen NF, Bauer-Gottwein P (2008) Plant uptake of NaCl in relation to enzyme kinetics and toxic effects. Environ Exp Bot 64(1):1–7

    Article  CAS  Google Scholar 

  • Verbruggen N, Hermans Ch, Schat H (2008) Molecular mechanisms of metal hyperaccumulation and tolerance in plants. New Phytol 181(4):759–776

    Article  Google Scholar 

  • Verkleij JAC (2008) Mechanisms of metal hypertolerance and (hyper)accumulation in plants. Agrochimica 52(3):167–188

    CAS  Google Scholar 

  • Wappelhorst O, Kuehn I, Heidenreich H, Markert B (2002) Transfer of selected elements from food into human milk. Nutrition 18:316–322

    Article  PubMed  CAS  Google Scholar 

  • Williams RJP, Da Silva JJRF (1996) The natural selection of the chemical elements. Clarendon, Oxford

    Google Scholar 

  • Wolterbeek B (2002) Biomonitoring of trace element air pollution: principles, possibilities and perspectives. Environ Pollut 120:11–21

    Article  PubMed  CAS  Google Scholar 

  • World Health Organization (WHO) (1996) Biological monitoring of chemical exposure in the workplace, Guidelines, Vol 1 & Vol 2, Geneva

    Google Scholar 

  • Wuenschmann S, Fraenzle S, Kuehn I, Heidenreich H, Wappelhorst O, Markert B (2004a) Verteilung chemischer elemente in der Nahrung und Milch stillender Mütter. Teil II. UWSF-Z Umweltchem Ökotox 15(3):168–174

    Google Scholar 

  • Wuenschmann S, Fraenzle S, Markert B (2004b) Transfer von Elementen in die Muttermilch. Methoden, Modellierungen, Empfehlungen. Ecomed-Medizin-Verlagsgesellschaft, Landsberg

    Google Scholar 

  • Wuenschmann S, Fränzle S, Markert B, Zechmeister H (2008) Input and transfer of trace metals from food via mothermilk to the child: bioindicative aspects to human health Chapter 22. In: Prasad MNV (ed) Trace elements-nutritional benefits, environmental contamination, and health implications. Wiley, New York, pp 555–592

    Google Scholar 

  • Wünschmann S (2007) Bestimmung chemischer elemente im system Nahrung/Muttermilch-ein Beitrag zur Bioindikation? Dissertation, University of Vechta

    Google Scholar 

  • Zechmeister HG, Dullinger S, Hohenwallner D, Riss A, Hanus-Illnar A, Scharf S (2007) Pilot study on road traffic emissions (PAHs, haevy metals) measured by using mosses in a tunnel experiment, Austria. Environ Sci Pollut Res Int 13:398–404

    Article  Google Scholar 

Download references

Acknowledgement

A very strong “Thank you” is given to a lot of students, co-workers and international colleagues supporting us intensively with newest interdisciplinary ideas, innovations, collaboration and assistance during a long time dealing with trace metal and ecotoxicological research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernd Markert .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Markert, B., Fargašová, A., Fraenzle, S., Wuenschmann, S. (2015). Integration of Different Bioindication Methods for Chemical Elements: The Multi-Markered-Bioindication-Concept (MMBC). In: Öztürk, M., Ashraf, M., Aksoy, A., Ahmad, M. (eds) Phytoremediation for Green Energy. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-7887-0_6

Download citation

Publish with us

Policies and ethics