Skip to main content

Subchondral Bone Features and Mechanical Properties as Biomarkers of Osteoarthritis

  • Living reference work entry
  • First Online:
Biomarkers in Bone Disease

Abstract

Osteoarthritis (OA) is a painful, debilitating disease most characterized by cartilage degeneration at joint surfaces. In addition to cartilage degeneration, OA is marked by bony changes including attrition, osteophyte formation, cyst presence, bone marrow lesions, altered shape, as well as altered density and mechanical properties of underlying subchondral bone. As subchondral bone is densely innervated, it may be a plausible site of debilitating pain associated with OA. However, the role of subchondral bone in OA pathogenesis and pain remains unclear. Medical imaging offers the ability to quantitatively characterize and monitor subchondral bone properties in vivo in people living with OA and investigate changes in relation to clinical OA symptoms. Incorporating medical imaging data with computational finite element modeling enables study of bone mechanical properties in the OA affected joint. These imaged-based biomarkers have potential to elucidate the mechanism underpinning OA pain and clarify the role of mechanical loading in OA pathogenesis. By characterizing and monitoring subchondral bone features and mechanical properties, image-based biomarkers provide unique, noninvasive avenues to improve our understanding of OA initiation, progress, and treatment. This chapter will summarize recent evidence of associations between subchondral bone features and mechanical properties as biomarkers of OA onset, progression, and pain initiation.

Supported in part by grants from the Natural Sciences and Engineering Research Council of Canada (NSERC grant 371530) and the Canadian Arthritis Network (Pilot Grant Program).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

Abbreviations

2D:

Two dimensional

3D:

Three dimensional

BMC:

Bone mineral content (g)

BMD:

Bone mineral density (g/cm2 with DXA, g/cm3 with QCT)

CT:

Computed tomography

DXA:

Dual energy x-ray absorptiometry, same as DEXA

E:

Elastic modulus or Young’s modulus (MPa)

FE:

Finite element

FSA:

Fractal signature analysis

HU:

Hounsfield unit

MRI:

Magnetic resonance imaging

OA:

Osteoarthritis

pQCT:

Peripheral Quantitative computed tomography

QCT:

Quantitative computed tomography

RA:

Rheumatoid arthritis

ROI:

Region of interest

References

  • Agricola R, Heijboer MP, et al. Cam impingement causes osteoarthritis of the hip: a nationwide prospective cohort study (CHECK). Ann Rheum Dis. 2013;72(6):918–23.

    Article  PubMed  Google Scholar 

  • Ai F, Yu C, et al. MR imaging of knee osteoarthritis and correlation of findings with reported patient pain. J Huazhong Univ Sci Technolog. 2010;30(2):248–54.

    Article  Google Scholar 

  • Akamatsu Y, Mitsugi N, et al. Medial versus lateral condoyle bone mineral density ratios in a cross-sectional study: a potential marker for medial knee osteoarthritis severity. Arthritis Care Res. 2012;64(7):1036–45.

    Google Scholar 

  • Amini M, Nazemi M, et al. Individual and combined effects of OA-related subchondral bone alterations on proximal tibial stiffness: a parametric finite element modeling study. Med Eng Phys. 2015;37(8):783–91.

    Google Scholar 

  • Anderson MJ, Keyak JH, et al. Compressive mechanical properties of human cancellous bone after gamma irradiation. J Bone Joint Surg Am. 1992;74(5):747–52.

    CAS  PubMed  Google Scholar 

  • Arjmand H, Nazemi M, et al. Precision and preliminary comparison of subchondral bone mechanical properties at the proximal tibia from normal and osteoarthritic knees. Understanding crosstalk between cartilage and bone research symposium, Chicago; 2016.

    Google Scholar 

  • Bailey AJ, Mansell JP, et al. Biochemical and mechanical properties of subchondral bone in osteoarthritis. Biorheology. 2004;41(3–4):349–58.

    CAS  PubMed  Google Scholar 

  • Bauer JS, Link TM. Advances in osteoporosis imaging. Eur J Radiol. 2009;71(3):440–9.

    Article  PubMed  Google Scholar 

  • Bay BK. Methods and applications of digital volume correlation. J Strain Anal Eng Des. 2008;43(8):745–60.

    Article  Google Scholar 

  • Bennell KL, Creaby MW, et al. Tibial subchondral trabecular volumetric bone density in medial knee joint osteoarthritis using peripheral quantitative computed tomography technology. Arthritis Rheum. 2008;58(9):2776–85.

    Article  PubMed  Google Scholar 

  • Beuf O, Ghosh S, et al. Magnetic resonance imaging of normal and osteoarthritic trabecular bone structure in the human knee. Arthritis Rheum. 2002;46(2):385–93.

    Article  PubMed  Google Scholar 

  • Bjurholm A, Kreicbergs A, et al. Substance P- and CGRP-immunoreactive nerves in bone. Peptides. 1988;9:165–71.

    Article  CAS  PubMed  Google Scholar 

  • Boegard T, Rudling O, et al. Correlation between radiographically diagnosed osteophytes and magnetic resonance detected cartilage defects in the patellofemoral joint. Ann Rheum Dis. 1998a;57:395–400.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boegard T, Rudling O, et al. Correlation between radiographically diagnosed osteophytes and magnetic resonance detected cartilage defects in the tibiofemoral joint. Ann Rheum Dis. 1998b;57:401–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bolbos RI, Zuo J, et al. Relationship between trabecular bone structure and articular cartilage morphology and relaxation times in early OA of the knee joint using parallel MRI at 3 T. Osteoarthritis Cartilage. 2008;16(10):1150–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brown TD, Radin EL, et al. Finite element studies of some juxtarticular stress changes due to localized subchondral stiffening. J Biomech. 1984;17(1):11–24.

    Article  CAS  PubMed  Google Scholar 

  • Bullough PG. Osteoarthritis and related disorders: pathology. In: Klippel JH, Dieppe P, editors. Rheumatology. 2nd ed. London: Mosby; 1998. p. 8.8.1–8.

    Google Scholar 

  • Burnett WD, Kontulainen SA, et al. Regional depth-specific subchondral bone density measures in osteoarthritic and normal patellae: in vivo precision and preliminary comparisons. Osteoporos Int. 2014;25(3):1107–14.

    Article  CAS  PubMed  Google Scholar 

  • Burnett WD, Kontulainen SA, et al. Knee osteoarthritis patients with severe nocturnal pain have altered proximal tibial subchondral bone mineral density. Osteoarthritis Cartilage. 2015;23(9):1483–90.

    Google Scholar 

  • Burnett W, Kontulainen S, et al. Patella bone density is lower in knee osteoarthritis patients experiencing moderate-to-severe pain at rest. J Musculoskelet Neuronal Interact. 2016a;16(1):33–9.

    Google Scholar 

  • Burnett W, Kontulainen S, et al. Proximal tibial trabecular bone mineral density is related to pain in patients with osteoarthritis. Osteoarthritis Cartilage. 2016b; (in press).

    Google Scholar 

  • Burr DB. The importance of subchondral bone in osteoarthrosis. Curr Opin Rheumatol. 1998;10(3):256–62.

    Article  CAS  PubMed  Google Scholar 

  • Burr DB, Radin EL. Microfractures and microcracks in subchondral bone: are they relevant to osteoarthrosis? Rheum Dis Clin North Am. 2003;29(4):675–85.

    Article  PubMed  Google Scholar 

  • Burr DB, Schaffler MB. The involvement of subchondral mineralized tissues in osteoarthrosis: quantitative microscopic evidence. Microsc Res Tech. 1997;37(4):343–57.

    Article  CAS  PubMed  Google Scholar 

  • Castellano G, Bonilha L, et al. Texture analysis of medical images. Clin Radiol. 2004;59(12):1061–9.

    Article  CAS  PubMed  Google Scholar 

  • Chang CB, Han I, et al. Association between radiological findings and symptoms at the patellofemoral joint in advanced knee osteoarthritis. J Bone Joint Surg (Br). 2007;89-B:1324–8.

    Article  Google Scholar 

  • Chang CB, Koh IJ, et al. The radiographic predictors of symptom severity in advanced knee osteoarthritis with varus deformity. Knee. 2011;18:456–60.

    Article  PubMed  Google Scholar 

  • Chappard C, Peyrin F, et al. Subchondral bone micro-architectural alterations in osteoarthritis: a synchrotron micro-computed tomography study. Osteoarthritis Cartilage. 2006;14(3):215–23.

    Article  CAS  PubMed  Google Scholar 

  • Cicuttini FM, Jones G, et al. Rate of cartilage loss at two years predicts subsequent total knee arthroplasty: a prospective study. Ann Rheum Dis. 2004;63(9):1124–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Clarke S, Wakeley C, et al. Dual-energy X-ray absorptiometry applied to the assessment of tibial subchondral bone mineral density in osteoarthritis of the knee. Skeletal Radiol. 2004;33(10):588–95.

    Article  CAS  PubMed  Google Scholar 

  • Day JS, Ding M, et al. A decreased subchondral trabecular bone tissue elastic modulus is associated with pre-arthritic cartilage damage. J Orthop Res. 2001;19(5):914–8.

    Article  CAS  PubMed  Google Scholar 

  • Dieppe PA, Cushnaghan J, et al. The Bristol “OA 500” study: progression of osteoarthritis (OA) over 3 years and the relationship between clinical and radiographic changes at the knee joint. Osteoarthritis Cartilage. 1997;5:87–97.

    Article  CAS  PubMed  Google Scholar 

  • Dieppe PA, Reichenbach S, et al. Assessing bone loss on radiographs of the knee in osteoarthritis. Arthritis Rheum. 2005;52(11):3536–41.

    Article  PubMed  Google Scholar 

  • Ding M, Danielsen CC, et al. Bone density does not reflect mechanical properties in early-stage arthrosis. Acta Orthop Scand. 2001;72(2):181–5.

    Article  CAS  PubMed  Google Scholar 

  • Ding C, Martel-Pelletier J, et al. Two-year prospective longitudinal study exploring the factors associated with change in femoral cartilage volume in a cohort largely without knee radiographic osteoarthritis. Osteoarthritis Cartilage. 2008;16(4):443–9.

    Article  CAS  PubMed  Google Scholar 

  • Dore D, Quinn S, et al. Natural history and clinical significance of MRI-detected bone marrow lesions at the knee: a prospcetive study in community dwelling older adults. Arthritis Res Ther. 2010;12:R223.

    Article  PubMed  PubMed Central  Google Scholar 

  • Driban JB, Price LL, et al. Evaluation of bone marrow lesion volume as a knee osteoarthritis biomarker – longitudinal relationships with pain and structural changes: data from the osteoarthritis initiative. Arthritis Res Ther. 2013;15(5):R112.

    Article  PubMed  PubMed Central  Google Scholar 

  • Durr HD, Martin H, et al. The cause of subchondral bone cysts in osteoarthrosis: a finite element analysis. Acta Orthop Scand. 2004;75(5):554–8.

    Article  PubMed  Google Scholar 

  • Dye SF, Vaupel GL. The pathophysiology of patellofemoral pain. Sports Med Arthrosc Rev. 1994;2:203–10.

    Article  Google Scholar 

  • El-Sherif HE, Kamal R, et al. Hand osteoarthritis and bone mineral density in postmenopausal women; clinical relevance to hand function, pain and disability. Osteoarthritis Cartilage. 2008;16(1):12–7.

    Article  CAS  PubMed  Google Scholar 

  • Everhart JS, Siston RA, et al. Tibiofemoral subchondral surface ratio (SSR) is a predictor of osteoarthritis symptoms and radiographic progression: data from the Osteoarthritis Initiative (OAI). Osteoarthritis Cartilage. 2014;22(6):771–8.

    Article  CAS  PubMed  Google Scholar 

  • Fang J, Gong H, et al. Simulation on the internal structure of three-dimensional proximal tibia under different mechanical environments. Biomed Eng Online. 2013;12:130.

    Article  PubMed  PubMed Central  Google Scholar 

  • Felson DT, Lawrence RC, et al. Osteoarthritis: new insights. Part 1: the disease and its risk factors. Ann Intern Med. 2000;133(8):635–46.

    Article  CAS  PubMed  Google Scholar 

  • Felson DT, Chaisson CE, et al. The association of bone marrow lesions with pain in knee osteoarthritis. Ann Intern Med. 2001;134(7):541–9.

    Article  CAS  PubMed  Google Scholar 

  • Finlay JB, Bourne RB, et al. Stiffness of bone underlying the tibial plateaus of osteoarthritic and normal knees. Clin Orthop Relat Res. 1989;247:193–201.

    PubMed  Google Scholar 

  • Fondi C, Franchi A. Definition of bone necrosis by the pathologist. Clin Cases Miner Bone Metab. 2007;4(1):21–6.

    PubMed  PubMed Central  Google Scholar 

  • Frost HM. Bone “mass” and the “mechanostat”: a proposal. Anat Rec. 1987;219(1):1–9.

    Article  CAS  PubMed  Google Scholar 

  • Gelse K, Soder S, et al. Osteophyte development – molecular characterization of differentiation stages. Osteoarthritis Cartilage. 2003;11:141–8.

    Article  CAS  PubMed  Google Scholar 

  • Grynpas MD, Alpert B, et al. Subchondral bone in osteoarthritis. Calcif Tissue Int. 1991;49(1):20–6.

    Article  CAS  PubMed  Google Scholar 

  • Guermazi A, Zaim S, et al. MR findings in knee osteoarthritis. Eur Radiol. 2003;13(6):1370–86.

    PubMed  Google Scholar 

  • Harrison LC, Nikander R, et al. MRI texture analysis of femoral neck: detection of exercise load-associated differences in trabecular bone. J Magn Reson Imaging. 2011;34(6):1359–66.

    Article  PubMed  Google Scholar 

  • Haugen IK, Boyesen P, et al. Associations between MRI-defined synovitis, bone marrow lesions and structural features and measures of pain and physical function in hand osteoarhtritis. Ann Rheum Dis. 2012;71:899–904.

    Article  PubMed  Google Scholar 

  • Haverkamp DJ, Schiphof D, et al. Variation in joint shape of osteoarthritic knees. Arthritis Rheum. 2011;63(11):3401–7.

    Article  CAS  PubMed  Google Scholar 

  • Hayashi D, Xu L, et al. Detection of osteophytes and subchondral cysts in the knee with use of tomosynthesis. Musculoskelet Imaging. 2012;263(1):206–15.

    Google Scholar 

  • Hayes CW, Jamadar DA, et al. Osteoarthritis of the knee: comparison of MR imaging findings with radiographic severity measurements and pain in middle-aged women. Radiology. 2005;237(3):998–1007.

    Article  PubMed  Google Scholar 

  • Helgason B, Perilli E, et al. Mathematical relationships between bone density and mechanical properties: a literature review. Clin Biomech (Bristol, Avon). 2008;23(2):135–46.

    Article  Google Scholar 

  • Imhof H, Breitenseher M, et al. Importance of subchondral bone to articular cartilage in health and disease. Top Magn Reson Imaging. 1999;10(3):180–92.

    Article  CAS  PubMed  Google Scholar 

  • Intema F, Thomas TP, et al. Subchondral bone remodeling is related to clinical improvement after joint distraction in the treatment of ankle osteoarthritis. Osteoarthritis Cartilage. 2011;19(6):668–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ip S, Sayre EC, et al. Frequency of bone marrow lesions and association with pain severity: results from a population-based symptomatic knee cohort. J Rheumatol. 2011;38:1079–85.

    Article  PubMed  Google Scholar 

  • Javaid MK, Kiran A, et al. Individual magentic resonance imaging and radiographic features of knee osteoarthritis in subjects with unilateral knee pain. Arthritis Rheum. 2012;64(10):3246–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Johnston JD, Masri BA, et al. Computed tomography topographic mapping of subchondral density (CT-TOMASD) in osteoarthritic and normal knees: methodological development and preliminary findings. Osteoarthritis Cartilage. 2009;17(10):1319–1326.

    Google Scholar 

  • Johnston JD, Kontulainen SA, et al. A comparison of conventional maximum intensity projection to a new depth specific topographic mapping technique in the CT analysis of proximal tibial subchondral bone density. Skeletal Radiol. 2010;39(9):10.

    Article  Google Scholar 

  • Johnston JD, Kontulainen SA, et al. Predicting subchondral bone stiffness using a depth-specific CT topographic mapping technique in normal and osteoarthritic proximal tibiae. Clin Biomech (Bristol, Avon). 2011;26(10):1012–8.

    Article  Google Scholar 

  • Kalichman L, Zhang Y, et al. The association between patellar alignment and patellofemoral joint osteoarthritis features – an MRI study. Rheumatology (Oxford). 2007;46(8):1303–8.

    Article  CAS  Google Scholar 

  • Karvonen RL, Miller PR, et al. Periarticular osteoporosis in osteoarthritis of the knee. J Rheumatol. 1998;25(11):2187–94.

    CAS  PubMed  Google Scholar 

  • Keyak JH, Rossi SA. Prediction of femoral fracture load using finite element models: an examination of stress- and strain-based failure theories. J Biomech. 2000;33(2):209–14.

    Article  CAS  PubMed  Google Scholar 

  • Kinds MB, Marijnissen ACA, et al. Quantitative radiographic features of early knee osteoarthritis: development over 5 years and relationship with symptoms in the CHECK Cohort. J Rheumatol. 2013;40(1):58–65.

    Article  PubMed  Google Scholar 

  • Kornaat PR, Bloem JL, et al. Osteoarthritis of the knee: association between clinical findings and MR imaging findings. Radiology. 2006;239(3):811–7.

    Article  PubMed  Google Scholar 

  • Kornaat PR, Kloppenburg M, et al. Bone marrow edema-like lesions change in volume in the majority of patients with osteoarthritis; associations with clinical features. Eur Radiol. 2007;17(12):3073–8.

    Article  PubMed  PubMed Central  Google Scholar 

  • Lajeunesse D, Reboul P. Subchondral bone in osteoarthritis: a biologic link with articular cartilage leading to abnormal remodeling. Curr Opin Rheumatol. 2003;15(5):628–33.

    Article  PubMed  Google Scholar 

  • Li B, Aspden RM. Composition and mechanical properties of cancellous bone from the femoral head of patients with osteoporosis or osteoarthritis. J Bone Miner Res. 1997a;12(4):641–51.

    Article  CAS  PubMed  Google Scholar 

  • Li B, Aspden RM. Mechanical and material properties of the subchondral bone plate from the femoral head of patients with osteoarthritis or osteoporosis. Ann Rheum Dis. 1997b;56(4):247–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lindsey CT, Narasimhan A, et al. Magnetic resonance evaluation of the interrelationship between articular cartilage and trabecular bone of the osteoarthritic knee. Osteoarthritis Cartilage. 2004;12(2):86–96.

    Article  CAS  PubMed  Google Scholar 

  • Link TM, Steinbach LS, et al. Osteoarthritis: MR imaging findings in different stages of disease and correlation with clinical findings. Radiology. 2003;226:373–81.

    Article  PubMed  Google Scholar 

  • Lo GH, Zhang Y, et al. The ratio of medial to lateral tibial plateau bone mineral density and compartment-specific tibiofemoral osteoarthritis. Osteoarthritis Cartilage. 2006;14(10):984–90.

    Article  CAS  PubMed  Google Scholar 

  • Lo GH, McAlindon TE, et al. Bone marrow lesions and joint effusion are strongly and independently associated with weight-bearing pain in knee osteoarthritis: data from the osteoarthritis initiative. Osteoarthritis Cartilage. 2009;17(12):1562–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lowitz T, Museyko O, et al. Bone marrow lesions identified by MRI in knee osteoarthritis are associated with locally increased bone mineral density measured by QCT. Osteoarthritis Cartilage. 2013;21(7):957–64.

    Article  CAS  PubMed  Google Scholar 

  • MacKay JW, Godley KC, et al. MRI signal-based quantification of subchondral bone at the tibial plateau: a population study. Skeletal Radiol. 2014;43(11):1567–75.

    Article  PubMed  Google Scholar 

  • MacKay JW, Murray PJ, et al. Quantitative analysis of tibial subchondral bone: texture analysis outperforms conventional trabecular microarchitecture analysis. J Magn Reson Imaging. 2016;43(5):1159–70.

    Article  PubMed  Google Scholar 

  • MacNeil JA, Boyd SK. Bone strength at the distal radius can be estimated from high-resolution peripheral quantitative computed tomography and the finite element method. Bone. 2008;42(6):1203–13.

    Article  PubMed  Google Scholar 

  • Madry H, van Dijk CN, et al. The basic science of the subchondral bone. Knee Surg Sports Traumatol Arthrosc. 2010;18(4):419–33.

    Article  PubMed  Google Scholar 

  • Madsen OR, Schaadt O, et al. Bone mineral distribution of the proximal tibia in gonarthrosis assessed in vivo by photon absorption. Osteoarthritis Cartilage. 1994;2(2):141–7.

    Article  CAS  PubMed  Google Scholar 

  • Mansell JP, Bailey AJ. Abnormal cancellous bone collagen metabolism in osteoarthritis. J Clin Invest. 1998;101(8):1596–603.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marques J, Genant HK, et al. Diagnosis of osteoarthritis and prognosis of tibial cartilage loss by quantification of tibia trabecular bone from MRI. Magn Reson Med. 2013;70(2):568–75.

    Article  PubMed  Google Scholar 

  • McAlindon TE, Snow S, et al. Radiographic patterns of osteoarthritis in the knee joint in the community: the importance of the patellofemoral joint. Ann Rheum Dis. 1992;51:844–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McErlain DD, Milner JS, et al. Subchondral cysts create increased intra-osseous stress in early knee OA: a finite element analysis using simulated lesions. Bone. 2011;48(3):639–46.

    Article  PubMed  Google Scholar 

  • McErlain DD, Ulici V, et al. An in vivo investigation of the initiation and progression of subchondral cysts in a rodent model of secondary osteoarthritis. Arthritis Res Ther. 2012;14(1):R26.

    Article  PubMed  PubMed Central  Google Scholar 

  • Messent EA, Buckland-Wright JC, et al. Fractal analysis of trabecular bone in knee osteoarthritis (OA) is a more sensitive marker of disease status than bone mineral density (BMD). Calcif Tissue Int. 2005a;76(6):419–25.

    Article  CAS  PubMed  Google Scholar 

  • Messent EA, Ward RJ, et al. Cancellous bone differences between knees with early, definite and advanced joint space loss; a comparative quantitative macroradiographic study. Osteoarthritis Cartilage. 2005b;13(1):39–47.

    Article  PubMed  Google Scholar 

  • Messent EA, Ward RJ, et al. Tibial cancellous bone changes in patients with knee osteoarthritis. A short-term longitudinal study using fractal signature analysis. Osteoarthritis Cartilage. 2005c;13(6):463–70.

    Article  PubMed  Google Scholar 

  • Messent EA, Ward RJ, et al. Differences in trabecular structure between knees with and without osteoarthritis quantified by macro and standard radiography, respectively. Osteoarthritis Cartilage. 2006;14(12):1302–5.

    Article  CAS  PubMed  Google Scholar 

  • Morgan EF, Bayraktar HH, et al. Trabecular bone modulus-density relationships depend on anatomic site. J Biomech. 2003;36(7):897–904.

    Article  PubMed  Google Scholar 

  • Nazemi M, Cooper DML, et al. Quantifying trabecular bone material anisotropy and orientation using low resolution clinical CT images: A feasibility study. Med Eng Phys. 2016; (in press).

    Google Scholar 

  • Neogi T. Clinical significance of bone changes in osteoarthritis. Ther Adv Musculoskelet Dis. 2012;4(4):259–67.

    Article  PubMed  PubMed Central  Google Scholar 

  • Neogi T, Felson D, et al. Cartilage loss occurs in the same subregions as subchondral bone attrition: a within-knee subregion-matched approach from the Multicenter Osteoarthritis Study. Arthritis Rheum. 2009a;61(11):1539–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Neogi T, Felson D, et al. Association between radiographic features of knee osteoarthritis and pain: results from two cohort studies. Br Med J. 2009b;339:2844–50.

    Article  Google Scholar 

  • Ochiai N, Sasho T, et al. Objective assessments of medial osteoarthritic knee severity by MRI: new computer software to evaluate femoral condyle contours. Int Orthop. 2010;34(6):811–7.

    Article  PubMed  Google Scholar 

  • Ondrouch AS. Cyst formation in osteoarthritis. J Bone Joint Surg (Br). 1963;45:755–60.

    CAS  Google Scholar 

  • Radin EL, Rose RM. Role of subchondral bone in the initiation and progression of cartilage damage. Clin Orthop Relat Res. 1986;213:34–40.

    PubMed  Google Scholar 

  • Radin EL, Paul IL, et al. Subchondral bone changes in patients with early degenerative joint disease. Arthritis Rheum. 1970;13(4):400–5.

    Article  CAS  PubMed  Google Scholar 

  • Radin EL, Paul IL, et al. Role of mechanical factors in pathogenesis of primary osteoarthritis. Lancet. 1972;1(7749):519–22.

    Article  CAS  PubMed  Google Scholar 

  • Radin EL, Parker HG, et al. Response of joints to impact loading. 3. Relationship between trabecular microfractures and cartilage degeneration. J Biomech. 1973;6(1):51–7.

    Article  CAS  PubMed  Google Scholar 

  • Reichenbach S, Guermazi A, et al. Prevalence of bone attrition on knee radiographs and MRI in a community-based cohort. Osteoarthritis Cartilage. 2008;16(9):1005–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roemer FW, Hunter DJ, et al. Hip osteoarthritis MRO scoring system (HOAMS): reliability and associations with radiographic and clinical findings. Osteoarthritis Cartilage. 2011;19:946–62.

    Article  CAS  PubMed  Google Scholar 

  • Sabokbar A, Crawford R, et al. Macrophage-osteoclast differentiation and bone resorption in osteoarthrotic subchondral acetabular cysts. Acta Orthop Scand. 2000;71(3):255–61.

    Article  CAS  PubMed  Google Scholar 

  • Sanghi D, Avasthi S, et al. Is radiology a determinant of pain, stiffness, and functional disability in knee osteoarthritis? A cross-sectional study. J Orthop Sci. 2011;16:719–25.

    Article  PubMed  Google Scholar 

  • Sowers M. Magnetic resonance-detected subchondral bone marrow and cartilage defect characteristics associated with pain and X-ray-defined knee osteoarthritis. Osteoarthritis Cartilage. 2003;11(6):387–93.

    Article  CAS  PubMed  Google Scholar 

  • Sowers MR, Karvonen-Gutierrez CA, et al. Associations of anatomical measures from MRI with radiographically defined knee osteoarthritis score, pain, and physical functioning. J Bone Joint Surg. 2011;93:241–51.

    Article  PubMed  PubMed Central  Google Scholar 

  • Spector TD, Hart DJ, et al. Definition of osteoarthritis of the knee for epidemiological studies. Ann Rheum Dis. 1993;52(11):790–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Speirs AD, Beaule PE, et al. Increased acetabular subchondral bone density is associated with cam-type femoroacetabular impingement. Osteoarthritis Cartilage. 2013;21(4):551–8.

    Article  CAS  PubMed  Google Scholar 

  • Szczypinski PM, Strzelecki M, et al. MaZda – a software package for image texture analysis. Comput Methods Programs Biomed. 2009;94(1):66–76.

    Article  PubMed  Google Scholar 

  • Szebenyi B, Hollander AP, et al. Associations between pain, function, and radiographic features in osteoarthritis of the knee. Arthritis Rheum. 2006;54(1):230–5.

    Article  PubMed  Google Scholar 

  • Tang X. Texture information in run-length matrices. IEEE Trans Image Process. 1998;7(11):1602–9.

    Article  CAS  PubMed  Google Scholar 

  • Torres L, Dunlop D, et al. The relationship between specific tissue lesions and pain severity in persons with knee osteoarthritis. Osteoarthritis Cartilage. 2006;14(10):1033–40.

    Article  CAS  PubMed  Google Scholar 

  • UNSCEAR. UNSCEAR 2000 report to the general assembly – annex B: exposures from natural radiation sources sources and effects of ionizing radiation. United Nations Scientific Committee on the Effects of Atomic Radiation; 2000. http://www.unscear.org/unscear/en/publications/2000_1.html

  • van der Kraan PM, van den Berg WB. Osteophytes: relevance and biology. Osteoarthritis Cartilage. 2007;15:237–44.

    Article  PubMed  Google Scholar 

  • van Lenthe GH, Muller R. Prediction of failure load using micro-finite element analysis models: towards in vivo strength assessment. Drug Discov Today Technol. 2006;3(2):221–9.

    Article  PubMed  Google Scholar 

  • von Rechenberg B, Leutenegger C, et al. Upregulation of mRNA of interleukin-1 and -6 in subchondral cystic lesions of four horses. Equine Vet J. 2001;33(2):143–9.

    Article  Google Scholar 

  • Wada M, Maezawa Y, et al. Relationships among bone mineral densities, static alignment and dynamic load in patients with medial compartment knee osteoarthritis. Rheumatology (Oxford). 2001;40(5):499–505.

    Article  Google Scholar 

  • Williams JM, Brandt KD. Exercise increases osteophyte formation and diminishes fibrillation following chemically induced articular cartilage injury. J Anat. 1984;139(4):599–611.

    PubMed  PubMed Central  Google Scholar 

  • Wright DA, Meguid M, et al. Subchondral bone density distribution in the human femoral head. Skeletal Radiol. 2012;41(6):677–83.

    Article  PubMed  Google Scholar 

  • Zanetti M, Bruder E, et al. Bone marrow edema pattern in osteoarthritic knees: correlation between MR imaging and hostologic findings. Radiology. 2000;215:835–40.

    Article  CAS  PubMed  Google Scholar 

  • Zysset PK, Sonny M, et al. Morphology-mechanical property relations in trabecular bone of the osteoarthritic proximal tibia. J Arthroplasty. 1994;9(2):203–16.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to James D. Johnston , Wadena D. Burnett or Saija A. Kontulainen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Dordrecht

About this entry

Cite this entry

Johnston, J.D., Burnett, W.D., Kontulainen, S.A. (2016). Subchondral Bone Features and Mechanical Properties as Biomarkers of Osteoarthritis. In: Preedy, V. (eds) Biomarkers in Bone Disease. Biomarkers in Disease: Methods, Discoveries and Applications. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-7745-3_46-1

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-7745-3_46-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Online ISBN: 978-94-007-7745-3

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics