Skip to main content

Biogeochemical Indicators of Nutrient Enrichments in Wetlands: The Microbial Response as a Sensitive Indicator of Wetland Eutrophication

  • Chapter
  • First Online:
Eutrophication: Causes, Consequences and Control

Abstract

In wetlands it is still usual to use the same indicators of eutrophication which were developed to study the effects of nutrient enrichment in lakes; however, since hydroecology and biogeochemistry of wetlands is significantly different from lakes, monitoring of these indicators does not allow a good diagnosis of the changes undergone by the wetland ecosystem under nutrient enrichment scenarios. Microbial activities and their respective community responses have been considered as a measure of ecosystem stability and an indicator of ecosystem perturbation through changes on functional properties associated with nutrient cycling. As in most aquatic ecosystems, the addition of a limiting nutrient to wetland ecosystems promotes primary productivity and stimulates microbial processes. As nutrient loading increase, biogeochemical processes in wetlands are altered, changing their concentrations in water and soil, and therefore, nutrient fluxes and cycling. Nutrient enrichment induces changes in soil physicochemical and microbiological characteristics that may then serve as indicators of nutrient enrichment. In this review, a set of microbial community measurements known to be sensitive to nutrient enrichment in aquatic systems, such as extracellular enzyme activities, respiratory activities, microbial biomass C, N, and P, and microbially mediated N and P turnover rates have been used to characterize physiological response of the microbial community to wetland eutrophication. Some indicators as metabolic efficiency and phosphatase activity clearly reflect the main shifts on wetland ecosystem processes induced by nutrient enrichment and may be considered better than those that are currently used to assess the effects of eutrophication. Moreover, the combined use of different ecophysiological measurements such as extracellular enzymatic ratios and microbial biomass under resource allocation models and ecological stoichiometry demonstrates that ecophysiological measures are sensitive indicators of wetland eutrophication. Further studies are needed refining this approach to get the complex biogeochemical variability of the different wetland types, and to move from a site-based heuristic model to a holistic approach, describing eutrophication patterns in wetlands.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aerts R, Toet S (1997) Nutritional controls on carbon dioxide and methane emission from Carex-dominated peat soils. Soil Biol Biochem 29:1683–1690

    CAS  Google Scholar 

  • Ainsworth AM, Goulder R (2000) Downstream change in leucine aminopeptidase activity and leucine assimilation by epilithic microbiota along the River Swale, northern England. Sci Total Environ 251:191–204

    Google Scholar 

  • Ålvarez-Cobelas M, Cirujano S, Sanchez-Carrillo S et al (2001) Hydrological and botanical man-made changes in the Spanish wetland of Las Tablas de Daimiel. Biol Conserv 97:89–98

    Google Scholar 

  • Ålvarez-Cobelas M, Sánchez-Carrillo S, Cirujano S, Angeler DG et al (2008) Long-term changes in spatial patterns of emergent vegetation in a Mediterranean floodplain: natural versus anthropogenic constraints. Plant Ecol 194:257–271

    Google Scholar 

  • Ålvarez-Cobelas M, Sánchez-Carrillo S, Cirujano S, Angeler DG et al (2010) A story of the wetland water quality deterioration: salinization, pollution, eutrophication and siltation. In: Sanchez-Carrillo S, Angeler DG (eds) Ecology of threatened semi-arid wetlands: long-term research in Las Tablas de Daimiel. Springer, Dordrecht, pp 109–133

    Google Scholar 

  • Amador JA, Jones RD (1993) Nutrient limitations on microbial respiration in peat soils with different total phosphorus content. Soil Biol Biochem 25:793–801

    CAS  Google Scholar 

  • Amador JA, Jones RD (1997) Response of carbon mineralization to combined changes in soil moisture and carbon–phosphorus ratio in a low phosphorus histosol. Soil Sci 162:275–282

    CAS  Google Scholar 

  • Anderson TH, Domsch KH (1990) Ratios of MBCarbon to total carbon in arable soils. Soil Biol Biochem 21:471–479

    Google Scholar 

  • Barnard R, Leadley PW, Hungate BA et al (2005) Global change, nitrification, and denitrification: a review. Global Biogeochem Cycles 19:GB1007 (doi:10.1029/2004GB002282)

    Google Scholar 

  • Billen G (1991) Protein degradation in aquatic environments. In: Chróst RJ (ed) Microbial enzymes in aquatic environments. Springer, New York, pp 123–143

    Google Scholar 

  • Boschker HTS, Cappenberg TE (1998) Patterns of extracellular enzyme activities in littoral sediments of Lake Gooimeer, The Netherlands. FEMS Microbiol Lett 25:79–86

    CAS  Google Scholar 

  • Bossio DA, Scow KM (1997) Impacts of carbon and flooding on soil microbial communities: phospholipid fatty acid profiles and substrate utilization. Micro Ecol 35:265–278

    Google Scholar 

  • Bowen, Jennifer L, Crump, BC, Deegan, LA, Hobbie JE et al (2009) Salt marsh sediment bacteria: their distribution and response to external nutrient inputs. ISME J 3:924–934

    Google Scholar 

  • Bridgham SD, Richardson CJ (1992) Mechanism controlling soil respiration (CO2 and CH4) in southern peatlands. Soil Biol Biochem 24:1089–1099

    CAS  Google Scholar 

  • Bridgham SD, Updegraff K, Pastor J et al (1998) Carbon, nitrogen and phosphorus mineralization in northern wetlands. Ecology 79:1545–1562

    Google Scholar 

  • Brinson MM (1993) A hydrogeomorphic classification for wetlands. Wetlands Research Program Technical Report WRP-DE-4. US Army Corps of Engineers, Waterway Experiment Station, Vicksburg

    Google Scholar 

  • Brookes PC, Landman A, Pruden G, Jenkinson DS et al (1985) Chloroform fumigation and the release of soil nitrogen: a rapid direct extraction method to measure MBNitrogen in soil. Soil Biol Biochem 17:837–842

    CAS  Google Scholar 

  • Burford JR, Bremner JM (1975) Relationships between the denitrication capacities of soils and total, water-soluble and readily decomposable soil organic matter. Soil Biol Biochem 7:389–394

    CAS  Google Scholar 

  • Carpenter SR, Kitchell JF (1993) The trophic cascade in lakes. Cambridge University Press, Cambridge

    Google Scholar 

  • Castro H, Reddy KR, Ogram A et al (2002) Composition and function of sulfate-reducing prokaryotes in eutrophic and pristine areas of the Florida Everglades Appl Environ Microbiol 68:6129–6137

    Google Scholar 

  • Castro H, Ogram A, Reddy KR et al (2004) Phylogenetic characterization of methanogenic assemblages in eutrophic and oligotrophic areas of the Florida Everglades. Appl Env Microbiol 70:6559–6568

    CAS  Google Scholar 

  • Childers DL, Doren RF, Jones R, Noe GB, Rugge M, Scinto LJ et al (2003) Decadal change in vegetation and soil phosphorus patterns across the Everglades landscape. J Environ Qual 32:344–362

    CAS  Google Scholar 

  • Chow-Fraser P (1998) A conceptual model to aid restoration of Cootes Paradise Marsh, a degraded coastal wetland of Lake Ontario, Canada. Wetl Ecol Manag 6:43–57

    Google Scholar 

  • Chróst RJ (1991) Environmental control of the synthesis and activity of aquatic microbial ectoenzymes. In: Chróst RJ (ed) Microbial enzymes in aquatic environments. Springer, New York, pp 29–59

    Google Scholar 

  • Chróst RJ, Rai H (1993) Ectoenzyme activity and bacterial secondary production in nutrient-impoverished and nutrient-enriched freshwater mesocosms. Micro Ecol 25:131–150

    Google Scholar 

  • Corstanje R, Reddy KR (2006) Microbial indicators of nutrient enrichment: a mesocosm study. Soil Sci Soc Am J 70:1652–1661

    CAS  Google Scholar 

  • Corstanje R, Reddy KR, Prenger JP, Newman S, Ogramet AV et al (2007) Soil microbial eco-physiological response to nutrient enrichment in a sub-tropical wetland. Ecol Indic 7:277–289

    Google Scholar 

  • Costa AL, Paixão SM, Caçador I, Carolino M et al (2007) CLPP and EEA profiles of microbial communities in salt marsh sediments. J Soils Sediments 7:418–425

    CAS  Google Scholar 

  • Cotner JB, Wetzel RG (1991) Bacterial phosphatases from different habitats in a small, hardwater lake. In: Chróst RJ (ed) Microbial enzymes in aquatic environments. Springer, New York, pp 187–205

    Google Scholar 

  • Crozier CR, Devai I, DeLaune RD et al (1995) Methane and reduced sulfur gas production by fresh and dried wetland soils. Soil Sci Soc Am J 59:277–284

    CAS  Google Scholar 

  • D’Angelo EM, Reddy KR (1999) Regulators of heterotrophic microbial potentials in wetland soils. Soil Biol Biochem 31:815–830

    Google Scholar 

  • Davis SM (1991) Growth, decomposition and nutrient retention of Cladium jamaicense Crantz and Typha domingensis Pers. in the Florida Everglades. Aquat Bot 40:203–224

    Google Scholar 

  • Davis SE, Corronado-Molina C, Childers DL, Day JW et al (2003) Temporally dependent C, N, and P dynamics associated with the decay of Rhizophora mangle L., leaf litter in oligotrophic mangrove wetlands of the Southern Everglades. Aquat Bot 75:199–215

    CAS  Google Scholar 

  • DeBusk WF, Reddy KR (1998) Turnover of detrital organic carbon in a nutrient-impacted Everglades marsh. Soil Sci Soc Am J 62:1460–1468

    CAS  Google Scholar 

  • Dilly O, Bernhard M, Kutsch WL, Kappen L, Munch JC et al (1997) Aspects of carbon and nitrogen cycling in soils of the Bornhöved Lake district I. Microbial characteristics and emissions of carbon dioxide and nitrous of arable and grassland soils. Biogeochemistry 39:189–205

    Google Scholar 

  • Drake HL, Aumen NG, Kuhner C, Wagner C, Griebhammer A, Schmittroth M et al (1996) Anaerobic microflora of Everglades sediments: effects of nutrients on population profiles and activities. Appl Environ Micro 62:486–493

    CAS  Google Scholar 

  • Eichorst SA, Breznak JA, Schmidt TM et al (2007) Isolation and characterization of soil bacteria that define Terriglobus gen. nov., in the phylum Acidobacteria. Appl Environ Microbiol 73:2708

    CAS  Google Scholar 

  • Eivazi F, Tabatabai MA (1990) Factors affecting glucosidase and galactosidase activities in soils. Soil Biol Biochem 22:891–897

    CAS  Google Scholar 

  • Engelhardt KAM, Ritchie ME (2002) The effect of aquatic plant species richness on wetland ecosystem processes. Ecology 83:2911–2924

    Google Scholar 

  • Frostegard A, Baath E (1996) The use of phospholipid fatty acid analysis to estimate bacterial and fungal biomass in soil. Biol Fertil Soils 22:59–65

    Google Scholar 

  • Garcia C, Hernández T, Costa F, Ceccanti B, Masciandaro G et al (1993) The dehydrogenase activity of soil as an ecological marker in processes of perturbed system regeneration. In: Gallardo-Lancho J (ed) Proceeding of the XI International Symposium of Environmental Biochemistry, Salamanca, pp 89–100

    Google Scholar 

  • Garland JL, Mills AL (1994) A community-level physiological approach for studying microbial communities. In: Ritz K, Dighton J, Giller KE (eds) Beyond the biomass. Wiley-Sayee Publication, pp 77–83

    Google Scholar 

  • Green EK, Galatowitsch SM (2002) Effects of Phalaris arundinacea and nitrate-N addition on the establishment of wetland plant communities. J App Ecol 39:134–144

    CAS  Google Scholar 

  • Gunatilaka A (1991) Nutrient cycling in a freshwater reed marsh. Verh Int Ver Theor Limnol 24:980–983

    CAS  Google Scholar 

  • Guntenspergen GR, Peterson SA, Liebowitz S, Cowardin L et al (2002) Indicators of wetland condition for the prairie pothole region of the United States. Environ Monit Assess 78:229–252

    CAS  Google Scholar 

  • Hartman WH, Richardson CJ, Vilgalys R, Bruland GL et al (2008) Environmental and anthropogenic controls over bacterial communities in wetland soils. PNAS 105:17842–17847

    CAS  Google Scholar 

  • He ZL, Wu J, O’Donnell AG, Syers JK et al (1997) Seasonal responses in MBCarbon, phosphorus and sulphur in soils under pasture. Biol Fertil Soils 24:421–428

    CAS  Google Scholar 

  • Hill BH, Elonen CM, Jicha TM, Cotter AM, Trebitz AS, Danz NP et al (2006) Sediment microbial enzyme activity as an indicator of nutrient limitation in Great Lakes coastal wetlands. Freshwat Biol 51:1670–1683

    CAS  Google Scholar 

  • Hill BH, Elonen CM, Jicha TM, Bolgrien DW, Moffett MF et al (2010) Sediment microbial enzyme activity as an indicator of nutrient enrichment in the great rivers of the Upper Mississippi River basin. Biogeochemistry 97:195–209

    CAS  Google Scholar 

  • Inglett KS, Inglett PW, Reddy KR et al (2011) Soil microbial community composition in a restored calcareous subtropical wetland. Soil Sci Soc Am J 75:1731–1740

    CAS  Google Scholar 

  • Inubushi K, Brookes PC, Jenkinson DS et al (1991) Soil MBC, N and ninhydrin-N in aerobic and anaerobic soils measured by the fumigation-extraction method. Soil Biol Biochem 23:737–741

    CAS  Google Scholar 

  • IPCC (1996) Climate change 1995: the science of climate change. Cambridge University Press, London

    Google Scholar 

  • Ivanoff DB, Reddy KR, Robinson S et al (1998) Chemical fractionation of organic P in histosols. Soil Sci 163:36–45

    CAS  Google Scholar 

  • Jacinthe PA, Bills JS, Tedesco LP et al (2010) Size, activity and catabolic diversity of the soil microbial biomass in a wetland complex invaded by reed canary grass. Plant Soil 329:227–238

    CAS  Google Scholar 

  • Jackson CR, Vallaire SC (2009) Effects of salinity and nutrients on microbial assemblages in Louisiana wetland sediments. Wetlands 29:277–287

    Google Scholar 

  • Jansson M, Olsson H, Pettersson K et al (1988) Phosphatases; origin, characteristics and function in lakes. Hydrobiologia 170:157–175

    CAS  Google Scholar 

  • Joergensen RG, Anderson TH, Wolters V et al (1995a) Carbon and nitrogen relationship in the microbial biomass of soils in beech (Fagus sylvatica L.) forests. Biol Fertil Soils 19:141–147

    Google Scholar 

  • Joergensen RG, Kübler H, Meyer B, Wolters V et al (1995b) Microbial biomass phosphorus in soils of beech (Fagus sylvatica L.) forests. Biol Fertil Soils 19:215–219

    Google Scholar 

  • Jorgensen RG, Richter GM (1992) Composition of carbon fractions and potential denitrication in drained peat soils. J Soil Sci 43:347–358

    Google Scholar 

  • Kaiser EA, Heinemeyer O (1993) Seasonal variations of soil microbial biomass carbon within the plough layer. Soil Biol Biochem 25:1649–1656

    Google Scholar 

  • Kang H, Freeman C, Park SS, Chun J et al (2005) N-acetylglucosaminidase activities in wetlands: a global survey. Hydrobiologia 532:103–110

    CAS  Google Scholar 

  • Kieft TL, Ringelberg DB, White DC et al (1994) Changes in ester-linked phospholipid fatty acid profiles of subsurface bacteria during starvation and desiccation in a porous medium. Appl Environ Microbiol 60:3292–3299

    CAS  Google Scholar 

  • Kögel-Knaber I (2002) The macromolecular organic composition of plant and microbial residues as inputs to soil organic matter. Soil Biol Biochem 34:139–162

    Google Scholar 

  • Kowalchuck GA, Bodelier PLE, Heilig GHJ, Stephen JR, Laanbroek HJ et al (1998) Community analysis of ammonia-oxidising bacteria in relation to oxygen-availability in soils and root-oxygenated sediments, using PCR, DGGE and oligonucleotide probe hybridization, FEMS. Microb Ecol 27:339–350

    Google Scholar 

  • Ladd JN (1972) Properties of proteolytic enzymes extracted from soil. Soil Biol Biochem 4:227–237

    CAS  Google Scholar 

  • Ladd JN, Butler JHA (1972) Short-term assays of soil proteolytic enzyme activities using proteins and dipeptide derivatives as substrates. Soil Biol Biochem 4:19–30

    CAS  Google Scholar 

  • Lamers LPM, Tomassen HBM, Roelofs JGM et al (1998) Sulphate-induced eutrophication and phytotoxicity in freshwater wetlands. Environ Sci Technol 32:199–205

    CAS  Google Scholar 

  • Liston SE, Newman S, Trexler JC et al (2008) Macroinvertebrate community response to eutrophication in an oligotrophic wetland: an in situ mesocosm experiment. Wetlands 28:686–694

    Google Scholar 

  • Lucassen ECHET, Smolders AJP, Van Der Salm AL, Roelofs JGM et al (2004) High groundwater nitrate concentrations inhibit eutrophication of sulphate-rich freshwater wetlands. Biogeochemistry 67:249–267

    CAS  Google Scholar 

  • Marx MC, Wood M, Jarvis SC et al (2001) A microplate fluorimetric assay for the study of enzyme diversity in soils. Soil Biol Biochem 33:1633–1640

    CAS  Google Scholar 

  • Mayer LM (1989) Extracellular proteolytic enzyme activity in sediments of an intertidal mudflat. Limnol Oceanogr 34:973–981

    CAS  Google Scholar 

  • McCormick PV, O’Dell MB (1996) Quantifying periphyton responses to phosphorus enrichment in the Florida Everglades: a synoptic–experimental approach. J North Am Benthol Soc 15:450–468

    Google Scholar 

  • McCormick PV, Rawlik PS, Lurding K, Smith P, Sklar FH et al (1996) Periphyton water quality relationships along nutrient gradient in the northern Florida Everglades. J North Am Benthol Soc 15:433–449

    Google Scholar 

  • McKinley VL, Vestal JR (1992) Mineralization of glucose and lignocellulose by four artic freshwater sediments in response to nutrient enrichment. App Environ Microbiol 58:1554–1563

    CAS  Google Scholar 

  • McLatchey GP, Reddy KR (1998) Regulation of organic matter decomposition and nutrient release in a wetland soil. J Environ Qual 27:1268–1274

    Google Scholar 

  • Mitsch WJ, Gosselink JG (2000) Wetlands, 3rd edn. Wiley, New York

    Google Scholar 

  • Mitz MA, Schlueter RJ (1958) Direct spectrophotometric measurement of the peptide bond: application to the determination of acylase I. Biochim Biophys Acta 27:168–172

    CAS  Google Scholar 

  • Montuelle B, Volat B (1998) Impact of wastewater treatment plant discharge on enzyme activity in freshwater sediments. Ecotoxicol Environ Saf 40:154–159

    CAS  Google Scholar 

  • Nausch M, Nausch G (2000) Stimulation of peptidase activity in nutrient gradients in the Baltic Sea. Soil Biol Biochem 32:1973–1983

    CAS  Google Scholar 

  • Newbold JD, Elwood JW, Schulze MS, Stark RW, Barmeier JC et al (1983) Continuous ammonium enrichment of a woodland stream uptake kinetics leaf decomposition and nitrification. Freshwater Biol 13:193–204

    CAS  Google Scholar 

  • Newman S, Reddy KR (1993) Alkaline phosphatase activity in the sediment-water column of a hypereutrophic lake. J Environ Qual 22:832–838

    CAS  Google Scholar 

  • Newman S, Kumpf H, Laing JA, Kennedy WC et al (2001) Decomposition responses to phosphorus enrichment in an Everglades (USA) slough. Biogeochemistry 54:229–250

    CAS  Google Scholar 

  • Newman S, McCormick PV, Backus JG et al (2003) Phosphatase activity as an early warning indicator of wetland eutrophication: problems and prospects. J App Phycol 15:45–59

    CAS  Google Scholar 

  • Paul EA, Clark FE (1996) Soil microbiology and biochemistry, 2nd edn. Academic Press, San Diego

    Google Scholar 

  • Penton CR, Newman S (2007) Enzyme activity responses to nutrient loading in subtropical wetlands. Biogeochemistry 84:83–98

    CAS  Google Scholar 

  • Phillips JD (1996) Wetland buffers and runoff hydrology. In: Mulamoottil G, Warner BG, McBean EA (eds) Wetlands: environmental gradients, boundaries, and buffers. CRC Press, New York, pp 207–220

    Google Scholar 

  • Piceno YM, Lovell CR (2000) Stability in natural bacterial communities: I. nutrient addition effects on rhizosphere diazotroph assemblage composition. Microb Ecol 39:32–40

    CAS  Google Scholar 

  • Prenger JP, Reddy KR (2004) Extracellular enzyme activity levels in a freshwater marsh after cessation of nutrient loading. Soil Sci Soc Am J 68:1796–1804

    CAS  Google Scholar 

  • Prieme A (1994) Production and emission of methane in a brackish and a freshwater wetland. Soil Biol Biochem 26:7–18

    CAS  Google Scholar 

  • Pritsch K, Raidl S, Marksteiner E, Blaschke H, Agerer R, Schloter M, Hartmann A et al (2004) A rapid and highly sensitive method for measuring enzyme activities in single mycorrhizal tips using 4-methylumbelliferonelabelled fluorogenic substrates in a microplate system. J Microbiol Meths 58:233–241

    CAS  Google Scholar 

  • Qualls RG, Richardson CJ (2000) Phosphorus enrichment affects litter decomposition, immobilization, and soil microbial phosphorus in wetland mesocosms. Soil Sci Soc Am J 64:799–808

    CAS  Google Scholar 

  • Reddy KR, DeLaune RD (2008) Biogeochemistry of wetlands: science and applications. CRC Press, Boca Raton

    Google Scholar 

  • Reddy CN, DeLaune RD, DeBusk WF, Koch MS et al (1993) Long-term nutrient accumulation rates in the Everglades. Soil Sci Soc Am J 57:1147–1155

    CAS  Google Scholar 

  • Reddy KR, Wang Y, DeBusk WF, Fisher MM, Newman S et al (1998) Forms of soil phosphorus in selected hydrologic units of Florida Everglades ecosystems. Soil Sci Soc Am J 62:1134–1147

    CAS  Google Scholar 

  • Reddy KR, Kadlec RH, Flaig E, Gale PM et al (1999) Phosphorus retention in streams and wetlands: a review. Crit Rev Env Sci Tec 29:83–146

    CAS  Google Scholar 

  • Rejmankova E, Komarek J, Komarkova J et al (2004) Cyanobacteria—a neglected component of biodiversity: patterns of species diversity in inland marshes of northern Belize (Central America). Divers Distrib 10:189–199

    Google Scholar 

  • Ross DJ, Speir TW, Kettles HA, Mackay AD et al (1995) Soil microbial biomass, C and N mineralization and enzyme activities in a hill pasture: influence of season and slow-release P and S fertilizer. Soil Biol Biochem 27:1431–1443

    CAS  Google Scholar 

  • Sánchez-Carrillo S, Álvarez-Cobelas M (2001) Nutrient dynamics and eutrophication patterns in a semiarid wetland: the effects of fluctuating hydrology. Water Air Soil Pollut 131:97–118

    Google Scholar 

  • Sánchez-Carrillo S, Angeler DG (eds) (2010) Ecology of threatened semi-arid wetlands: long-term research in Las Tablas de Daimiel. Wetlands: ecology, conservation and management series. Springer, Dordrecht

    Google Scholar 

  • Scheffer M, Hosper SH, Meijer M-L, Moss B, Jeppesen E et al (1993) Alternative equilibria in shallow lakes. Trends Ecol Evol 8:275–279

    CAS  Google Scholar 

  • Schimel JP, Bennett J (2004) Nitrogen mineralization: challenges of a changing paradigm. Ecology 85:591–602

    Google Scholar 

  • Shackle VJ, Freeman C, Reynolds B et al (2000) Carbon supply and the regulation of enzyme activity in constructed wetlands. Soil Biol Biochem 32:1935–1940

    CAS  Google Scholar 

  • Singh H, Singh KP (1993) Effects of residue placement and chemical fertilizer on soil microbial biomass under dry cultivation. Biol Fertil Soils 16:275–281

    CAS  Google Scholar 

  • Sinsabaugh RL (1994) The enzymic analysis of microbial pattern and process. Biol Fertil Soils 17:69–74

    CAS  Google Scholar 

  • Sinsabaugh RL, Moorhead DL (1994) Resource allocation to extracellular enzyme production: a model for nitrogen and phosphorus control of litter decomposition. Soil Biol Biochem 26:1305–1311

    Google Scholar 

  • Sinsabaugh RL, Findlay S (1995) Microbial production, enzyme activity and carbon turnover in surface sediments of the Hudson River Estuary. Microb Ecol 30:127–141

    CAS  Google Scholar 

  • Sinsabaugh RL, Foreman CM (2003) Integrating DOM metabolism and microbial diversity: an overview of conceptual models. In: Findlay S, Sinsabaugh RL (eds) Aquatic ecosystems: interactivity of dissolved organic matter. Academics Press, New York, pp 425–454

    Google Scholar 

  • Sinsabaugh RL, Antibus RK, Linkins AE et al (1991) An enzymic approach to the analysis of microbial activity during plant litter decomposition. Agr Ecosys Environ 34:43–54

    CAS  Google Scholar 

  • Sinsabaugh RL, Antibus RK, Linkins AE, McClaugherty CA, Rayburn L, Repert D, Weiland T et al (1992) Wood decomposition over a first-order watershed: mass loss as a function of lignocellulase activity. Soil Biol Biochem 24:743–749

    CAS  Google Scholar 

  • Sinsabaugh RL, Findlay S, Franchini P, Fisher D et al (1997) Enzymatic analysis of riverine bacterioplankton production. Limnol Oceanogr 42:29–38

    CAS  Google Scholar 

  • Sinsabaugh RL, Carreiro MM, Repert DA et al (2002) Allocation of extracellular enzymatic activity in relation to litter composition, N deposition, and mass loss. Biogeochemistry 60:1–24

    CAS  Google Scholar 

  • Sizova MV, Panikov N, Tourova TP, Flanagan PW et al (2003) Isolation and characterization of oligotrophic acido-tolerant methanogenic consortia from a Sphagnum peat bog. FEMS Microb Ecol 45:301–315

    CAS  Google Scholar 

  • Skujins J (1976) Extracellular enzymes in soil. Crit Rev Microbiol 4:383–421

    Google Scholar 

  • Smolders AJP, Roelofs JGM (1993) Sulphate mediated iron limitation and eutrophication in aquatic ecosystems. Aquat Bot 46:247–253

    CAS  Google Scholar 

  • Tabatabai MA (1994) Soil enzymes. In: Weaver RW (ed) Methods of soil analysis, Part 2. SSSA Book Ser 5, Madison, pp 775–883

    Google Scholar 

  • Tabatabai MA, Bremner JM (1970) Arylsulfatase activity of soil. Soil Sci Soc Am Proc 34:225–229

    CAS  Google Scholar 

  • Trevors JT, Mayfield CI, Inniss WE et al (1982) Measurement of electron transport systems (ETS) activity in soil. Microb Ecol 8:163–168

    CAS  Google Scholar 

  • Truu M, Juhanson J, Truu J et al (2009) Microbial biomass, activity and community composition in constructed wetlands. Sci Tot Environ 407:3958–3971

    CAS  Google Scholar 

  • Tunlid A, White DC (1992) Biochemical analysis of biomass, community structure, nutritional status, and metabolic activity of microbial communities in soil. In: Stotsky G, Bollag JM (eds) Soil biochemistry, vol 7. Marcel Dekker, New York, pp 229–262

    Google Scholar 

  • Uz I, Ogram AV (2006) Cellulolytic and fermentative guilds in eutrophic soils of the Florida Everglades. FEMS Microb Ecol 57:396–408

    CAS  Google Scholar 

  • Verhoeven JTA, Arheimer B, Yin C, Hefting MM et al (2006) Regional and global concerns over wetlands and water quality. Trend Ecol E 21:96–103

    Google Scholar 

  • Vestal JR, White DC (1989) Lipid analysis in microbial ecology-quantitative approaches to the study of microbial communities. BioScience 39:535–541

    CAS  Google Scholar 

  • Wardle DA (1993) Changes in the microbial biomass and metabolic quotient during leaf litter succession in some New Zealand forest and scrubland ecosystem. Funct Ecol 7:346–355

    Google Scholar 

  • Westermann P, Ahring BK (1987) Dynamics of methane production, sulfate reduction, and denitri®cation in a permanently waterlogged alder swamp. App Environ Microbiol 53:2554–2559

    CAS  Google Scholar 

  • Whillans TH (1996) Historic and comparative perspectives on rehabilitation of marshes as habitat for fish in the lower Great Lakes basin. Can J Fish Aquat Sci 53:58–66

    Google Scholar 

  • White JR, Reddy KR (2000) Influence of phosphorus loading on organic nitrogen mineralization of Everglades soils. Soil Sci Soc Am J 64:1525–1534

    CAS  Google Scholar 

  • White JR, Reddy KR (2001) Influence of selected inorganic electron acceptors on organic nitrogen mineralization in Everglades soils. Soil Sci Soc Am J 65:941–948

    CAS  Google Scholar 

  • White JR, Reddy KR, Newman JM et al (2006) Hydrologic and vegetation effects on water column phosphorus in wetland mesocosms. Soil Sci Soc Am J 70:1242–1251

    CAS  Google Scholar 

  • Witt C, Gaunt JL, Galicia CC, Ottow JCG, Neue H-U et al (2000) A rapid chloroform-fumigation extraction method for measuring soil microbial biomass carbon and nitrogen in flooded rice soils. Biol Fertil Soils 30:510–519

    CAS  Google Scholar 

  • Wright AL, Reddy KR (2001a) Phosphorus loading effects on extracellular enzyme activity in Everglades wetland soils. Soil Sci Soc Am J 65:588–595

    CAS  Google Scholar 

  • Wright AL, Reddy KR (2001b) Heterotrophic microbial activity in northern Everglades wetland soils. Soil Sci Soc Am J 65:1856–1864

    CAS  Google Scholar 

  • Wright AL, Reddy KR, Newman S et al (2008) Biogeochemical response of the Everglades landscape to eutrophication. Global J Environ Res 2:102–109

    Google Scholar 

  • Wright AL, Reddy KR, Newman S et al (2009) Microbial indicators of eutrophication in Everglades wetlands. Soil Sci Soc Am J 73:1597–1603

    CAS  Google Scholar 

  • Yavitt JB, Lang GE (1990) Methane production in contrasting wetland sites: response to organic-chemical components of peat and to sulfate reduction. Geomicrobiol J 8:27–46

    CAS  Google Scholar 

  • Zak JC, Willig MR, Moorhead DL, Wildman HG et al (1994) Functional diversity of microbial communities—a quantitative approach. Soil Biol Biochem 26:1101–1108

    Google Scholar 

  • Zhang CB, Wang J, Liu W-L, Zhu S-X, Ge H-L, Chang SX, Chang J, Ge Y et al (2010) Effects of plant diversity on microbial biomass and community metabolic profiles in a full-scale constructed wetland. Ecol Eng 36:62–68

    Google Scholar 

  • Zhou Q, Feng H, Zhang L, Wang Y, Wu Z et al (2009) Characteristics of the microbial communities in the integrated vertical-flow constructed wetlands. J Environ Sci 21:1261–1267

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Salvador Sánchez-Carrillo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Sánchez-Carrillo, S., Reddy, K., Inglett, K., Álvarez-Cobelas, M., Sánchez-Andrés, R. (2014). Biogeochemical Indicators of Nutrient Enrichments in Wetlands: The Microbial Response as a Sensitive Indicator of Wetland Eutrophication. In: Ansari, A., Gill, S. (eds) Eutrophication: Causes, Consequences and Control. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-7814-6_15

Download citation

Publish with us

Policies and ethics