Skip to main content

S100B: Potential Biomarker for CNS Insult and Injury

  • Living reference work entry
  • First Online:
General Methods in Biomarker Research and their Applications
  • 177 Accesses

Abstract

S100B is a calcium-binding protein expressed primarily in neuronal tissue. The protein is released from cells following neuronal injury and can be detected in serum, urine, or CSF with a simple bioassay. It has thus been widely investigated as a potential biomarker for brain injury. S100B protein levels have been shown to be significantly elevated in cases of traumatic brain injury, neonatal asphyxia, and injury secondary to cardiac arrest as well as other neurodegenerative diseases. Moreover, in severe traumatic brain injury, protein levels have been shown to be correlated with the degree of injury determined by cranial CT scans during initial patient evaluation. In mild traumatic brain injury, the use of S100B has been considered as a screening tool in conjunction with CT scans to avoid unnecessary radiation. Additionally, promising data has supported S100B in the detection of neonatal anoxic brain injury above other available screening tools. This chapter reviews current data along with its limitations regarding the use of S100B as a biomarker of neuronal injury from traumatic brain injury, neonatal asphyxia, and brain injury secondary to cardiac arrest.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Abbreviations

CNS:

Central Nervous System

CSF:

Cerebral Spinal Fluid

CT:

Computed Tomography

GCS:

Glasgow Coma Scale

HIE:

Hypoxic Ischemic Encephalopathy

IVH:

Intraventricular Hemorrhage

MTBI:

Mild Traumatic Brain Injury

NPV:

Negative Predictive Value

PPV:

Positive Predictive Value

S100B:

S100B Protein

TBI:

Traumatic Brain Injury

References

  • Akbari HM, Whitaker-Azmitia PM, Azmitia EC. Prenatal cocaine decreases the trophic factor S-100 beta and induced microcephaly: reversal by postnatal 5-HT1A receptor agonist. Neurosci Lett. 1994;170:141–4.

    Article  CAS  PubMed  Google Scholar 

  • Bartosik-Psujek H, Psujek M, Jaworski J, Stelmasiak Z. Total tau and S100b proteins in different types of multiple sclerosis and during immunosuppressive treatment with mitoxantrone. Acta Neurol Scand. 2011;123:252–6.

    Article  CAS  PubMed  Google Scholar 

  • Berger RP, Beers SR, Richichi R, Wiesman D, Adelson PD. Serum biomarker concentrations and outcome after pediatric traumatic brain injury. J Neurotrauma. 2007;24:1793–801.

    Article  PubMed  Google Scholar 

  • Berger RP, Bazaco MC, Wagner AK, Kochanek PM, Fabio A. Trajectory analysis of serum biomarker concentrations facilitates outcome prediction after pediatric traumatic and hypoxemic brain injury. Dev Neurosci. 2010;32:396–405.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Biberthaler P, Linsenmeier U, Pfeifer KJ, et al. Serum S-100B concentration provides additional information fot the indication of computed tomography in patients after minor head injury: a prospective multicenter study. Shock. 2006;25:446–53.

    Article  CAS  PubMed  Google Scholar 

  • Blennow M, Savman K, Ilves P, Thoresen M, Rosengren L. Brain-specific proteins in the cerebrospinal fluid of severely asphyxiated newborn infants. Acta Paediatr. 2001;90:1171–5.

    Article  CAS  PubMed  Google Scholar 

  • Bloomfield SM, McKinney J, Smith L, Brisman J. Reliability of S100B in predicting severity of central nervous system injury. Neurocrit Care. 2007;6:121–38.

    Article  CAS  PubMed  Google Scholar 

  • Bohmer AE, Oses JP, Schmidt AP, et al. Neuron-specific enolase, S100B, and glial fibrillary acidic protein levels as outcome predictors in patients with severe traumatic brain injury. Neurosurgery. 2011;68:1624–31.

    Article  PubMed  Google Scholar 

  • Brenner DJ. Estimating cancer risks from pediatric CT: going from the qualitative to the quantitative. Pediatr Radiol. 2002;32:228–33. discussion 242–244.

    Article  PubMed  Google Scholar 

  • Calcagnile O, Unden L, Unden J. Clinical validation of S100B use in management of mild head injury. BMC Emerg Med. 2012;12:13.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Castellani C, Bimbashi P, Ruttenstock E, Sacherer P, Stojakovic T, Weinberg AM. Neuroprotein s-100B – a useful parameter in paediatric patients with mild traumatic brain injury? Acta Paediatr. 2009;98:1607–12.

    Article  CAS  PubMed  Google Scholar 

  • Celtik C, Acunas B, Oner N, Pala O. Neuron-specific enolase as a marker of the severity and outcome of hypoxic ischemic encephalopathy. Brain Dev. 2004;26:398–402.

    Article  PubMed  Google Scholar 

  • Cirillo C, Sarnelli G, Esposito G, et al. Increased mucosal nitric oxide production in ulcerative colitis is mediated in part by the enteroglial-derived S100B protein. Neurogastroenterol Motil. 2009;21:1209–e112.

    Article  CAS  PubMed  Google Scholar 

  • Committee on Fetus, Newborn AAP, Committee on Obstetric Practice, American College of OBGYN. Pediatrics. 1996; 98: 141.

    Google Scholar 

  • DiStefano G, Curreri R, Betta P, Isaja M, Romeo M, Amato M. Serial Protein S-100 Serum Levels in Preterm Babies with Perinatal Asphyxia and Periventricular White Mater Lesion. Am J Perinatal. 2002; 19(6):317–22.

    Article  CAS  Google Scholar 

  • Donato R, Sorci G, Riuzzi F, et al. S100B’s double life: intracellular regulator and extracellular signal. Biochim Biophys Acta. 2009;1793:1008–22.

    Article  CAS  PubMed  Google Scholar 

  • Ekmektzoglou KA, Xanthos T, Papadimitriou L. Biochemical markers (NSE, S-100, IL-8) as predictors of neurological outcome in patients after cardiac arrest and return of spontaneous circulation. Resuscitation. 2007;75:219–28.

    Article  CAS  PubMed  Google Scholar 

  • Esposito G, Cirillo C, Sarnelli G, et al. Enteric glial-derived S100B protein stimulates nitric oxide production in celiac disease. Gastroenterology. 2007;133:918–25.

    Article  CAS  PubMed  Google Scholar 

  • Florio P, Michetti F, Bruschettini M, et al. Amniotic fluid S100B protein in mid-gestation and intrauterine fetal death. Lancet. 2004;364:270–2.

    Article  CAS  PubMed  Google Scholar 

  • Gazzolo D, Vinesi P, Bartocci M, et al. Elevated S100 blood level as an early indicator of intraventricular hemorrhage in preterm infants. Correlation with cerebral Doppler velocimetry. J Neurol Sci. 1999;170:32–5.

    Article  CAS  PubMed  Google Scholar 

  • Gazzolo D, Bruschettini M, Lituania M, Serra G, Bonacci W, Michetti F. Increased urinary S100B protein as an early indicator of intraventricular hemorrhage in preterm infants: correlation with the grade of hemorrhage. Clin Chem. 2001;47:1836–8.

    CAS  PubMed  Google Scholar 

  • Gazzolo D, Di Iorio R, Marinoni E, et al. S100B protein is increased in asphyxiated term infants developing intraventricular hemorrhage. Crit Care Med. 2002a;30:1356–60.

    Article  PubMed  Google Scholar 

  • Gazzolo D, Marinoni E, di Iorio R, Lituania M, Bruschettini PL, Michetti F. Circulating S100beta protein is increased in intrauterine growth-retarded fetuses. Pediatr Res. 2002b;51:215–9.

    Article  CAS  PubMed  Google Scholar 

  • Gazzolo D, Bruschettini M, Di Iorio R, et al. Maternal nitric oxide supplementation decreases cord blood S100B in intrauterine growth-retarded fetuses. Clin Chem. 2002c;48:647–50.

    CAS  PubMed  Google Scholar 

  • Gazzolo D, Marinoni E, Di Iorio R, et al. Measurement of urinary S100B protein concentrations for the early identification of brain damage in asphyxiated full-term infants. Arch Pediatr Adolesc Med. 2003a;157:1163–8.

    Article  PubMed  Google Scholar 

  • Gazzolo D, Kornacka M, Bruschettini M, et al. Maternal glucocorticoid supplementation and S100B protein concentrations in cord blood and urine of preterm infants. Clin Chem. 2003b;49:1215–8.

    Article  CAS  PubMed  Google Scholar 

  • Gazzolo D, Marinoni E, Di Iorio R, et al. Urinary S100B protein measurements: a tool for the early identification of hypoxic-ischemic encephalopathy in asphyxiated full-term infants. Crit Care Med. 2004;32:131–6.

    Article  CAS  PubMed  Google Scholar 

  • Gazzolo D, Florio P, Ciotti S, et al. S100B protein in urine of preterm newborns with ominous outcome. Pediatr Res. 2005;58:1170–4.

    Article  CAS  PubMed  Google Scholar 

  • Gazzolo D, Abella R, Marinoni E, et al. New markers of neonatal neurology. J Matern Fetal Neonatal Med. 2009a;22 Suppl 3:57–61.

    Article  CAS  PubMed  Google Scholar 

  • Gazzolo D, Abella R, Marinoni E, et al. Circulating biochemical markers of brain damage in infants complicated by ischemia reperfusion injury. Cardiovasc Hematol Agents Med Chem. 2009b;7:108–26.

    Article  CAS  PubMed  Google Scholar 

  • Gazzolo D, Frigiola A, Bashir M, et al. Diagnostic accuracy of S100B urinary testing at birth in full-term asphyxiated newborns to predict neonatal death. PLoS One. 2009c;4:e4298.

    Article  PubMed Central  PubMed  Google Scholar 

  • Gazzolo D, Florio P, Zullino E, et al. S100B protein increases in human blood and urine during stressful activity. Clin Chem Lab Med. 2010;48:1363–5.

    Article  CAS  PubMed  Google Scholar 

  • Geyer C, Ulrich A, Grafe G, Stach B, Till H. Diagnostic value of S100B and neuron-specific enolase in mild pediatric traumatic brain injury. J Neurosurg Pediatr. 2009;4:339–44.

    Article  PubMed  Google Scholar 

  • Giuseppe D, Sergio C, Pasqua B, et al. Perinatal asphyxia in preterm neonates leads to serum changes in protein S-100 and neuron specific enolase. Curr Neurovasc Res. 2009;6:110–6.

    Article  CAS  PubMed  Google Scholar 

  • Gluckman PD, Pinal CS, Gunn AJ. Hypoxic-ischemic brain injury in the newborn: pathophysiology and potential strategies for intervention. Semin Neonatol. 2001;6:109–20.

    Article  CAS  PubMed  Google Scholar 

  • Griffin WS, Stanley LC, Ling C, et al. Brain interleukin 1 and S-100 immunoreactivity are elevated in down syndrome and Alzheimer disease. Proc Natl Acad Sci U S A. 1989;86:7611–5.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hankins GD, Erickson K, Zinberg S, Schulkin J. Neonatal encephalopathy and cerebral palsy: a knowledge survey of fellows of the American College of Obstetricians and Gynecologists. Obstet Gynecol. 2003;101:11–7.

    Article  PubMed  Google Scholar 

  • Heizmann CW. Ca2+−binding S100 proteins in the central nervous system. Neurochem Res. 1999;24:1097–100.

    Article  CAS  PubMed  Google Scholar 

  • Ikura M. Calcium binding and conformational response in EF-hand proteins. Trends Biochem Sci. 1996;21:14–7.

    Article  CAS  PubMed  Google Scholar 

  • Kanner AA, Marchi N, Fazio V, et al. Serum S100beta: a noninvasive marker of blood–brain barrier function and brain lesions. Cancer. 2003;97:2806–13.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kleindienst A, Tolias CM, Corwin FD, et al. Assessment of cerebral S100B levels by proton magnetic resonance spectroscopy after lateral fluid-percussion injury in the rat. J Neurosurg. 2005;102:1115–21.

    Article  CAS  PubMed  Google Scholar 

  • Lara DR, Gama CS, Belmonte-de-Abreu P, et al. Increased serum S100B protein in schizophrenia: a study in medication-free patients. J Psychiatr Res. 2001;35:11–4.

    Article  CAS  PubMed  Google Scholar 

  • Leclerc E, Heizmann CW. The importance of Ca2+/Zn2+ signaling S100 proteins and RAGE in translational medicine. Front Biosci (Schol Ed). 2011;3:1232–62.

    Article  Google Scholar 

  • Liu L, Zhou HY, Feng ZW, He L, Su ZY. Urinary S100B protein and lactate/creatinine ratio measurements: a tool for the early identification of neonatal hypoxic-ischemic encephalopathy. Zhonghua Er Ke Za Zhi. 2005;43:564–7.

    PubMed  Google Scholar 

  • Liu L, Zheng CX, Peng SF, et al. Evaluation of urinary S100B protein level and lactate/creatinine ratio for early diagnosis and prognostic prediction of neonatal hypoxic-ischemic encephalopathy. Neonatology. 2010;97:41–4.

    Article  CAS  PubMed  Google Scholar 

  • Lo TY, Jones PA, Minns RA. Pediatric brain trauma outcome prediction using paired serum levels of inflammatory mediators and brain-specific proteins. J Neurotrauma. 2009;26:1479–87.

    Article  PubMed  Google Scholar 

  • Lomas J-P, Dunning J. S-100b protein levels as a predictor for long-term disability after head injury. Emerg Med J. 2005;22:889-a–891.

    Article  Google Scholar 

  • Loukovaara M, Teramo K, Alfthan H, Hamalainen E, Stefanovic V, Andersson S. Amniotic fluid S100B protein and erythropoietin in pregnancies at risk for fetal hypoxia. Eur J Obstet Gynecol Reprod Biol. 2009;142:115–8.

    Article  CAS  PubMed  Google Scholar 

  • MacLennan A. A template for defining a causal relation between acute intrapartum events and cerebral palsy: international consensus statement. BMJ. 1999;319(7216):1054–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Maschmann J, Erb, Heinemann M, Ziemer G, Speer C. Evaluation of Protein S-100 serum concentrations in healthy newborns and seven newborns with perinatal acidosis. Acta Paediatr. 2000; 89(5):553–5.

    Google Scholar 

  • Medana IM, Lindert RB, Wurster U, et al. Cerebrospinal fluid levels of markers of brain parenchymal damage in Vietnamese adults with severe malaria. Trans R Soc Trop Med Hyg. 2005;99:610–7.

    Article  PubMed  Google Scholar 

  • Michetti F, Gazzolo D. S100B protein in biological fluids: a tool for perinatal medicine. Clin Chem. 2002;48:2097–104.

    CAS  PubMed  Google Scholar 

  • Michetti F, Gazzolo D. S100B testing in pregnancy. Clin Chim Acta. 2003;335:1–7.

    Article  CAS  PubMed  Google Scholar 

  • Michetti F, Corvino V, Geloso MC, et al. The S100B protein in biological fluids: more than a lifelong biomarker of brain distress. J Neurochem. 2012;120:644–59.

    Article  CAS  PubMed  Google Scholar 

  • Morochovic R, Racz O, Kitka M, et al. Serum S100B protein in early management of patients after mild traumatic brain injury. Eur J Neurol. 2009;16:1112–7.

    Article  CAS  PubMed  Google Scholar 

  • Muller K, Townend W, Biasca N, et al. S100B serum level predicts computed tomography findings after minor head injury. J Trauma. 2007;62:1452–6.

    Article  CAS  PubMed  Google Scholar 

  • Murabayashi M, Minato M, Okuhata Y, et al. Kinetics of serum S100B in newborns with intracranial lesions. Pediatr Int. 2008;50:17–22.

    Article  CAS  PubMed  Google Scholar 

  • Mussack T, Biberthaler P, Kanz KG, et al. Serum S-100B and interleukin-8 as predictive markers for comparative neurologic outcome analysis of patients after cardiac arrest and severe traumatic brain injury. Crit Care Med. 2002;30:2669–74.

    Article  CAS  PubMed  Google Scholar 

  • Nagdyman N, Komen W, Ko HK, Muller C, Obladen M. Early biochemical indicators of hypoxic-ischemic encephalopathy after birth asphyxia. Pediatr Res. 2001;49:502–6.

    Article  CAS  PubMed  Google Scholar 

  • Nagdyman N, Grimmer I, Scholz T, Muller C, Obladen M. Predictive value of brain specific proteins in serum for neurodevelopmental outcome after birth asphyxia. Pediatr Res. 2003; 54(2):270–5.

    Article  CAS  PubMed  Google Scholar 

  • Nylen K, Ost M, Csajbok LZ, et al. Serum levels of S100B, S100A1B and S100BB are all related to outcome after severe traumatic brain injury. Acta Neurochir (Wien). 2008;150:221–7.

    Article  CAS  Google Scholar 

  • Ostendorp T, Diez J, Heizmann CW, Fritz G. The crystal structures of human S100B in the zinc- and calcium-loaded state at three pH values reveal zinc ligand swapping. Biochim Biophys Acta. 1813;2011:1083–91.

    Google Scholar 

  • Papa L, Ramia MM, Kelly JM, Burks SS, Pawlowicz A, Berger RP. Systematic review of clinical research on biomarkers for pediatric traumatic brain injury. J Neurotrauma. 2013;30:324–38.

    Article  PubMed  Google Scholar 

  • Park ES, Park CI, Choi KS, Choi IH, Shin JS. Over-expression of S100B protein in children with cerebral palsy or delayed development. Brain Dev. 2004;26:190–6.

    Article  PubMed  Google Scholar 

  • Persson L, Hardemark HG, Gustafsson J, et al. S-100 protein and neuron-specific enolase in cerebrospinal fluid and serum: markers of cell damage in human central nervous system. Stroke. 1987;18:911–8.

    Article  CAS  PubMed  Google Scholar 

  • Pin TW, Eldridge B, Galea MP. A review of developmental outcomes of term infants with post-asphyxia neonatal encephalopathy. Eur J Paediatr Neurol. 2009;13:224–34.

    Article  PubMed  Google Scholar 

  • Rainey T, Lesko M, Sacho R, Lecky F, Childs C. Predicting outcome after severe traumatic brain injury using the serum S100B biomarker: results using a single (24 h) time-point. Resuscitation. 2009;80:341–5.

    Article  CAS  PubMed  Google Scholar 

  • Rodriguez-Rodriguez A, Egea-Guerrero JJ, Leon-Justel A, et al. Role of S100B protein in urine and serum as an early predictor of mortality after severe traumatic brain injury in adults. Clin Chim Acta. 2012;414:228–33.

    Article  CAS  PubMed  Google Scholar 

  • Romner B, Ingebrigtsen T, Kongstad P, Borgesen SE. Traumatic brain damage: serum S-100 protein measurements related to neuroradiological findings. J Neurotrauma. 2000;17:641–7.

    Article  CAS  PubMed  Google Scholar 

  • Rosen H, Rosengren L, Herlitz J, Blomstrand C. Increased serum levels of the S-100 protein are associated with hypoxic brain damage after cardiac arrest. Stroke. 1998;29:473–7.

    Article  CAS  PubMed  Google Scholar 

  • Ruan S, Noyes K, Bazarian JJ. The economic impact of S-100B as a pre-head CT screening test on emergency department management of adult patients with mild traumatic brain injury. J Neurotrauma. 2009;26:1655–64.

    Article  PubMed Central  PubMed  Google Scholar 

  • Sandler SJ, Figaji AA, Adelson PD. Clinical applications of biomarkers in pediatric traumatic brain injury. Childs Nerv Syst. 2010;26:205–13.

    Article  PubMed  Google Scholar 

  • Sannia A, Zimmermann LJ, Gavilanes AW, et al. S100B Protein maternal and fetal bloodstreams gradient in healthy and small for gestational age pregnancies. Clin Chim Acta. 2011;412:1337–40.

    Article  CAS  PubMed  Google Scholar 

  • Sarnat HB, Sarnat MS. Neonatal encephalopathy following fetal distress: a clinical and electroencephalographic study. Arch Neurol. 1976;33:696–705.

    Article  CAS  PubMed  Google Scholar 

  • Sedaghat F, Notopoulos A. S100 protein family and its application in clinical practice. Hippokratia. 2008;12:198–204.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Sen J, Belli A. S100B in neuropathologic states: the CRP of the brain? J Neurosci Res. 2007;85:1373–80.

    Article  CAS  PubMed  Google Scholar 

  • Snyder-Ramos SA, Bottiger BW. Molecular markers of brain damage–clinical and ethical implications with particular focus on cardiac arrest. Restor Neurol Neurosci. 2003;21:123–39.

    CAS  PubMed  Google Scholar 

  • Springborg JB, Unden J, Ingebrigtsen T, Romner B. Brain injury marker S100B can reduce the use of computer tomography in minor head injuries–secondary publication. Ugeskr Laeger. 2009;171:978–81.

    PubMed  Google Scholar 

  • Thelin EP, Johannesson L, Nelson D, Bellander BM. S100B is an important outcome predictor in traumatic brain injury. J Neurotrauma. 2013;30:519–28.

    Article  PubMed  Google Scholar 

  • Thorngren-Jerneck K, Alling C, Herbst A, Amer-Wahlin I, Marsal K. S100 protein in serum as a prognostic marker for cerebral injury in term newborn infants with hypoxic ischemic encephalopathy. Pediatr Res. 2004;55:406–12.

    Article  CAS  PubMed  Google Scholar 

  • Thulin E, Kesvatera T, Linse S. Molecular determinants of S100B oligomer formation. PLoS One. 2011;6:e14768.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Torrance HL, Benders MJ, Derks JB, et al. Maternal allopurinol during fetal hypoxia lowers cord blood levels of the brain injury marker S-100B. Pediatrics. 2009;124:350–7.

    Article  PubMed  Google Scholar 

  • Unden J, Romner B. Can low serum levels of S100B predict normal CT findings after minor head injury in adults?: an evidence-based review and meta-analysis. J Head Trauma Rehabil. 2010;25:228–40.

    Article  PubMed  Google Scholar 

  • Van Eldik LJ, Wainwright MS. The Janus face of glial-derived S100B: beneficial and detrimental functions in the brain. Restor Neurol Neurosci. 2003;21:97–108.

    PubMed  Google Scholar 

  • Vos PE, Jacobs B, Andriessen TM, et al. GFAP and S100B are biomarkers of traumatic brain injury: an observational cohort study. Neurology. 2010;75:1786–93.

    Article  CAS  PubMed  Google Scholar 

  • Wiesmann M, Wandinger KP, Missler U, et al. Elevated plasma levels of S-100b protein in schizophrenic patients. Biol Psychiatry. 1999;45:1508–11.

    Article  CAS  PubMed  Google Scholar 

  • Wilkinson D. The window of opportunity for treatment withdrawal. Arch Pediatr Adolesc Med. 2011;165:211–5.

    Article  PubMed  Google Scholar 

  • Wolf H, Frantal S, Pajenda GS, et al. Predictive value of neuromarkers supported by a set of clinical criteria in patients with mild traumatic brain injury: S100B protein and neuron-specific enolase on trial: clinical article. J Neurosurg. 2013;118:1298–303.

    Article  CAS  PubMed  Google Scholar 

  • Yang YH, Nam MS, Yang ES. Rapid prenatal diagnosis of trisomy 21 by real-time quantitative polymerase chain reaction with amplification of small tandem repeats and S100B in chromosome 21. Yonsei Med J. 2005;46:193–7.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Yardan T, Erenler AK, Baydin A, Aydin K, Cokluk C. Usefulness of S100B protein in neurological disorders. J Pak Med Assoc. 2011;61:276–81.

    PubMed  Google Scholar 

  • Zongo D, Ribereau-Gayon R, Masson F, et al. S100-B protein as a screening tool for the early assessment of minor head injury. Ann Emerg Med. 2012;59:209–18.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claire Gahm .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this entry

Cite this entry

Gahm, C., Beharier, O. (2014). S100B: Potential Biomarker for CNS Insult and Injury. In: Preedy, V., Patel, V. (eds) General Methods in Biomarker Research and their Applications. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-7740-8_5-1

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-7740-8_5-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Online ISBN: 978-94-007-7740-8

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics