Skip to main content

Physiology of Gametogenesis

  • Chapter
  • First Online:
Gamete and Embryo-fetal Origins of Adult Diseases

Abstract

Gametogenesis is a biological process by which diploid or haploid precursor cells undergo cell division and differentiation to form mature haploid gametes. The biology of gamete production is different between males and females. In human, gametogenesis is the development of diploid germ cells into either haploid sperm (spermatogenesis) or eggs (oogenesis). Gamete production in females is intimately part of the endocrine responsibility of the ovary. If there are no gametes, then hormone production is drastically curtailed. Depletion of oocytes implies depletion of the major hormones of the ovary. In the male this is not the case. Androgen production will proceed normally without a single spermatozoon in the testes. This chapter reviews some of the basic structural morphology and physiology of the testes and the ovaries.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hess RA, Franca LR. History of the Sertoli cell discovery. In: Griswold M, Skinner M, editors. Sertoli cell biology. New York: Academic; 2005. p. 3–14.

    Google Scholar 

  2. Russell LD, Etllin RA, Sinha Hikim AP, et al. Histological and histopathological evaluation of the testis. Clear Water: Cache River Press; 1990. p. 1–40.

    Google Scholar 

  3. Sharpe RM. Regulation of spermatogenesis. In: Knobil E, Neil JD, editors. The physiology of reproduction. Raven Press: New York; 1994. p. 1363–434.

    Google Scholar 

  4. Kerr JB. Functional cytology of the human testis. Bailliere’s Clin Endocrinol Metab. 1992;6:235–50.

    CAS  Google Scholar 

  5. Heller CG, Clermont Y. Kinetics of the germinal epithelium in man. Recent Prog Horm Res. 1964;20:545–75.

    CAS  PubMed  Google Scholar 

  6. Hess RA. Quantitative and qualitative characteristics of the stages and transitions in the cycle of the rat seminiferous epithelium: light microscopic observations of perfusion-fixed and plastic-embedded testes. Biol Reprod. 1990;43:525–42.

    CAS  PubMed  Google Scholar 

  7. Leblond CP, Clermont Y. Spermiogenesis of rat, mouse, hamster and guinea pig as revealed by the “periodic acid-fuchsin sulfurous acid” technique. Am J Anat. 1952;90:167–215.

    CAS  PubMed  Google Scholar 

  8. Hess RA, Miller LA, Kirby JD, et al. Immunoelectron microscopic localization of testicular and somatic cytochromes c in the seminiferous epithelium of the rat. Biol Reprod. 1993;48:1299–308.

    CAS  PubMed  Google Scholar 

  9. Franca LR, Ye SJ, Ying L, et al. Morphometry of rat germ cells during spermatogenesis. Anat Rec. 1995;241:181–204.

    PubMed  Google Scholar 

  10. Franca LR, Avelar GF, Almeida FF. Spermatogenesis and sperm transit through the epididymis in mammals with emphasis on pigs. Theriogenology. 2005;63:300–18.

    PubMed  Google Scholar 

  11. Franca LR, Russell LD. The testis of domestic mammals. In: Martinez-Garcia F, Regadera J, editors. Male reproduction: a multidisciplinary overview. Madrid: Churchill Communications Europe Espa; 1998. p. 197–219.

    Google Scholar 

  12. Hess RA, Schaeffer DJ, Eroschenko VP, et al. Frequency of the stages in the cycle of the seminiferous epithelium in the rat. Biol Reprod. 1990;43:517–24.

    CAS  PubMed  Google Scholar 

  13. Franca LR, Ogawa T, Avarbock MR, et al. Germ cell genotype controls cell cycle during spermatogenesis in the rat. Biol Reprod. 1998;59:1371–7.

    CAS  PubMed  Google Scholar 

  14. Zeng W, Avelar GF, Rathi R, et al. The length of the spermatogenic cycle is conserved in porcine and ovine testis xenografts. J Androl. 2006;27:527–33.

    PubMed  Google Scholar 

  15. Hess RA, Chen P. Computer tracking of germ cells in the cycle of the seminiferous epithelium and prediction of changes in cycle duration in animals commonly used in reproductive biology and toxicology. J Androl. 1992;13:185–90.

    CAS  PubMed  Google Scholar 

  16. Creasy DM. Evaluation of testicular toxicity in safety evaluation studies: the appropriate use of spermatogenic staging. Toxicol Pathol. 1997;25:119–31.

    CAS  PubMed  Google Scholar 

  17. Creasy DM. Evaluation of testicular toxicology: a synopsis and discussion of the recommendations proposed by the Society of Toxicologic Pathology. Birth Defects Res B Dev Reprod Toxicol. 2003;68:408–15.

    CAS  PubMed  Google Scholar 

  18. Liu Y, Nusrat A, Schnell FJ, et al. Human junction adhesion molecule regulates tight junction resealing in epithelia. J Cell Sci. 2000;113:2363–74.

    CAS  PubMed  Google Scholar 

  19. Vilela DAR, Silva SGB, Peixoto MTD, et al. Spermatogenesis in teleost; Insights from the Nile tilapia (Oreochromis niloticus) model. Fish Physiol Biochem. 2003;28:187–90.

    CAS  Google Scholar 

  20. Russell LD, Chiarini-Garcia H, Korsmeyer SJ, et al. Bax-dependent spermatogonia apoptosis is required for testicular development and spermatogenesis. Biol Reprod. 2002;66:950–8.

    CAS  PubMed  Google Scholar 

  21. Johnson L, Chaturvedi PK, Williams JD. Missing generations of spermatocytes and spermatids in seminiferous epithelium contribute to low efficiency of spermatogenesis in humans. Biol Reprod. 1992;47:1091–8.

    CAS  PubMed  Google Scholar 

  22. Saez JM. Leydig cells: endocrine, paracrine, and autocrine regulation. Endocr Rev. 1994;5:574–611.

    Google Scholar 

  23. Huhtaniemi I, Toppari J. Endocrine, paracrine and autocrine regulation of testicular steroidogenesis. Adv Exp Med Biol. 1995;377:33–54.

    CAS  PubMed  Google Scholar 

  24. Jégou B, Pineau C. Current aspects of autocrine and paracrine regulation of spermatogenesis. Adv Exp Med Biol. 1995;377:67–86.

    PubMed  Google Scholar 

  25. Weinbauer GF, Gromoll J, Simoni M, et al. Physiology of testicular function. In: Nieschlag E, Behre H, editors. Andrology. Berlin/Heidelberg: Springer; 1997. p. 23–57.

    Google Scholar 

  26. Griffin JE, Wilson JD. Disorders of the testis and the male reproductive tract. In: Wilson JD, Foster DW, Kronenberg HM, Larsen PR, editors. Williams textbook of endocrinology. Philadelphia: Saunders; 1998. p. 19–875.

    Google Scholar 

  27. Yu WH, Karanth S, Walczewska A, et al. A hypothalamic follicle-stimulating hormone-releasing decapeptide in the rat. Proc Natl Acad Sci U S A. 1997;94:9499–503.

    CAS  PubMed Central  PubMed  Google Scholar 

  28. Hotchkiss J, Knobil E. The hypothalamic pulse generator: the reproductive core. In: Adashi EY, Rock JA, Rosenwaks Z, editors. Reproductive endocrinology, surgery, and technology. Philadelphia: Lippincott-Raven; 1996. p. 123–62.

    Google Scholar 

  29. Thorner MO, Vance ML, Laws Jr ER, et al. The anterior pituitary. In: Wilson JD, Foster DW, Kronenberg HM, Larsen PR, editors. Williams textbook of endocrinology. Philadelphia: Saunders; 1998. p. 249–340.

    Google Scholar 

  30. Rao CV. The beginning of a new era in reproductive biology and medicine: expression of low levels of functional luteinizing hormone/human chorionic gonadotropin receptors in nongonadal tissues. J Physiol Pharmacol. 1996;47:41–53.

    Google Scholar 

  31. Orth JM. The role of follicle-stimulating hormone in controlling Sertoli cell proliferation in testes of fetal rats. Endocrinology. 1984;115:1248–55.

    CAS  PubMed  Google Scholar 

  32. Burger HG, Robertson DM. Editorial: inhibin in the male – progress at last. J Clin Endocr Metab. 1997;138:1361–2.

    CAS  Google Scholar 

  33. Evans WS, Griffin ML, Yankov VI. The pituitary gonadotroph: dyna111ics of gonadotropin release. In: Adashi EY, Rock JA, Rosenwaks Z, editors. Reproductive endocrinology, surgery, and technology. Philadelphia: Lippincott-Raven; 1996. p. 181–210.

    Google Scholar 

  34. Russell LD, Griswold MD, editors. The Sertoli cell. Clearwater: Cache River Press; 1993.

    Google Scholar 

  35. De Gendt K, Atanassova N, Tan KA, et al. Development and function of the adult generation of Leydig cells in mice with Sertoli cell-selective or total ablation of the androgen receptor. Endocrinology. 2005;146:4117–26.

    PubMed  Google Scholar 

  36. Rowley MJ, Teshima F, Heller CG. Duration of transit of spermatozoa through the human male ductular system. Fertil Steril. 1970;21:390–6.

    CAS  PubMed  Google Scholar 

  37. Amann RP, Howards SS. Daily spermatozoal production and epididymal spermatozoal reserves of the human male. J Urol. 1980;124:211–15.

    CAS  PubMed  Google Scholar 

  38. Johnson L, Varner DD. Effect of daily sperm production but not age on transit time of spermatozoa through the human epididymis. Biol Reprod. 1988;39:812–17.

    CAS  PubMed  Google Scholar 

  39. Turner TT, Reich GW. Cauda epididymal sperm motility: a comparison among five species. Biol Reprod. 1985;32:120–8.

    CAS  PubMed  Google Scholar 

  40. Smithwick EB, Gould KG, Young LG. Estimate of epididymal transit time in the chimpanzee. Tissue Cell. 1996;28:485–93.

    CAS  PubMed  Google Scholar 

  41. Soler C, Pérez-Sánchez F, Schulze H, et al. Objective evaluation of the morphology of human epididymal sperm heads. Int J Androl. 2000;23:77–84.

    CAS  PubMed  Google Scholar 

  42. Yeung CH, Perez-Sanchez F, Soler C, et al. Maturation of human spermatozoa (from selected epididymides of prostatic carcinoma patients) with respect to their morphology and ability to undergo the acrosome reaction. Hum Reprod Update. 1997;3:205–13.

    CAS  PubMed  Google Scholar 

  43. Gago C, Soler C, Perez-Sanchez F, et al. Effect of cetrorelix on sperm morphology during migration through the epididymis in the cynomolgus macaque (Macaca fascicularis). Am J Primatol. 2000;51:103–17.

    CAS  PubMed  Google Scholar 

  44. Ludwig G, Frick J. Spermatology: atlas and manual. Berlin: Springer; 1987.

    Google Scholar 

  45. Cooper TG, Yeung CH, Jones R, et al. Rebuttal of a role for the epididymis in sperm quality control by phagocytosis of defective sperm. J Cell Sci. 2002;115:5–7.

    CAS  PubMed  Google Scholar 

  46. Sutovsky P, Moreno R, Ramalho-Santos J, et al. A putative, ubiquitin-dependent mechanism for the recognition and elimination of defective spermatozoa in the mammalian epididymis. J Cell Sci. 2001;114:1665–75.

    CAS  PubMed  Google Scholar 

  47. Bedford JM, Calvin H, Cooper GW. The maturation of spermatozoa in the human epididymis. J Reprod Fertil. 1973;l18:199–213.

    Google Scholar 

  48. Hinton BT, Pryor JP, Hirsch AV, et al. The concentration of some inorganic ions and organic compounds in the luminal fluid of the human ductus deferens. Int J Androl. 1981;4:457–61.

    CAS  PubMed  Google Scholar 

  49. Haidl G, Badura B, Hinsch K-D, et al. Disturbances of sperm flagella due to failure of epididymal maturation and their possible relationship to phospholipids. Hum Reprod. 1993;8:1070–3.

    CAS  PubMed  Google Scholar 

  50. Cooper TG, Yeung CH, Fetic S, et al. Cytoplasmic droplets are nor-mal structures of human sperm but are not well preserved by routine procedures for assessing sperm morphology. Hum Reprod. 2004;19:2283–8.

    PubMed  Google Scholar 

  51. Holstein AF, Roosen-Runge EC. In: Holstein AF, Roosen-Runge EC, editors. Atlas of human spermatogenesis. Berlin: Grosse Verlag; 1981.

    Google Scholar 

  52. Cooper TG, Raczek S, Yeung CH, et al. Composition of fluids obtained from human epididymal cysts. Urol Res. 1992;20:275–80.

    CAS  PubMed  Google Scholar 

  53. Bedford JM, Berrios M, Dryden GL. Biology of the scrotum. Testis location and temperature sensitivity. J Exp Zool. 1982;224:379–88.

    CAS  PubMed  Google Scholar 

  54. Kato S, Yasui T, Nano I, et al. Migration of cytoplasmic droplet in boar spermatozoa by centrifugation. Jpn J Anim AI Res. 1984;6:15–8.

    Google Scholar 

  55. Kato S, Yasui T, Kanda S. Migration of cytoplasmic droplet in goat testicular spermatozoa by centrifugation. Jpn J Anim Reprod. 1983;29:214–16.

    Google Scholar 

  56. Carr DW, Usselman MC, Acott TS. Effects of pH, lactate, and viscoelastic drag on sperm motility: a species comparison. Biol Reprod. 1985;33:588–95.

    CAS  PubMed  Google Scholar 

  57. Yeung CH, Cooper TG, Oberpenning F, et al. Changes in movement characteristics of human spermatozoa along the length of the epididymis. Biol Reprod. 1993;49:274–80.

    CAS  PubMed  Google Scholar 

  58. Belonoschkin B. Biologie der Spermatozoe n im menschlichen Hoden und Nebenhoden. Arch M Gynakoel. 1943;174:357–68.

    Google Scholar 

  59. Jow WW, Steckel J, Schlegel PN, et al. Motile sperm in human testis biopsy specimens. J Androl. 1993;14:194–8.

    CAS  PubMed  Google Scholar 

  60. Emiliani S, Van den Bergh M, Vannin AS, et al. Increased sperm motility after in-vitro culture of testicular biopsies from obstructive azoospermic patients results in better post-thaw recovery rate. Hum Reprod. 2000;15:2371–4.

    CAS  PubMed  Google Scholar 

  61. Mooney JK, Horan AH, Lattimer JK. Motility of spermatozoa in the human epididymis. J Urol. 1972;108:443–5.

    PubMed  Google Scholar 

  62. Mathieu C, Guerin JF, Cognat M, et al. Motility and fertilizing capacity of epididymal human spermatozoa in normal and pathological cases. Fertil Steril. 1992;57:871–6.

    CAS  PubMed  Google Scholar 

  63. Bedford JM. Sperm dynamics in the epididymis. In: Asch RA, Balmaceda JP, Johnston I, editors. Gamete physiology. Norwell: Serono Symposia; 1990. p. 53–67.

    Google Scholar 

  64. Schoysman RJ, Bedford JM. The role of the human epididymis in sperm maturation and sperm storage as reflected in the consequences of epididymovasostomy. Fertil Steril. 1986;l46:293–9.

    Google Scholar 

  65. Cooper TG, Keck C, Oberdieck U, et al. Effects of multiple ejaculations after extended periods of sexual abstinence on total, motile and normal sperm numbers, as well as accessory gland secretions, from healthy normal and oligozoospermic men. Hum Reprod. 1993;8:1251–8.

    CAS  PubMed  Google Scholar 

  66. Barratt CLR, Cooke ID. Sperm loss in the urine of sexually rested men. Int J Androl. 1988;11:201–7.

    CAS  PubMed  Google Scholar 

  67. Bourgeon F, Evrard B, Brillard-Bourdet M, et al. Involvement of semenogelin-derived peptides in the antibacterial activity of human seminal plasma. Biol Reprod. 2004;70:768–74.

    CAS  PubMed  Google Scholar 

  68. Com E, Bourgeon F, Evrard B, et al. Expression of antimicrobial defensins in the male reproductive tract of rats, mice, and humans. Biol Reprod. 2003;68:95–104.

    CAS  PubMed  Google Scholar 

  69. Yang D, Biragyn A, Kwak LW, et al. Mammalian defensins in immunity: more than just microbicidal. Trend Immunol. 2002;23:291–6.

    CAS  Google Scholar 

  70. Yeung CH, Cooper TG, DeGeyter M, et al. Studies on the origin of redox enzymes in seminal plasma and their relationship with results of in-vitro fertilisation. Mol Hum Reprod. 1998;4:835–9.

    CAS  PubMed  Google Scholar 

  71. Perey B, Clermont Y, Leblond CP. The wave of the seminiferous epithelium in the rat. Am J Anat. 1961;108:47–77.

    Google Scholar 

  72. Egger G, Liang G, Aparicio A, et al. Epigenetics in human disease and prospects for epigenetic therapy. Nature. 2004;429:457–63.

    CAS  PubMed  Google Scholar 

  73. Jenkins TG, Carrell DT. The sperm epigenome and potential implications for the developing embryo. Reproduction. 2012;143:727–34.

    CAS  PubMed  Google Scholar 

  74. Orsi GA, Couble P, Loppin B. Epigenetic and replacement roles of histone variant H3.3 in reproduction and development. Int J Dev Biol. 2009;53:231–43.

    CAS  PubMed  Google Scholar 

  75. Strahl BD, Allis CD. The language of covalent histone modifications. Nature. 2000;403:41–5.

    CAS  PubMed  Google Scholar 

  76. Hammoud SS, Nix DA, Zhang H, et al. Distinctive chromatin in human sperm packages genes for embryo development. Nature. 2009;460:473–8.

    CAS  PubMed Central  PubMed  Google Scholar 

  77. Portela A, Esteller M. Epigenetic modifications and human disease. Nat Biotech. 2010;28:1057–68.

    CAS  Google Scholar 

  78. Reik W. Stability and flexibility of epigenetic gene regulation in mammalian development. Nature. 2007;447:425–32.

    CAS  PubMed  Google Scholar 

  79. Lucifero D, Chaillet JR, Trasler JM. Potential significance of genomic imprinting defects for reproduction and assisted reproductive technology. Hum Reprod Update. 2004;10:3–18.

    CAS  PubMed  Google Scholar 

  80. Shiota K. DNA methylation profiles of CpG islands for cellular differentiation and development in mammals. Cytogenet Genome Res. 2004;105:325–34.

    CAS  PubMed  Google Scholar 

  81. Kafri T, Gao X, Razin A. Mechanistic aspects of genome-wide demethylation in the preimplantation mouse embryo. Proc Natl Acad Sci U S A. 1993;90:10558–62.

    CAS  PubMed Central  PubMed  Google Scholar 

  82. Brandeis M, Ariel M, Cedar H. Dynamics of DNA methylation during development. BioEssays. 1993;15:709–13.

    CAS  PubMed  Google Scholar 

  83. Chaillet JR, Vogt TF, Beier DR, et al. Parental-specific methylation of an imprinted transgene is established during gametogenesis and progressively changes during embryogenesis. Cell. 1991;66:77–83.

    CAS  PubMed  Google Scholar 

  84. Kafri T, Ariel M, Brandeis M, et al. Developmental pattern of gene-specific DNA methylation in the mouse embryo and germ line. Genes Dev. 1992;6:705–14.

    CAS  PubMed  Google Scholar 

  85. Li E. Chromatin modification and epigenetic reprogramming in mammalian development. Nat Rev Genet. 2002;3:662–73.

    CAS  PubMed  Google Scholar 

  86. Hajkova P, Erhardt S, Lane N, et al. Epigenetic reprogramming in mouse primordial germ cells. Mech Dev. 2002;117:15–23.

    CAS  PubMed  Google Scholar 

  87. Lane N, Dean W, Erhardt S, et al. Resistance of IAPs to methylation reprogramming may provide a mechanism for epigenetic inheritance in the mouse. Genesis. 2003;35:88–93.

    CAS  PubMed  Google Scholar 

  88. Szabo PE, Mann JR. Biallelic expression of imprinted genes in the mouse germ line: implications for erasure, establishment, and mechanisms of genomic imprinting. Genes Dev. 1995;9:1857–68.

    CAS  PubMed  Google Scholar 

  89. Szabo PE, Hubner K, Scholer H, et al. Allele-specific expression of imprinted genes in mouse migratory primordial germ cells. Mech Dev. 2002;115:157–60.

    CAS  PubMed  Google Scholar 

  90. Gatewood JM, Cook GR, Balhorn R, et al. Isolation of four core histones from human sperm chromatin representing a minor subset of somatic histones. J Biol Chem. 1990;265:20662–6.

    CAS  PubMed  Google Scholar 

  91. Okada Y, Scott G, Ray MK, et al. Histone demethylase JHDM2A is critical for Tnp1 and Prm1 transcription and spermatogenesis. Nature. 2007;450:119–23.

    CAS  PubMed  Google Scholar 

  92. Millar MR, Sharpe RM, Maguire SM, et al. Localization of mRNAs by in-situ hybridization to the residual body at stages IX-X of the cycle of the rat seminiferous epithelium: fact or artefact? Int J Androl. 1994;17:149–60.

    CAS  PubMed  Google Scholar 

  93. Ostermeier GC, Dix DJ, Miller D, et al. Spermatozoal RNA profiles of normal fertile men. Lancet. 2002;360:772–7.

    CAS  PubMed  Google Scholar 

  94. Rassoulzadegan M, Grandjean V, Gounon P, et al. RNA-mediated non-Mendelian inheritance of an epigenetic change in the mouse. Nature. 2006;441:469–74.

    CAS  PubMed  Google Scholar 

  95. Lambard S, Galeraud-Denis I, Martin G, et al. Analysis and significance of mRNA in human ejaculated sperm from normozoospermic donors: relationship to sperm motility and capacitation. Mol Hum Reprod. 2004;10:535–41.

    CAS  PubMed  Google Scholar 

  96. Boissonnas CC, Abdalaoui HE, Haelewyn V, et al. Specific epigenetic alterations of IGF2-H19 locus in spermatozoa from infertile men. Eur J Hum Genet. 2010;18:73–80.

    PubMed Central  PubMed  Google Scholar 

  97. Nicholas CR, Chavez SL, Baker VL, et al. Instructing an embryonic stem cell-derived oocyte fate: lessons from endogenous oogenesis. Endocr Rev. 2009;30:264–83.

    CAS  PubMed Central  PubMed  Google Scholar 

  98. Reik W, Dean W, Walter J. Epigenetic reprogramming in mammalian development. Science. 2001;293:1089–93.

    CAS  PubMed  Google Scholar 

  99. Rousseaux S, Khochbin S. Epigenetic reprogramming associated with primordial germ cell development. Epigenetics and human reproduction. Berlin/Heidelberg: Springer; 2011. p. 99–117.

    Google Scholar 

  100. Ohinata Y, Payer B, O'Carroll D, et al. Blimp1 is a critical determinant of the germ cell lineage in mice. Nature. 2005;436:207–13.

    CAS  PubMed  Google Scholar 

  101. Schoenwolf GC, Bleyl SB, Brauer PR, et al. Ganetogenesis, fertilization, and first week. Larsen’s human embryology. 4th ed. Philadelphia: Churchill Livingstone; 2009. p. 15–50.

    Google Scholar 

  102. Ara T, Nakamura Y, Egawa T, et al. Impaired colonization of the gonads by primordial germ cells in mice lacking a chemokine, stromal cell-derived factor-1 (SDF-1). Proc Natl Acad Sci U S A. 2003;100:5319–23.

    CAS  PubMed Central  PubMed  Google Scholar 

  103. Anderson R, Fassler R, Georges-Labouesse E, et al. Mouse primordial germ cells lacking beta1 integrins enter the germline but fail to migrate normally to the gonads. Development. 1999;126:1655–64.

    CAS  PubMed  Google Scholar 

  104. Bendel-Stenzel MR, Gomperts M, Anderson R, et al. The role of cadherins during primordial germ cell migration and early gonad formation in the mouse. Mech Dev. 2000;91:143–52.

    CAS  PubMed  Google Scholar 

  105. Juneja SC, Barr KJ, Enders GC, et al. Defects in the germ line and gonads of mice lacking connexin43. Biol Reprod. 1999;60:1263–70.

    CAS  PubMed  Google Scholar 

  106. Kota SK, Feil R. Epigenetic transitions in germ cell development and meiosis. Dev Cell. 2010;19(5):675–86.

    CAS  PubMed  Google Scholar 

  107. Pan Z, Zhang J, Li Q, et al. Current advances in epigenetic modification and alteration during mammalian ovarian folliculogenesis. J Genet Genomics. 2012;39(3):111–23.

    CAS  PubMed  Google Scholar 

  108. Seki Y, Hayashi K, Itoh K, et al. Extensive and orderly reprogramming of genome-wide chromatin modifications associated with specification and early development of germ cells in mice. Dev Biol. 2005;278(2):440–58.

    CAS  PubMed  Google Scholar 

  109. Paoloni-Giacobino A. Epigenetics in reproductive medicine. Pediatr Res. 2007;61(5 Pt 2):51R–7.

    CAS  PubMed  Google Scholar 

  110. Yabuta Y, Kurimoto K, Ohinata Y, et al. Gene expression dynamics during germline specification in mice identified by quantitative single-cell gene expression profiling. Biol Reprod. 2006;75(5):705–16.

    CAS  PubMed  Google Scholar 

  111. Seki Y, Yamaji M, Yabuta Y, et al. Cellular dynamics associated with the genome-wide epigenetic reprogramming in migrating primordial germ cells in mice. Development. 2007;134:2627–38.

    CAS  PubMed  Google Scholar 

  112. Peters AH, Kubicek S, Mechtler K, et al. Partitioning and plasticity of repressive histone methylation states in mammalian chromatin. Mol Cell. 2003;12:1577–89.

    CAS  PubMed  Google Scholar 

  113. Matsui Y, Zsebo K, Hogan BL. Derivation of pluripotential embryonic stem cells from murine primordial germ cells in culture. Cell. 1992;70:841–7.

    CAS  PubMed  Google Scholar 

  114. Tam PP, Zhou SX, Tan SS. X-chromosome activity of the mouse primordial germ cells revealed by the expression of an X-linked lacZ transgene. Development. 1994;120:2925–32.

    CAS  PubMed  Google Scholar 

  115. Raz E. Primordial germ-cell development: the zebrafish perspective. Nat Rev Genet. 2003;4:690–700.

    CAS  PubMed  Google Scholar 

  116. Surani MA. Reprogramming of genome function through epigenetic inheritance. Nature. 2001;414:122–8.

    CAS  PubMed  Google Scholar 

  117. Yamazaki Y, Low EW, Marikawa Y, et al. Adult mice cloned from migrating primordial germ cells. Proc Natl Acad Sci U S A. 2005;102:11361–6.

    CAS  PubMed Central  PubMed  Google Scholar 

  118. Sato S, Yoshimizu T, Sato E, et al. Erasure of methylation imprinting of Igf2r during mouse primordial germ-cell development. Mol Reprod Dev. 2003;65:41–50.

    CAS  PubMed  Google Scholar 

  119. Hajkova P, Erhardt S, Lane N, et al. Epigenetic reprogramming in mouse primordial germ cells. Mech Dev. 2002;117:15–23.

    CAS  PubMed  Google Scholar 

  120. Popp C, Dean W, Feng S, et al. Genome-wide erasure of DNA methylation in mouse primordial germ cells is affected by AID deficiency. Nature. 2010;463:1101–5.

    CAS  PubMed Central  PubMed  Google Scholar 

  121. Chen T, Ueda Y, Dodge JE, et al. Establishment and maintenance of genomic methylation patterns in mouse embryonic stem cells by Dnmt3a and Dnmt3b. Mol Cell Biol. 2003;23:5594–605.

    CAS  PubMed Central  PubMed  Google Scholar 

  122. Lynn A, Ashley T, Hassold T. Variation in human meiotic recombination. Annu Rev Genomics Hum Genet. 2004;5:317–49.

    CAS  PubMed  Google Scholar 

  123. Strich R. Meiotic DNA, replication. Curr Top Dev Biol. 2004;61:29–60.

    CAS  PubMed  Google Scholar 

  124. Maheshwari A, Fowler PA. Primordial follicular assembly in humans–revisited. Zygote. 2008;16:285–96.

    CAS  PubMed  Google Scholar 

  125. Oktem O, Urman B. Understanding follicle growth in vivo. Hum Reprod. 2010;25:2944–54.

    PubMed  Google Scholar 

  126. Abir R, Orvieto R, Dicker D, et al. Preliminary studies on apoptosis in human fetal ovaries. Fertil Steril. 2002;78:259–64.

    PubMed  Google Scholar 

  127. Oktay K, Briggs D, Gosden RG. Ontogeny of follicle-stimulating hormone receptor gene expression in isolated human ovarian follicles. J Clin Endocrinol Metab. 1997;82:3748–51.

    CAS  PubMed  Google Scholar 

  128. Rajareddy S, Reddy P, Du C, et al. p27kip1 (cyclin-dependent kinase inhibitor 1B) controls ovarian development by suppressing follicle endowment and activation and promoting follicle atresia in mice. Mol Endocrinol. 2007;21:2189–202.

    CAS  PubMed  Google Scholar 

  129. Reddy P, Liu L, Adhikari D, et al. Oocyte-specific deletion of Pten causes premature activation of the primordial follicle pool. Science. 2008;319:611–13.

    CAS  PubMed  Google Scholar 

  130. Adhikari D, Zheng W, Shen Y, et al. Tsc/mTORC1 signaling in oocytes governs the quiescence and activation of primordial follicles. Hum Mol Genet. 2010;19:397–410.

    CAS  PubMed Central  PubMed  Google Scholar 

  131. De Baere E, Beysen D, Oley C, et al. FOXL2 and BPES: mutational hotspots, phenotypic variability, and revision of the genotype-phenotype correlation. Am J Hum Genet. 2003;72:478–87.

    PubMed Central  PubMed  Google Scholar 

  132. Castrillon DH, Miao L, Kollipara R, et al. Suppression of ovarian follicle activation in mice by the transcription factor Foxo3a. Science. 2003;301:215–18.

    CAS  PubMed  Google Scholar 

  133. Gallardo TD, John GB, Bradshaw K, et al. Sequence variation at the human FOXO3 locus: a study of premature ovarian failure and primary amenorrhea. Hum Reprod. 2008;23:216–21.

    CAS  PubMed Central  PubMed  Google Scholar 

  134. Rajpert-De ME, Jorgensen N, Graem N, et al. Expression of anti-Mullerian hormone during normal and pathological gonadal development: association with differentiation of Sertoli and granulosa cells. J Clin Endocrinol Metab. 1999;84:3836–44.

    Google Scholar 

  135. De Vet A, Laven JS, de Jong FH, et al. Antimullerian hormone serum levels: a putative marker for ovarian aging. Fertil Steril. 2002;77:357–62.

    PubMed  Google Scholar 

  136. Durlinger AL, Gruijters MJ, Kramer P, et al. Anti-Mullerian hormone attenuates the effects of FSH on follicle development in the mouse ovary. Endocrinology. 2001;142:4891–9.

    CAS  PubMed  Google Scholar 

  137. Durlinger AL, Gruijters MJ, Kramer P, et al. Anti-Mullerian hormone inhibits initiation of primordial follicle growth in the mouse ovary. Endocrinology. 2002;143:1076–84.

    CAS  PubMed  Google Scholar 

  138. Rankin T, Familari M, Lee E, et al. Mice homozygous for an insertional mutation in the Zp3 gene lack a zona pellucida and are infertile. Development. 1996;122:2903–10.

    CAS  PubMed  Google Scholar 

  139. Schmidt D, Ovitt CE, Anlag K, et al. The murine winged-helix transcription factor Foxl2 is required for granulosa cell differentiation and ovary maintenance. Development. 2004;131:933–42.

    CAS  PubMed  Google Scholar 

  140. Nilsson E, Skinner MK. Bone morphogenetic protein-4 acts as an ovarian follicle survival factor and promotes primordial follicle development. Biol Reprod. 2003;69:1265–72.

    CAS  PubMed  Google Scholar 

  141. Vitt UA, McGee EA, Hayashi M, et al. In vivo treatment with GDF-9 stimulates primordial and primary follicle progression and theca cell marker CYP17 in ovaries of immature rats. Endocrinology. 2000;141:3814–20.

    CAS  PubMed  Google Scholar 

  142. Carabatsos MJ, Elvin J, Matzuk MM, et al. Characterization of oocyte and follicle development in growth differentiation factor-9-deficient mice. Dev Biol. 1998;204:373–84.

    CAS  PubMed  Google Scholar 

  143. Oktay K, Briggs D, Gosden RG. Ontogeny of follicle-stimulating hormone receptor gene expression in isolated human ovarian follicles. J Clin Endocrinol Metab. 1997;82:3748–51.

    CAS  PubMed  Google Scholar 

  144. Nilsson EE, Skinner MK. Kit ligand and basic fibroblast growth factor interactions in the induction of ovarian primordial to primary follicle transition. Mol Cell Endocrinol. 2004;214:19–25.

    CAS  PubMed  Google Scholar 

  145. Nilsson EE, Kezele P, Skinner MK. Leukemia inhibitory factor (LIF) promotes the primordial to primary follicle transition in rat ovaries. Mol Cell Endocrinol. 2002;188:65–73.

    CAS  PubMed  Google Scholar 

  146. Knight PG, Glister C. TGF-beta superfamily members and ovarian follicle development. Reproduction. 2006;132:191–206.

    CAS  PubMed  Google Scholar 

  147. Wang J, Roy SK. Growth differentiation factor-9 and stem cell factor promote primordial follicle formation in the hamster: modulation by follicle-stimulating hormone. Biol Reprod. 2004;70:577–85.

    CAS  PubMed  Google Scholar 

  148. Hanrahan JP, Gregan SM, Mulsant P, et al. Mutations in the genes for oocyte-derived growth factors GDF9 and BMP15 are associated with both increased ovulation rate and sterility in Cambridge and Belclare sheep (Ovis aries). Biol Reprod. 2004;70:900–9.

    CAS  PubMed  Google Scholar 

  149. Otsuka F, Yao Z, Lee T, et al. Bone morphogenetic protein-15. Identification of target cells and biological functions. J Biol Chem. 2000;275:39523–8.

    CAS  PubMed  Google Scholar 

  150. Lee WS, Yoon SJ, Yoon TK, et al. Effects of bone morphogenetic protein-7 (BMP-7) on primordial follicular growth in the mouse ovary. Mol Reprod Dev. 2004;69:159–63.

    CAS  PubMed  Google Scholar 

  151. Shimasaki S, Zachow RJ, Li D, et al. A functional bone morphogenetic protein system in the ovary. Proc Natl Acad Sci U S A. 1999;96:7282–7.

    CAS  PubMed Central  PubMed  Google Scholar 

  152. Saragueta PE, Lanuza GM, Baranao JL. Autocrine role of transforming growth factor beta1 on rat granulosa cell proliferation. Biol Reprod. 2002;66:1862–8.

    CAS  PubMed  Google Scholar 

  153. Durlinger AL, Gruijters MJ, Kramer P, et al. Anti-Mullerian hormone attenuates the effects of FSH on follicle development in the mouse ovary. Endocrinology. 2001;142:4891–9.

    CAS  PubMed  Google Scholar 

  154. Visser JA, Themmen AP. Anti-Mullerian hormone and folliculogenesis. Mol Cell Endocrinol. 2005;234:81–6.

    CAS  PubMed  Google Scholar 

  155. Xiao S, Robertson DM, Findlay JK. Effects of activin and follicle-stimulating hormone (FSH)-suppressing protein/follistatin on FSH receptors and differentiation of cultured rat granulosa cells. Endocrinology. 1992;131:1009–16.

    CAS  PubMed  Google Scholar 

  156. Oktem O, Oktay K. The role of extracellular matrix and activin-A in in vitro growth and survival of murine preantral follicles. Reprod Sci. 2007;14:358–66.

    CAS  PubMed  Google Scholar 

  157. Findlay JK. An update on the roles of inhibin, activin, and follistatin as local regulators of folliculogenesis. Biol Reprod. 1993;48:15–23.

    CAS  PubMed  Google Scholar 

  158. Matzuk MM, Kumar TR, Bradley A. Different phenotypes for mice deficient in either activins or activin receptor type II. Nature. 1995;374:356–60.

    CAS  PubMed  Google Scholar 

  159. Visser JA, Themmen AP. Anti-Mullerian hormone and folliculogenesis. Mol Cell Endocrinol. 2005;234:81–6.

    CAS  PubMed  Google Scholar 

  160. Yamoto M, Minami S, Nakano R, et al. Immunohistochemical localization of inhibin/activin subunits in human ovarian follicles during the menstrual cycle. J Clin Endocrinol Metab. 1992;74:989–93.

    CAS  PubMed  Google Scholar 

  161. Hsueh AJ, Dahl KD, Vaughan J, et al. Heterodimers and homodimers of inhibin subunits have different paracrine action in the modulation of luteinizing hormone-stimulated androgen biosynthesis. Proc Natl Acad Sci U S A. 1987;84:5082–6.

    CAS  PubMed Central  PubMed  Google Scholar 

  162. Silva CC, Groome NP, Knight PG. Demonstration of a suppressive effect of inhibin alpha-subunit on the developmental competence of in vitro matured bovine oocytes. J Reprod Fertil. 1999;115:381–8.

    CAS  PubMed  Google Scholar 

  163. Kageyama S, Liu H, Kaneko N, et al. Alterations in epigenetic modifications during oocyte growth in mice. Reproduction. 2007;133:85–94.

    CAS  PubMed  Google Scholar 

  164. Lucifero D, Mann MR, Bartolomei MS, et al. Gene-specific timing and epigenetic memory in oocyte imprinting. Hum Mol Genet. 2004;13:839–49.

    CAS  PubMed  Google Scholar 

  165. Kato M, Miura A, Bender J, et al. Role of CG and non-CG methylation in immobilization of transposons in Arabidopsis. Curr Biol. 2003;13:421–6.

    CAS  PubMed  Google Scholar 

  166. Hiura H, Obata Y, Komiyama J, et al. Oocyte growth-dependent progression of maternal imprinting in mice. Genes Cells. 2006;11:353–61.

    CAS  PubMed  Google Scholar 

  167. Obata Y, Kono T. Maternal primary imprinting is established at a specific time for each gene throughout oocyte growth. J Biol Chem. 2002;277:5285–9.

    CAS  PubMed  Google Scholar 

  168. Geuns E, De Rycke M, Van Steirteghem A, et al. Methylation imprints of the imprint control region of the SNRPN-gene in human gametes and preimplantation embryos. Hum Mol Genet. 2003;12:2873–9.

    CAS  PubMed  Google Scholar 

  169. Eppig JJ. Coordination of nuclear and cytoplasmic oocyte maturation in eutherian mammals. Reprod Fertil Dev. 1996;8:485–9.

    CAS  PubMed  Google Scholar 

  170. Pincus G, Enzmann EV. Can mammalian eggs undergo normal development in vitro? Proc Natl Acad Sci U S A. 1934;20:121–2.

    CAS  PubMed Central  PubMed  Google Scholar 

  171. Conti M, Andersen CB, Richard F, et al. Role of cyclic nucleotide signaling in oocyte maturation. Mol Cell Endocrinol. 2002;187:153–9.

    CAS  PubMed  Google Scholar 

  172. Mehlmann LM. Stops and starts in mammalian oocytes: recent advances in understanding the regulation of meiotic arrest and oocyte maturation. Reproduction. 2005;130:791–9.

    CAS  PubMed  Google Scholar 

  173. Conti M, Hsieh M, Zamah AM, et al. Novel signaling mechanisms in the ovary during oocyte maturation and ovulation. Mol Cell Endocrinol. 2012;356:65–73.

