Skip to main content

Breast Cancer Invasion and Metastasis

  • Chapter
  • First Online:
Experimental Metastasis: Modeling and Analysis

Abstract

Breast cancer is the most common malignancy among western women, and 10–15 % of all breast cancer patients develop and ultimately succumb to metastatic disease. In breast cancer, malignant cells disseminate through lymphatic or hematogenous routes to distant organs. Over the last decades, the 5-year survival of breast cancer has increased due to early screening and advanced local and systemic treatments. Understanding the fundamental biology underlying the progression of breast cancer has fostered the identification and development of therapeutics. In this chapter, we discuss the morphologic and molecular heterogeneity of breast cancer and the relationship between breast cancer subtype and metastatic potential. Moreover, we detail different in vitro assays which provide simple and robust systems to study basic cellular processes that are critical to orchestrating metastatic progression of breast cancer. Lastly, we address the strengths and shortcomings of different in vivo models that allow integrated analysis of heterotypic signaling and tissue architecture in breast cancer progression.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Weigelt B, Peterse JL, van ’t Veer LJ (2005) Breast cancer metastasis: markers and models. Nat Rev Cancer 5:591–602

    Article  PubMed  CAS  Google Scholar 

  2. Fattenah A. Tavassoli PD (ed) (2003) Pathology and genetics of tumours of the breast and female genital organs, 3rd edn. Lyon: IARC Press

    Google Scholar 

  3. Leonard GD, Swain SM (2004) Ductal carcinoma in situ, complexities and challenges. J Natl Cancer Inst 96:906–920

    Article  PubMed  Google Scholar 

  4. Howlader N, Noone AM, Krapcho M, Neyman N, Aminou R et al (2011) SEER Cancer Statistics Review, 1975–2008

    Google Scholar 

  5. Desantis C, Siegel R, Bandi P, Jemal A (2011) Breast cancer statistics, 2011. CA Cancer J Clin 61(6):409–418

    Article  PubMed  Google Scholar 

  6. American Cancer Society (2011) Cancer facts & figs. 2011

    Google Scholar 

  7. Harris JR (2004) Diseases of the breast. Philadelphia: Lippincott Williams & Wilkins. xvii, (1563 p. 1516 plates p)

    Google Scholar 

  8. Fabbri A, Carcangiu ML, Carbone A (2008) Histological Classification of Breast Cancer. In: Bombardieri E, Gianni L, Bonadonna G (eds) Springer Berlin Heidelberg. pp. 3–14

    Google Scholar 

  9. Hoda SA, Hoda RS (2004) Rubin’s pathology: clinicopathologic foundations of medicine. JAMA: J Am Med Assoc 292:1376–1377

    Article  CAS  Google Scholar 

  10. Perou CM, Sorlie T, Eisen MB, van de Rijn M, Jeffrey SS et al (2000) Molecular portraits of human breast tumours. Nature 406:747–752

    Article  PubMed  CAS  Google Scholar 

  11. Sorlie T, Perou CM, Tibshirani R, Aas T, Geisler S et al (2001) Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc Natl Acad Sci USA 98:10869–10874

    Article  PubMed  CAS  Google Scholar 

  12. Asselin-Labat ML, Sutherland KD, Barker H, Thomas R, Shackleton M et al (2007) Gata-3 is an essential regulator of mammary-gland morphogenesis and luminal-cell differentiation. Nat Cell Biol 9:201–209

    Article  PubMed  CAS  Google Scholar 

  13. Lim E, Vaillant F, Wu D, Forrest NC, Pal B et al (2009) Aberrant luminal progenitors as the candidate target population for basal tumor development in BRCA1 mutation carriers. Nat Med 15:907–913

    Article  PubMed  CAS  Google Scholar 

  14. Tamimi RM, Baer HJ, Marotti J, Galan M, Galaburda L et al (2008) Comparison of molecular phenotypes of ductal carcinoma in situ and invasive breast cancer. Breast Cancer Res 10:R67

    Article  PubMed  Google Scholar 

  15. Casalini P, Iorio MV, Galmozzi E, Menard S (2004) Role of HER receptors family in development and differentiation. J Cell Physiol 200:343–350

    Article  PubMed  CAS  Google Scholar 

  16. Rodriguez-Pinilla SM, Sarrio D, Honrado E, Hardisson D, Calero F et al (2006) Prognostic significance of basal-like phenotype and fascin expression in node-negative invasive breast carcinomas. Clin Cancer Res 12:1533–1539

    Article  PubMed  CAS  Google Scholar 

  17. Sorlie T, Tibshirani R, Parker J, Hastie T, Marron JS et al (2003) Repeated observation of breast tumor subtypes in independent gene expression data sets. Proc Natl Acad Sci USA 100:8418–8423

    Article  PubMed  CAS  Google Scholar 

  18. Gusterson BA, Ross DT, Heath VJ, Stein T (2005) Basal cytokeratins and their relationship to the cellular origin and functional classification of breast cancer. Breast Cancer Res 7:143–148

    Article  PubMed  CAS  Google Scholar 

  19. Turner NC, Reis-Filho JS (2006) Basal-like breast cancer and the BRCA1 phenotype. Oncogene 25:5846–5853

    Article  PubMed  CAS  Google Scholar 

  20. Turner NC, Reis-Filho JS, Russell AM, Springall RJ, Ryder K et al (2007) BRCA1 dysfunction in sporadic basal-like breast cancer. Oncogene 26:2126–2132

    Article  PubMed  CAS  Google Scholar 

  21. Herschkowitz JI, Simin K, Weigman VJ, Mikaelian I, Usary J et al (2007) Identification of conserved gene expression features between murine mammary carcinoma models and human breast tumors. Genome Biol 8:R76

    Article  PubMed  Google Scholar 

  22. Prat A, Parker JS, Karginova O, Fan C, Livasy C et al Phenotypic and molecular characterization of the claudin-low intrinsic subtype of breast cancer. Breast Cancer Res 12:R68

    Google Scholar 

  23. Gutman H, Pollock RE, Janjan NA, Johnston DA (1995) Biologic distinctions and therapeutic implications of sarcomatoid metaplasia of epithelial carcinoma of the breast. J Am Coll Surg 180:193–199

    PubMed  CAS  Google Scholar 

  24. Hennessy BT, Giordano S, Broglio K, Duan Z, Trent J et al (2006) Biphasic metaplastic sarcomatoid carcinoma of the breast. Ann Oncol 17:605–613

    Article  PubMed  CAS  Google Scholar 

  25. Hennessy BT, Krishnamurthy S, Giordano S, Buchholz TA, Kau SW et al (2005) Squamous cell carcinoma of the breast. J Clin Oncol 23:7827–7835

    Article  PubMed  Google Scholar 

  26. Reis-Filho JS, Milanezi F, Steele D, Savage K, Simpson PT et al (2006) Metaplastic breast carcinomas are basal-like tumours. Histopathology 49:10–21

    Article  PubMed  CAS  Google Scholar 

  27. Hennessy BT, Gonzalez-Angulo AM, Stemke-Hale K, Gilcrease MZ, Krishnamurthy S et al (2009) Characterization of a naturally occurring breast cancer subset enriched in epithelial-to-mesenchymal transition and stem cell characteristics. Cancer Res 69:4116–4124

    Article  PubMed  CAS  Google Scholar 

  28. Campeau PM, Foulkes WD, Tischkowitz MD (2008) Hereditary breast cancer: new genetic developments, new therapeutic avenues. Hum Genet 124:31–42

    Article  PubMed  CAS  Google Scholar 

  29. Walsh T, Casadei S, Coats KH, Swisher E, Stray SM et al (2006) Spectrum of mutations in BRCA1, BRCA2, CHEK2, and TP53 in families at high risk of breast cancer. JAMA 295:1379–1388

    Article  PubMed  CAS  Google Scholar 

  30. Southey MC, Teo ZL, Dowty JG, Odefrey FA, Park DJ et al (2010) A PALB2 mutation associated with high risk of breast cancer. Breast Cancer Res 12:R109

    Article  PubMed  CAS  Google Scholar 

  31. Byrnes GB, Southey MC, Hopper JL (2008) Are the so-called low penetrance breast cancer genes, ATM, BRIP1, PALB2 and CHEK2, high risk for women with strong family histories? Breast Cancer Res 10:208

    Article  PubMed  Google Scholar 

  32. Meindl A, Hellebrand H, Wiek C, Erven V, Wappenschmidt B et al (2010) Germline mutations in breast and ovarian cancer pedigrees establish RAD51C as a human cancer susceptibility gene. Nat Genet 42:410–414

    Article  PubMed  CAS  Google Scholar 

  33. Huen MS, Sy SM, Chen J (2010) BRCA1 and its toolbox for the maintenance of genome integrity. Nat Rev Mol Cell Biol 11:138–148

    Article  PubMed  CAS  Google Scholar 

  34. Foulkes WD, Stefansson IM, Chappuis PO, Begin LR, Goffin JR et al (2003) Germline BRCA1 mutations and a basal epithelial phenotype in breast cancer. J Natl Cancer Inst 95:1482–1485

    Article  PubMed  CAS  Google Scholar 

  35. Lakhani SR, Reis-Filho JS, Fulford L, Penault-Llorca F, van der Vijver M et al (2005) Prediction of BRCA1 status in patients with breast cancer using estrogen receptor and basal phenotype. Clin Cancer Res 11:5175–5180

    Article  PubMed  CAS  Google Scholar 

  36. Thompson ME, Jensen RA, Obermiller PS, Page DL, Holt JT (1995) Decreased expression of BRCA1 accelerates growth and is often present during sporadic breast cancer progression. Nat Genet 9:444–450

    Article  PubMed  CAS  Google Scholar 

  37. Sourvinos G, Spandidos DA (1998) Decreased BRCA1 expression levels may arrest the cell cycle through activation of p53 checkpoint in human sporadic breast tumors. Biochem Biophys Res Commun 245:75–80

    Article  PubMed  CAS  Google Scholar 

  38. Catteau A, Harris WH, Xu CF, Solomon E (1999) Methylation of the BRCA1 promoter region in sporadic breast and ovarian cancer: correlation with disease characteristics. Oncogene 18:1957–1965

    Article  PubMed  CAS  Google Scholar 

  39. Yang Q, Sakurai T, Mori I, Yoshimura G, Nakamura M et al (2001) Prognostic significance of BRCA1 expression in Japanese sporadic breast carcinomas. Cancer 92:54–60

    Article  PubMed  CAS  Google Scholar 

  40. Mansel RE, Fodstad O, Jiang WG (2007) Metastasis of breast cancer: an introduction Metastasis of Breast Cancer. In: Mansel RE, Fodstad O, Jiang WG, eds. Springer Netherlands. pp. 1–5

    Google Scholar 

  41. Willert K, Brown JD, Danenberg E, Duncan AW, Weissman IL et al (2003) Wnt proteins are lipid-modified and can act as stem cell growth factors. Nature 423:448–452

    Article  PubMed  CAS  Google Scholar 

  42. Chaffer CL, Weinberg RA (2011) A perspective on cancer cell metastasis. Science 331:1559–1564

    Article  PubMed  CAS  Google Scholar 

  43. Fidler IJ (2003) The pathogenesis of cancer metastasis: the ‘seed and soil’ hypothesis revisited. Nat Rev Cancer 3:453–458

    Article  PubMed  CAS  Google Scholar 

  44. Psaila B, Lyden D (2009) The metastatic niche: adapting the foreign soil. Nat Rev Cancer 9:285–293

    Article  PubMed  CAS  Google Scholar 

  45. Polyak K, Kalluri R (2010) The role of the microenvironment in mammary gland development and cancer. Cold Spring Harb Perspect Biol 2:a003244

    Google Scholar 

  46. Gupta PB, Proia D, Cingoz O, Weremowicz J, Naber SP et al (2007) Systemic stromal effects of estrogen promote the growth of estrogen receptor-negative cancers. Cancer Res 67:2062–2071

    Article  PubMed  CAS  Google Scholar 

  47. Karnoub AE, Dash AB, Vo AP, Sullivan A, Brooks MW et al (2007) Mesenchymal stem cells within tumour stroma promote breast cancer metastasis. Nature 449:557–563

    Article  PubMed  CAS  Google Scholar 

  48. Achen MG, Stacker SA (2006) Tumor lymphangiogenesis and metastatic spread-new players begin to emerge. Int J Cancer 119:1755–1760

    Article  PubMed  CAS  Google Scholar 

  49. Achen MG, Stacker SA (2008) Molecular control of lymphatic metastasis. Ann N Y Acad Sci 1131:225–234

    Google Scholar 

  50. Harrell MI, Iritani BM, Ruddell A (2007) Tumor-induced sentinel lymph node lymphangiogenesis and increased lymph flow precede melanoma metastasis. Am J Pathol 170:774–786

    Article  PubMed  Google Scholar 

  51. Hirakawa S, Kodama S, Kunstfeld R, Kajiya K, Brown LF et al (2005) VEGF-A induces tumor and sentinel lymph node lymphangiogenesis and promotes lymphatic metastasis. J Exp Med 201:1089–1099

    Article  PubMed  CAS  Google Scholar 

  52. Hirakawa S, Brown LF, Kodama S, Paavonen K, Alitalo K et al (2007) VEGF-C-induced lymphangiogenesis in sentinel lymph nodes promotes tumor metastasis to distant sites. Blood 109:1010–1017

    Article  PubMed  CAS  Google Scholar 

  53. Kozlowski H, Hrabowska M (1975) Types of reaction in the regional lymph nodes in non-metastatic and minute-metastatic carcinoma of the uterine cervix. Arch Geschwulstforsch 45:658–659

    PubMed  CAS  Google Scholar 

  54. Tobler NE, Detmar M (2006) Tumor and lymph node lymphangiogenesis–impact on cancer metastasis. J Leukoc Biol 80:691–696

    Article  PubMed  CAS  Google Scholar 

  55. Veronesi U, Paganelli G, Viale G, Luini A, Zurrida S et al (2006) Sentinel-lymph-node biopsy as a staging procedure in breast cancer: update of a randomised controlled study. Lancet Oncol 7:983–990

    Article  PubMed  Google Scholar 

  56. de Boer M, van Deurzen CH, van Dijck JA, Borm GF, van Diest PJ et al (2009) Micrometastases or isolated tumor cells and the outcome of breast cancer. N Engl J Med 361:653–663

    Article  PubMed  CAS  Google Scholar 

  57. Lee HH, Lim CA, Cheong YT, Singh M, Gam LH (2012) Comparison of protein expression profiles of different stages of lymph nodes metastasis in breast cancer. Int J Biol Sci 8:353–362

    Article  PubMed  CAS  Google Scholar 

  58. Kalluri R, Weinberg RA (2009) The basics of epithelial-mesenchymal transition. J Clin Invest 119:1420–1428

    Article  PubMed  CAS  Google Scholar 

  59. Mani SA, Guo W, Liao MJ, Eaton EN, Ayyanan A et al (2008) The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell 133:704–715

    Article  PubMed  CAS  Google Scholar 

  60. Morel AP, Lievre M, Thomas C, Hinkal G, Ansieau S et al (2008) Generation of breast cancer stem cells through epithelial-mesenchymal transition. PLoS ONE 3:e2888

    Article  PubMed  Google Scholar 

  61. Giampieri S, Manning C, Hooper S, Jones L, Hill CS et al (2009) Localized and reversible TGFbeta signalling switches breast cancer cells from cohesive to single cell motility. Nat Cell Biol 11:1287–1296

    Article  PubMed  CAS  Google Scholar 

  62. Alitalo K, Carmeliet P (2002) Molecular mechanisms of lymphangiogenesis in health and disease. Cancer Cell 1:219–227

    Article  PubMed  CAS  Google Scholar 

  63. Cunningham HD, Shannon LA, Calloway PA, Fassold BC, Dunwiddie I et al (2010) Expression of the C-C chemokine receptor 7 mediates metastasis of breast cancer to the lymph nodes in mice. Transl Oncol 3:354–361

    PubMed  Google Scholar 

  64. Majumder M, Tutunea-Fatan E, Xin X, Rodriguez-Torres M, Torres-Garcia J et al (2012) Co-Expression of alpha9beta1 Integrin and VEGF-D Confers Lymphatic Metastatic Ability to a Human Breast Cancer Cell Line MDA-MB-468LN. PLoS ONE 7:e35094

    Article  PubMed  CAS  Google Scholar 

  65. Stacker SA, Caesar C, Baldwin ME, Thornton GE, Williams RA et al (2001) VEGF-D promotes the metastatic spread of tumor cells via the lymphatics. Nat Med 7:186–191

    Article  PubMed  CAS  Google Scholar 

  66. Boyden S (1962) The chemotactic effect of mixtures of antibody and antigen on polymorphonuclear leucocytes. J Exp Med 115:453–466

    Article  PubMed  CAS  Google Scholar 

  67. Chabottaux V, Noel A (2007) Breast cancer progression: insights into multifaceted matrix metalloproteinases. Clin Exp Metastasis 24:647–656

    Article  PubMed  CAS  Google Scholar 

  68. Snoek-van Beurden PA, Von den Hoff JW (2005) Zymographic techniques for the analysis of matrix metalloproteinases and their inhibitors. Biotechniques 38:73–83

    Article  PubMed  CAS  Google Scholar 

  69. Gilmore AP (2005) Anoikis. Cell Death Differ 12(Suppl 2):1473–1477

    Article  PubMed  CAS  Google Scholar 

  70. Lombello CB, Malmonge SM, Wada ML (2000) PolyHEMA and polyHEMA-poly(MMA-co-AA) as substrates for culturing Vero cells. J Mater Sci Mater Med 11:541–546

    Article  PubMed  CAS  Google Scholar 

  71. Weiss S, Reynolds BA, Vescovi AL, Morshead C, Craig CG et al (1996) Is there a neural stem cell in the mammalian forebrain? Trends Neurosci 19:387–393

    Article  PubMed  CAS  Google Scholar 

  72. Reynolds BA, Weiss S (1996) Clonal and population analyses demonstrate that an EGF-responsive mammalian embryonic CNS precursor is a stem cell. Dev Biol 175:1–13

    Article  PubMed  CAS  Google Scholar 

  73. Dontu G, Abdallah WM, Foley JM, Jackson KW, Clarke MF et al (2003) In vitro propagation and transcriptional profiling of human mammary stem/progenitor cells. Genes Dev 17:1253–1270

    Article  PubMed  CAS  Google Scholar 

  74. Kim JB, O’Hare MJ, Stein R (2004) Models of breast cancer: is merging human and animal models the future? Breast Cancer Res 6:22–30

    Article  PubMed  CAS  Google Scholar 

  75. Lin EY, Jones JG, Li P, Zhu L, Whitney KD et al (2003) Progression to malignancy in the polyoma middle T oncoprotein mouse breast cancer model provides a reliable model for human diseases. Am J Pathol 163:2113–2126

    Article  PubMed  Google Scholar 

  76. Taneja P, Frazier DP, Kendig RD, Maglic D, Sugiyama T et al (2009) MMTV mouse models and the diagnostic values of MMTV-like sequences in human breast cancer. Expert Rev Mol Diagn 9:423–440

    Article  PubMed  CAS  Google Scholar 

  77. Hennighausen L (2000) Mouse models for breast cancer. Breast Cancer Res 2:2–7

    Article  PubMed  CAS  Google Scholar 

  78. Francia G, Cruz-Munoz W, Man S, Xu P, Kerbel RS (2011) Mouse models of advanced spontaneous metastasis for experimental therapeutics. Nat Rev Cancer 11:135–141

    Article  PubMed  CAS  Google Scholar 

  79. Lin EY, Nguyen AV, Russell RG, Pollard JW (2001) Colony-stimulating factor 1 promotes progression of mammary tumors to malignancy. J Exp Med 193:727–740

    Article  PubMed  CAS  Google Scholar 

  80. Ursini-Siegel J, Schade B, Cardiff RD, Muller WJ (2007) Insights from transgenic mouse models of ERBB2-induced breast cancer. Nat Rev Cancer 7:389–397

    Article  PubMed  CAS  Google Scholar 

  81. Allred DC, Medina D (2008) The relevance of mouse models to understanding the development and progression of human breast cancer. J Mammary Gland Biol Neoplasia 13:279–288

    Article  PubMed  Google Scholar 

  82. Derksen PW, Braumuller TM, van der Burg E, Hornsveld M, Mesman E, et al (2011) Mammary-specific inactivation of E-cadherin and p53 impairs functional gland development and leads to pleomorphic invasive lobular carcinoma in mice. Dis Model Mech 4:347–358

    Article  PubMed  CAS  Google Scholar 

  83. Fidler IJ (2006) Models for spontaneous metastasis. Cancer Res 66:9787

    Article  PubMed  CAS  Google Scholar 

  84. Brill B, Boecher N, Groner B, Shemanko CS (2008) A sparing procedure to clear the mouse mammary fat pad of epithelial components for transplantation analysis. Lab Anim 42:104–110

    Article  PubMed  CAS  Google Scholar 

  85. Derose YS, Wang G, Lin YC, Bernard PS, Buys SS et al (2011) Tumor grafts derived from women with breast cancer authentically reflect tumor pathology, growth, metastasis and disease outcomes. Nat Med 17:1514–1520

    Article  PubMed  CAS  Google Scholar 

  86. Valdez KE, Fan F, Smith W, Allred DC, Medina D et al (2011) Human primary ductal carcinoma in situ (DCIS) subtype-specific pathology is preserved in a mouse intraductal (MIND) xenograft model. J Pathol 225:565–573

    Article  PubMed  CAS  Google Scholar 

  87. Smalley M, Ashworth A (2003) Stem cells and breast cancer: a field in transit. Nat Rev Cancer 3:832–844

    Article  PubMed  CAS  Google Scholar 

  88. Fantozzi A, Christofori G (2006) Mouse models of breast cancer metastasis. Breast Cancer Res 8:212

    Article  PubMed  Google Scholar 

  89. Frese KK, Tuveson DA (2007) Maximizing mouse cancer models. Nat Rev Cancer 7:645–658

    Article  PubMed  CAS  Google Scholar 

  90. Kuperwasser C, Chavarria T, Wu M, Magrane G, Gray JW et al (2004) Reconstruction of functionally normal and malignant human breast tissues in mice. Proc Natl Acad Sci USA 101:4966–4971

    Article  PubMed  CAS  Google Scholar 

  91. Tlsty TD, Coussens LM (2006) Tumor stroma and regulation of cancer development. Annu Rev Pathol 1:119–150

    Article  PubMed  CAS  Google Scholar 

  92. Behbod F, Kittrell FS, LaMarca H, Edwards D, Kerbawy S et al (2009) An intraductal human-in-mouse transplantation model mimics the subtypes of ductal carcinoma in situ. Breast Cancer Res 11:R66

    Article  PubMed  Google Scholar 

  93. Valdez KE, Fan F, Smith W, Allred DC, Medina D, Behbod F (2011) Human Primary Ductal Carcinoma in situ (DCIS) subtype-specific pathology is preserved in a mouse intraductal (MIND) xenograft model. J Pathol 225(4):565–573

    Article  PubMed  CAS  Google Scholar 

  94. Skobe M, Hawighorst T, Jackson DG, Prevo R, Janes L et al (2001) Induction of tumor lymphangiogenesis by VEGF-C promotes breast cancer metastasis. Nat Med 7:192–198

    Article  PubMed  CAS  Google Scholar 

  95. Karpanen T, Egeblad M, Karkkainen MJ, Kubo H, Yla-Herttuala S et al (2001) Vascular endothelial growth factor C promotes tumor lymphangiogenesis and intralymphatic tumor growth. Cancer Res 61:1786–1790

    PubMed  CAS  Google Scholar 

  96. Liu J, Liao S, Huang Y, Samuel R, Shi T et al (2011) PDGF-D improves drug delivery and efficacy via vascular normalization, but promotes lymphatic metastasis by activating CXCR4 in breast cancer. Clin Cancer Res 17:3638–3648

    Article  PubMed  CAS  Google Scholar 

  97. Larrieu-Lahargue F, Welm AL, Thomas KR, Li DY (2010) Netrin-4 induces lymphangiogenesis in vivo. Blood 115:5418–5426

    Article  PubMed  CAS  Google Scholar 

  98. Muller A, Homey B, Soto H, Ge N, Catron D et al (2001) Involvement of chemokine receptors in breast cancer metastasis. Nature 410:50–56

    Article  PubMed  CAS  Google Scholar 

  99. Nielsen BS, Lund LR, Christensen IJ, Johnsen M, Usher PA et al (2001) A precise and efficient stereological method for determining murine lung metastasis volumes. Am J Pathol 158:1997–2003

    Article  PubMed  CAS  Google Scholar 

  100. Lancaster M, Rouse J, Hunter KW (2005) Modifiers of mammary tumor progression and metastasis on mouse chromosomes 7, 9, and 17. Mamm Genome 16:120–126

    Article  PubMed  CAS  Google Scholar 

  101. Winnard PT Jr., Pathak AP, Dhara S, Cho SY, Raman V et al (2008) Molecular imaging of metastatic potential. J Nucl Med 49(Suppl 2):96S–112S

    Google Scholar 

  102. Jenkins DE, Hornig YS, Oei Y, Dusich J, Purchio T (2005) Bioluminescent human breast cancer cell lines that permit rapid and sensitive in vivo detection of mammary tumors and multiple metastases in immune deficient mice. Breast Cancer Res 7:R444–R454

    Article  PubMed  CAS  Google Scholar 

  103. Crnic I, Christofori G (2004) Novel technologies and recent advances in metastasis research. Int J Dev Biol 48:573–581

    Article  PubMed  CAS  Google Scholar 

  104. Mendoza A, Hong SH, Osborne T, Khan MA, Campbell K et al (2010) Modeling metastasis biology and therapy in real time in the mouse lung. J Clin Invest 120:2979–2988

    Article  PubMed  CAS  Google Scholar 

  105. Cossigny D, Quan GM In vivo animal models of spinal metastasis. Cancer Metastasis Rev 31(1–2):99–108

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Stecklein, S., Elsarraj, H., Valdez, K., Paul, A., Behbod, F. (2013). Breast Cancer Invasion and Metastasis. In: Malek, A. (eds) Experimental Metastasis: Modeling and Analysis. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-7835-1_3

Download citation

Publish with us

Policies and ethics