    CAS  PubMed Central  PubMed  Google Scholar 

  174. Norris RP, Ratzan WJ, Freudzon M, et al. Cyclic GMP from the surrounding somatic cells regulates cyclic AMP and meiosis in the mouse oocyte. Development. 2009;136:1869–78.

    CAS  PubMed Central  PubMed  Google Scholar 

  175. Zhang M, Su YQ, Sugiura K, et al. Granulosa cell ligand NPPC and its receptor NPR2 maintain meiotic arrest in mouse oocytes. Science. 2010;330:366–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  176. Liang CG, Su YQ, Fan HY, et al. Mechanisms regulating oocyte meiotic resumption: roles of mitogen-activated protein kinase. Mol Endocrinol. 2007;21:2037–55.

    CAS  PubMed  Google Scholar 

  177. Shimada M, Terada T. Phosphatidylinositol 3-kinase in cumulus cells and oocytes is responsible for activation of oocyte mitogen-activated protein kinase during meiotic progression beyond the meiosis I stage in pigs. Biol Reprod. 2001;64:1106–14.

    CAS  PubMed  Google Scholar 

  178. Gaffre M, Dupre A, Valuckaite R, et al. Deciphering the H-Ras pathway in Xenopus oocyte. Oncogene. 2006;25:5155–62.

    CAS  PubMed  Google Scholar 

  179. Peng XR, Hsueh AJ, LaPolt PS, et al. Localization of luteinizing hormone receptor messenger ribonucleic acid expression in ovarian cell types during follicle development and ovulation. Endocrinology. 1991;129:3200–7.

    CAS  PubMed  Google Scholar 

  180. Park JY, Su YQ, Ariga M, et al. EGF-like growth factors as mediators of LH action in the ovulatory follicle. Science. 2004;303:682–4.

    CAS  PubMed  Google Scholar 

  181. Zamah AM, Hsieh M, Chen J, et al. Human oocyte maturation is dependent on LH-stimulated accumulation of the epidermal growth factor-like growth factor, amphiregulin. Hum Reprod. 2010;25:2569–78.

    CAS  PubMed Central  PubMed  Google Scholar 

  182. Hsieh M, Lee D, Panigone S, et al. Luteinizing hormone-dependent activation of the epidermal growth factor network is essential for ovulation. Mol Cell Biol. 2007;27:1914–24.

    CAS  PubMed Central  PubMed  Google Scholar 

  183. Gilchrist RB. Recent insights into oocyte-follicle cell interactions provide opportunities for the development of new approaches to in vitro maturation. Reprod Fertil Dev. 2011;23:23–31.

    PubMed  Google Scholar 

  184. Li M, Liang CG, Xiong B, et al. PI3-kinase and mitogen-activated protein kinase in cumulus cells mediate EGF-induced meiotic resumption of porcine oocyte. Domest Anim Endocrinol. 2008;34:360–71.

    CAS  PubMed  Google Scholar 

  185. Kawamura K, Kumagai J, Sudo S, et al. Paracrine regulation of mammalian oocyte maturation and male germ cell survival. Proc Natl Acad Sci U S A. 2004;101:7323–8.

    CAS  PubMed Central  PubMed  Google Scholar 

  186. Kawamura K, Ye Y, Liang CG, et al. Paracrine regulation of the resumption of oocyte meiosis by endothelin-1. Dev Biol. 2009;327:62–70.

    CAS  PubMed  Google Scholar 

  187. Kidder GM, Vanderhyden BC. Bidirectional communication between oocytes and follicle cells: ensuring oocyte developmental competence. Can J Physiol Pharmacol. 2010;88:399–413.

    CAS  PubMed Central  PubMed  Google Scholar 

  188. Norris RP, Freudzon M, Mehlmann LM, et al. Luteinizing hormone causes MAP kinase-dependent phosphorylation and closure of connexin 43 gap junctions in mouse ovarian follicles: one of two paths to meiotic resumption. Development. 2008;135:3229–38.

    CAS  PubMed Central  PubMed  Google Scholar 

  189. Ferreira EM, Vireque AA, Adona PR, et al. Cytoplasmic maturation of bovine oocytes: structural and biochemical modifications and acquisition of developmental competence. Theriogenology. 2009;71:836–48.

    CAS  PubMed  Google Scholar 

  190. Ajduk A, Malagocki A, Maleszewski M. Cytoplasmic maturation of mammalian oocytes: development of a mechanism responsible for sperm-induced Ca2+ oscillations. Reprod Biol. 2008;8:3–22.

    PubMed  Google Scholar 

  191. Stricker SA. Structural reorganizations of the endoplasmic reticulum during egg maturation and fertilization. Semin Cell Dev Biol. 2006;17:303–13.

    CAS  PubMed  Google Scholar 

  192. Zuccotti M, Merico V, Cecconi S, et al. What does it take to make a developmentally competent mammalian egg? Hum Reprod Update. 2011;17:525–40.

    PubMed  Google Scholar 

  193. Prather RS, Ross JW, Isom SC, et al. Transcriptional, post-transcriptional and epigenetic control of porcine oocyte maturation and embryogenesis. Soc Reprod Fertil Suppl. 2009;66:165–76.

    CAS  PubMed Central  PubMed  Google Scholar 

  194. Tan JH, Wang HL, Sun XS, et al. Chromatin configurations in the germinal vesicle of mammalian oocytes. Mol Hum Reprod. 2009;15:1–9.

    CAS  PubMed  Google Scholar 

  195. Liu H, Aoki F. Transcriptional activity associated with meiotic competence in fully grown mouse GV oocytes. Zygote. 2002;10:327–32.

    CAS  PubMed  Google Scholar 

  196. Zuccotti M, Ponce RH, Boiani M, et al. The analysis of chromatin organisation allows selection of mouse antral oocytes competent for development to blastocyst. Zygote. 2002;10:73–8.

    PubMed  Google Scholar 

  197. Li Y, Sasaki H. Genomic imprinting in mammals: its life cycle, molecular mechanisms and reprogramming. Cell Res. 2011;21:466–73.

    CAS  PubMed Central  PubMed  Google Scholar 

  198. Hiura H, Obata Y, Komiyama J, et al. Oocyte growth-dependent progression of maternal imprinting in mice. Genes Cells. 2006;11:353–61.

    CAS  PubMed  Google Scholar 

  199. Gu L, Wang Q, Sun QY. Histone modifications during mammalian oocyte maturation: dynamics, regulation and functions. Cell Cycle. 2010;9:1942–50.

    CAS  PubMed  Google Scholar 

  200. Paynton BV, Rempel R, Bachvarova R. Changes in state of adenylation and time course of degradation of maternal mRNAs during oocyte maturation and early embryonic development in the mouse. Dev Biol. 1988;129:304–14.

    CAS  PubMed  Google Scholar 

  201. Rana TM. Illuminating the silence: understanding the structure and function of small RNAs. Nat Rev Mol Cell Biol. 2007;8:23–36.

    CAS  PubMed  Google Scholar 

  202. Suh N, Blelloch R. Small RNAs in early mammalian development: from gametes to gastrulation. Development. 2011;138:1653–61.

    CAS  PubMed Central  PubMed  Google Scholar 

  203. Ma J, Flemr M, Stein P, et al. MicroRNA activity is suppressed in mouse oocytes. Curr Biol. 2010;20:265–70.

    CAS  PubMed Central  PubMed  Google Scholar 

  204. Suh N, Baehner L, Moltzahn F, et al. MicroRNA function is globally suppressed in mouse oocytes and early embryos. Curr Biol. 2010;20:271–7.

    CAS  PubMed Central  PubMed  Google Scholar 

  205. Murchison EP, Stein P, Xuan Z, et al. Critical roles for Dicer in the female germline. Genes Dev. 2007;21:682–93.

    CAS  PubMed Central  PubMed  Google Scholar 

  206. Kaneda M, Tang F, O'Carroll D, et al. Essential role for Argonaute2 protein in mouse oogenesis. Epigenet Chromatin. 2009;2:9.

    Google Scholar 

  207. Flesch FM, Gadella BM. Dynamics of the mammalian sperm plasma membrane in the process of fertilization. Biochim Biophys Acta. 2000;1469:197–235.

    CAS  PubMed  Google Scholar 

  208. Ficarro S, Chertihin O, Westbrook VA, et al. Phosphoproteome analysis of capacitated human sperm. Evidence of tyrosine phosphorylation of a kinase-anchoring protein 3 and valosin-containing protein/p97 during capacitation. J Biol Chem. 2003;278:11579–89.

    CAS  PubMed  Google Scholar 

  209. Legendre LM, Stewart-Savage J. Effect of cumulus maturity on sperm penetration in the golden hamster. Biol Reprod. 1993;49:82–8.

    CAS  PubMed  Google Scholar 

  210. Fetterolf PM, Jurisicova A, Tyson JE, et al. Conditioned medium from human cumulus oophorus cells stimulates human sperm velocity. Biol Reprod. 1994;51:184–92.

    CAS  PubMed  Google Scholar 

  211. Sun F, Bahat A, Gakamsky A, et al. Human sperm chemotaxis: both the oocyte and its surrounding cumulus cells secrete sperm chemoattractants. Hum Reprod. 2005;20:761–7.

    CAS  PubMed  Google Scholar 

  212. Chapman N, Kessopoulou E, Andrews P, et al. The polypeptide backbone of recombinant human zona pellucida glycoprotein-3 initiates acrosomal exocytosis in human spermatozoa in vitro. Biochem J. 1998;330(Pt 2):839–45.

    CAS  PubMed Central  PubMed  Google Scholar 

  213. Tesarik J, Drahorad J, Peknicova J. Subcellular immunochemical localization of acrosin in human spermatozoa during the acrosome reaction and zona pellucida penetration. Fertil Steril. 1988;50:133–41.

    CAS  PubMed  Google Scholar 

  214. Roldan ER, Shi QX. Sperm phospholipases and acrosomal exocytosis. Front Biosci. 2007;12:89–104.

    CAS  PubMed  Google Scholar 

  215. Fukami K, Nakao K, Inoue T, et al. Requirement of phospholipase Cdelta4 for the zona pellucida-induced acrosome reaction. Science. 2001;292:920–3.

    CAS  PubMed  Google Scholar 

  216. Beebe SJ, Leyton L, Burks D, et al. Recombinant mouse ZP3 inhibits sperm binding and induces the acrosome reaction. Dev Biol. 1992;151:48–54.

    CAS  PubMed  Google Scholar 

  217. Rankin TL, Coleman JS, Epifano O, et al. Fertility and taxon-specific sperm binding persist after replacement of mouse sperm receptors with human homologs. Dev Cell. 2003;5:33–43.

    CAS  PubMed  Google Scholar 

  218. Ikawa M, Inoue N, Benham AM, et al. Fertilization: a sperm’s journey to and interaction with the oocyte. J Clin Invest. 2010;120:984–94.

    CAS  PubMed Central  PubMed  Google Scholar 

  219. Hagaman JR, Moyer JS, Bachman ES, et al. Angiotensin-converting enzyme and male fertility. Proc Natl Acad Sci U S A. 1998;95:2552–7.

    CAS  PubMed Central  PubMed  Google Scholar 

  220. Nishimura H, Kim E, Nakanishi T, et al. Possible function of the ADAM1a/ADAM2 Fertilin complex in the appearance of ADAM3 on the sperm surface. J Biol Chem. 2004;279:34957–62.

    CAS  PubMed  Google Scholar 

  221. Yamaguchi R, Muro Y, Isotani A, et al. Disruption of ADAM3 impairs the migration of sperm into oviduct in mouse. Biol Reprod. 2009;81:142–6.

    CAS  PubMed  Google Scholar 

  222. Ikawa M, Wada I, Kominami K, et al. The putative chaperone calmegin is required for sperm fertility. Nature. 1997;387:607–11.

    CAS  PubMed  Google Scholar 

  223. Inoue N, Ikawa M, Isotani A, et al. The immunoglobulin superfamily protein Izumo is required for sperm to fuse with eggs. Nature. 2005;434:234–8.

    CAS  PubMed  Google Scholar 

  224. Le Naour F, Rubinstein E, Jasmin C, et al. Severely reduced female fertility in CD9-deficient mice. Science. 2000;287:319–21.

    PubMed  Google Scholar 

  225. Ducibella T, Kurasawa S, Duffy P, et al. Regulation of the polyspermy block in the mouse egg: maturation-dependent differences in cortical granule exocytosis and zona pellucida modifications induced by inositol 1,4,5-trisphosphate and an activator of protein kinase C. Biol Reprod. 1993;48:1251–7.

    CAS  PubMed  Google Scholar 

  226. Lee SH, Ahuja KK, Gilburt DJ, et al. The appearance of glycoconjugates associated with cortical granule release during mouse fertilization. Development. 1988;102:595–604.

    CAS  PubMed  Google Scholar 

  227. Sato K. Polyspermy-preventing mechanisms in mouse eggs fertilized in vitro. J Exp Zool. 1979;210:353–9.

    CAS  PubMed  Google Scholar 

  228. McGrath J, Solter D. Completion of mouse embryogenesis requires both the maternal and paternal genomes. Cell. 1984;37:179–83.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ying-Hui Ye .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Ye, YH., Li, LJ., Chen, YZ., Huang, HF., Liang, ZY. (2014). Physiology of Gametogenesis. In: Huang, HF., Sheng, JZ. (eds) Gamete and Embryo-fetal Origins of Adult Diseases. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-7772-9_1

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-7772-9_1

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-007-7771-2

  • Online ISBN: 978-94-007-7772-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics