Skip to main content

Ionic Liquids as Solvents for Homogeneous Derivatization of Cellulose: Challenges and Opportunities

  • Chapter
  • First Online:
Production of Biofuels and Chemicals with Ionic Liquids

Part of the book series: Biofuels and Biorefineries ((BIOBIO,volume 1))

Abstract

The chapter provides a comprehensive overview of the chemical derivatization of cellulose in ionic liquids (ILs). Different types of chemical reactions, including esterification, etherification, and grafting reactions, that have been performed in these novel type of polysaccharide solvents are discussed separately regarding efficiencies and unique characteristics. With respect to the use of ILs in technical scale, specific limitations and open questions are discussed such as the chemical reactivity of certain ILs, their high viscosity and hydrophilicity, and the need to develop efficient recycling strategies. Finally, an outlook on the development of task-specific ILs and IL/co-solvent systems as reaction media for cellulose is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Brandt A, Grasvik J, Hallett JP, Welton T. Deconstruction of lignocellulosic biomass with ionic liquids. Green Chem. 2013;15(3):550–83.

    Google Scholar 

  2. Stark A. Ionic liquids in the biorefinery: a critical assessment of their potential. Energy Environ Sci. 2011;4(1):19–32.

    Google Scholar 

  3. Sun N, Rodriguez H, Rahman M, Rogers RD. Where are ionic liquid strategies most suited in the pursuit of chemicals and energy from lignocellulosic biomass? Chem Commun. 2011;47(5):1405–21.

    Google Scholar 

  4. Mora-Pale M, Meli L, Doherty TV, Linhardt RJ, Dordick JS. Room temperature ionic liquids as emerging solvents for the pretreatment of lignocellulosic biomass. Biotechnol Bioeng. 2011;108(6):1229–45.

    Google Scholar 

  5. Wendler F, Kosan B, Krieg M, Meister F. Possibilities for the physical modification of cellulose shapes using ionic liquids. Macromol Symp. 2009;280(1):112–22.

    Google Scholar 

  6. Sescousse R, Gavillon R, Budtova T. Aerocellulose from cellulose–ionic liquid solutions: preparation, properties and comparison with cellulose–NaOH and cellulose–NMMO routes. Carbohydr Polym. 2011;83(4):1766–74.

    Google Scholar 

  7. Gericke M, Trygg J, Fardim P. Functional cellulose beads: preparation, characterization, and applications. Chem Rev. 2013;113(7):4812–36.

    Google Scholar 

  8. Gericke M, Fardim P, Heinze T. Ionic liquids – promising but challenging solvents for homogeneous derivatization of cellulose. Molecules. 2012;17(6):7458–502.

    Google Scholar 

  9. Liebert T, Heinze T, Edgar KJ, editors. Cellulose solvents: for analysis, shaping and chemical modification, ACS symposium series. Washington, DC: American Chemical Society; 2010.

    Google Scholar 

  10. Wasserscheid P, Welton T, editors. Ionic liquids in synthesis. 2nd ed. Weinheim: Wiley-VCH; 2007.

    Google Scholar 

  11. Wu J, Zhang J, Zhang H, He J, Ren Q, Guo M. Homogeneous acetylation of cellulose in a new ionic liquid. Biomacromolecules. 2004;5(2):266–8.

    Google Scholar 

  12. Cao Y, Wu J, Meng T, Zhang J, He JS, Li HQ, Zhang Y. Acetone-soluble cellulose acetates prepared by one-step homogeneous acetylation of cornhusk cellulose in an ionic liquid 1-allyl-3-methylimidazolium chloride (AmimCl). Carbohydr Polym. 2007;69(4):665–72.

    Google Scholar 

  13. Heinze T, Schwikal K, Barthel S. Ionic liquids as reaction medium in cellulose functionalization. Macromol Biosci. 2005;5(6):520–5.

    Google Scholar 

  14. Barthel S, Heinze T. Acylation and carbanilation of cellulose in ionic liquids. Green Chem. 2006;8(3):301–6.

    Google Scholar 

  15. Schlufter K, Schmauder HP, Dorn S, Heinze T. Efficient homogeneous chemical modification of bacterial cellulose in the ionic liquid 1-N-butyl-3-methylimidazolium chloride. Macromol Rapid Commun. 2006;27(19):1670–6.

    Google Scholar 

  16. Fidale LC, Possidonio S, El Seoud OA. Application of 1-allyl-3-(1-butyl)imidazolium chloride in the synthesis of cellulose esters: properties of the ionic liquid, and comparison with other solvents. Macromol Biosci. 2009;9(8):813–21.

    Google Scholar 

  17. Possidonio S, Fidale LC, El Seoud OA. Microwave-assisted derivatization of cellulose in an ionic liquid: an efficient, expedient synthesis of simple and mixed carboxylic esters. J Polym Sci A Polym Chem. 2010;48(1):134–43.

    Google Scholar 

  18. Luan Y, Zhang J, Zhan M, Wu J, Zhang J, He J. Highly efficient propionylation and butyralation of cellulose in an ionic liquid catalyzed by 4-dimethylminopyridine. Carbohydr Polym. 2013;92(1):307–11.

    Google Scholar 

  19. Huang K, Xia J, Li M, Lian J, Yang X, Lin G. Homogeneous synthesis of cellulose stearates with different degrees of substitution in ionic liquid 1-butyl-3-methylimidazolium chloride. Carbohydr Polym. 2011;83(4):1631–5.

    Google Scholar 

  20. Zhang J, Wu J, Cao Y, Sang S, Zhang J, He J. Synthesis of cellulose benzoates under homogeneous conditions in an ionic liquid. Cellulose. 2009;16(2):299–308.

    Google Scholar 

  21. Köhler S, Heinze T. Efficient synthesis of cellulose furoates in 1-N-butyl-3-methylimidazolium chloride. Cellulose. 2007;14(5):489–95.

    Google Scholar 

  22. Dorn S, Pfeifer A, Schlufter K, Heinze T. Synthesis of water-soluble cellulose esters applying carboxylic acid imidazolides. Polym Bull. 2010;64(9):845–54.

    Google Scholar 

  23. Meng T, Gao X, Zhang J, Yuan J, Zhang Y, He J. Graft copolymers prepared by atom transfer radical polymerization (ATRP) from cellulose. Polymer. 2009;50(2):447–54.

    Google Scholar 

  24. Sui X, Yuan J, Zhou M, Zhang J, Yang H, Yuan W, Wei Y, Pan C. Synthesis of cellulose-graft-poly(N, N-dimethylamino-2-ethyl methacrylate) copolymers via homogeneous ATRP and their aggregates in aqueous media. Biomacromolecules. 2008;9(10):2615–20.

    Google Scholar 

  25. Xin T-T, Yuan T, Xiao S, He J. Synthesis of cellulose-graft-poly(methyl methacrylate) via homogeneous ATRP. Bioresources. 2011;6(3):2941–53.

    Google Scholar 

  26. Chun-xiang L, Huai-yu Z, Ming-hua L, Shi-yu F, Jia-jun Z. Preparation of cellulose graft poly(methyl methacrylate) copolymers by atom transfer radical polymerization in an ionic liquid. Carbohydr Polym. 2009;78(3):432–8.

    Google Scholar 

  27. Li WY, Jin AX, Liu CF, Sun RC, Zhang AP, Kennedy JF. Homogeneous modification of cellulose with succinic anhydride in ionic liquid using 4-dimethylaminopyridine as a catalyst. Carbohydr Polym. 2009;78(3):389–95.

    Google Scholar 

  28. Liu C-F, Zhang A-P, Li W-Y, Yue F-X, Sun R-C. Homogeneous modification of cellulose in ionic liquid with succinic anhydride using N-bromosuccinimide as a catalyst. J Agric Food Chem. 2009;57(5):1814–20.

    Google Scholar 

  29. Liu CF, Zhang AP, Li WY, Yue FX, Sun RC. Succinoylation of cellulose catalyzed with iodine in ionic liquid. Ind Crop Prod. 2010;31(2):363–9.

    Google Scholar 

  30. Liu CF, Sun RC, Zhang AP, Ren JL. Preparation of sugarcane bagasse cellulosic phthalate using an ionic liquid as reaction medium. Carbohydr Polym. 2007;68(1):17–25.

    Google Scholar 

  31. Li W, Wu L, Chen D, Liu C, Sun R. DMAP-catalyzed phthalylation of cellulose with phthalic anhydride in [bmim]Cl. Bioresources. 2011;6(3):2375–85.

    Google Scholar 

  32. Ma S, Xue X-l, Yu S-j, Wang Z-h. High-intensity ultrasound irradiated modification of sugarcane bagasse cellulose in an ionic liquid. Ind Crop Prod. 2012;35(1):135–9.

    Google Scholar 

  33. Gericke M, Liebert T, Heinze T. Interaction of ionic liquids with polysaccharides, 8 – synthesis of cellulose sulfates suitable for polyelectrolyte complex formation. Macromol Biosci. 2009;9(4):343–53.

    Google Scholar 

  34. Wang Z-M, Xiao K-J, Li L, Wu J-Y. Molecular weight-dependent anticoagulation activity of sulfated cellulose derivatives. Cellulose. 2010;17(5):953–61.

    Google Scholar 

  35. Gericke M, Schaller J, Liebert T, Fardim P, Meister F, Heinze T. Studies on the tosylation of cellulose in mixtures of ionic liquids and a co-solvent. Carbohydr Polym. 2012;89(2):526–36.

    Google Scholar 

  36. Granström M, Kavakka J, King A, Majoinen J, Mäkelä V, Helaja J, Hietala S, Virtanen T, Maunu S-L, Argyropoulos D, Kilpeläinen I. Tosylation and acylation of cellulose in 1-allyl-3-methylimidazolium chloride. Cellulose. 2008;15(3):481–8.

    Google Scholar 

  37. Köhler S, Liebert T, Heinze T, Vollmer A, Mischnick P, Mollmann E, Becker W. Interactions of ionic liquids with polysaccharides 9. Hydroxyalkylation of cellulose without additional inorganic bases. Cellulose. 2010;17(2):437–48.

    Google Scholar 

  38. Möllmann E, Heinze T, Liebert T, Köhler S. Homogeneous synthesis of cellulose ethers in ionic liquids, US 20090221813 A1; 2009.

    Google Scholar 

  39. Granström M, Olszewska A, Mäkelä V, Heikkinen S, Kilpeläinen I. A new protection group strategy for cellulose in an ionic liquid: simultaneous protection of two sites to yield 2,6-di-O-substituted mono-p-methoxytrityl cellulose. Tetrahedron Lett. 2009;50(15):1744–7.

    Google Scholar 

  40. Erdmenger T, Haensch C, Hoogenboom R, Schubert US. Homogeneous tritylation of cellulose in 1-butyl-3-methylimidazolium chloride. Macromol Biosci. 2007;7(4):440–5.

    Google Scholar 

  41. Köhler S, Liebert T, Heinze T. Interactions of ionic liquids with polysaccharides. VI. Pure cellulose nanoparticles from trimethylsilyl cellulose synthesized in ionic liquids. J Polym Sci Part A Polym Chem. 2008;46(12):4070–80.

    Google Scholar 

  42. Mormann W, Wezstein M. Trimethylsilylation of cellulose in ionic liquids. Macromol Biosci. 2009;9(4):369–75.

    Google Scholar 

  43. Dong H, Xu Q, Li Y, Mo S, Cai S, Liu L. The synthesis of biodegradable graft copolymer cellulose-graft-poly(l-lactide) and the study of its controlled drug release. Colloids Surf B: Biointerfaces. 2008;66(1):26–33.

    Google Scholar 

  44. Yan C, Zhang J, Lv Y, Yu J, Wu J, Zhang J, He J. Thermoplastic cellulose-graft-poly(l-lactide) copolymers homogeneously synthesized in an ionic liquid with 4-dimethylaminopyridine catalyst. Biomacromolecules. 2009;10(8):2013–8.

    Google Scholar 

  45. Guo Y, Wang X, Shu X, Shen Z, Sun R-C. Self-assembly and paclitaxel loading capacity of cellulose-graft-poly(lactide) nanomicelles. J Agric Food Chem. 2012;60(15):3900–8.

    Google Scholar 

  46. Luan Y, Wu J, Zhan M, Zhang J, Zhang J, He J. “One pot” homogeneous synthesis of thermoplastic cellulose acetate-graft-poly(l-lactide) copolymers from unmodified cellulose. Cellulose. 2013;20(1):327–37.

    Google Scholar 

  47. Guo Y, Wang X, Shen Z, Shu X, Sun R. Preparation of cellulose-graft-poly(ɛ-caprolactone) nanomicelles by homogeneous ROP in ionic liquid. Carbohydr Polym. 2013;92(1):77–83.

    Google Scholar 

  48. Hao Y, Peng J, Li J, Zhai M, Wei G. An ionic liquid as reaction media for radiation-induced grafting of thermosensitive poly (N-isopropylacrylamide) onto microcrystalline cellulose. Carbohydr Polym. 2009;77(4):779–84.

    Google Scholar 

  49. Lin C-X, Zhan H-Y, Liu M-H, Fu S-Y, Huang L-H. Rapid homogeneous preparation of cellulose graft copolymer in BMIMCL under microwave irradiation. J Appl Polym Sci. 2010;118(1):399–404.

    Google Scholar 

  50. Eastman Chemical Company. Available online: http://www.eastman.com/Literature_Center/E/E325.pdf. Accessed 1 June 2011.

  51. Celanese Corporation Home Page. Available online: http://www.celanese.com/index/productsmarkets_index/products_markets_acetate.html. Accessed 1 June 2011.

  52. Buchanan CM, Buchanan NL. Reformation of ionic liquids in cellulose esterification, WO2008100569A1; 2008.

    Google Scholar 

  53. Buchanan CM, Buchanan NL, Hembre RT, Lambert JL. Cellulose esters and their production in carboxylated ionic liquids, WO2008100566A1; 2008.

    Google Scholar 

  54. Buchanan CM, Buchanan NL, Guzman-Morales E. Cellulose solutions comprising tetraalkylammonium alkylphosphate and products produced therefrom, WO2010120268A1; 2010.

    Google Scholar 

  55. Hembre RT, Buchanan NL, Buchanan CM, Lambert JL, Donelson ME, Gorbunova MG, Kuo T, Wang B. Regioselectively substituted cellulose esters produced in a carboxylated ionic liquid process and products produced therefrom, WO2010019244A1; 2010.

    Google Scholar 

  56. El Seoud OA, da Silva VC, Possidonio S, Casarano R, Arêas EPG, Gimenes P. Microwave-assisted derivatization of cellulose, 2 – the surprising effect of the structure of ionic liquids on the dissolution and acylation of the biopolymer. Macromol Chem Phys. 2011;212(23):2541–50.

    Google Scholar 

  57. Hoffmann J, Nuchter M, Ondruschka B, Wasserscheid P. Ionic liquids and their heating behaviour during microwave irradiation – a state of the art report and challenge to assessment. Green Chem. 2003;5(3):296–9.

    Google Scholar 

  58. Huang K, Wang B, Cao Y, Li H, Wang J, Lin W, Mu C, Liao D. Homogeneous preparation of cellulose acetate propionate (CAP) and cellulose acetate butyrate (CAB) from sugarcane bagasse cellulose in ionic liquid. J Agric Food Chem. 2011;59(10):5376–81.

    Google Scholar 

  59. Yashima E. Polysaccharide-based chiral stationary phases for high-performance liquid chromatographic enantioseparation. J Chromatogr A. 2001;906(1–2):105–25.

    Google Scholar 

  60. Toga Y, Hioki K, Namikoshi H, Shibata T. Dependence of chiral recognition on the degree of substitution of cellulose benzoate. Cellulose. 2004;11(1):65–71.

    Google Scholar 

  61. Hussain MA, Liebert T, Heinze T. Acylation of cellulose with N, N′-carbonyldiimidazole-activated acids in the novel solvent dimethyl sulfoxide/tetrabutylammonium fluoride. Macromol Rapid Commun. 2004;25(9):916–20.

    Google Scholar 

  62. Liebert TF, Heinze T. Tailored cellulose esters: synthesis and structure determination. Biomacromolecules. 2005;6(1):333–40.

    Google Scholar 

  63. Sealey JE, Samaranayake G, Todd JG, Glasser WG. Novel cellulose derivatives. IV. Preparation and thermal analysis of waxy esters of cellulose. J Polym Sci Part B: Polym Phys. 1996;34(9):1613–20.

    Google Scholar 

  64. Heinze T, Schaller J. New water soluble cellulose esters synthesized by an effective acylation procedure. Macromol Chem Phys. 2000;201(12):1214–8.

    Google Scholar 

  65. Heinze T, Liebert T, Koschella A. Esterification of polysaccharides. Berlin/Heidelberg: Springer; 2006.

    Google Scholar 

  66. Heinze T, Daus S, Gericke M, Liebert T. Semi-synthetic sulfated polysaccharides – promising materials for biomedical applications and supramolecular architecture. In: Tiwari A, editor. Polysaccharides: development, properties and applications, Polymer science and technology. New York: Nova Science Publishers; 2010.

    Google Scholar 

  67. Köhler S, Liebert T, Schöbitz M, Schaller J, Meister F, Günther W, Heinze T. Interactions of ionic liquids with polysaccharides 1. Unexpected acetylation of cellulose with 1-ethyl-3-methylimidazolium acetate. Macromol Rapid Commun. 2007;28(24):2311–7.

    Google Scholar 

  68. Lv Y, Wu J, Zhang J, Niu Y, Liu C-Y, He J, Zhang J. Rheological properties of cellulose/ionic liquid/dimethylsulfoxide (DMSO) solutions. Polymer. 2012;53(12):2524–31.

    Google Scholar 

  69. Vitz J, Yevlampieva NP, Rjumtsev E, Schubert US. Cellulose molecular properties in 1-alkyl-3-methylimidazolium-based ionic liquid mixtures with pyridine. Carbohydr Polym. 2010;82(4):1046–53.

    Google Scholar 

  70. Myllymaeki V, Aksela R. Etherification of cellulose in ionic liquid solutions, WO2005054298A1; 2005.

    Google Scholar 

  71. Köhler S, Liebert T, Heinze T. Ammonium-based cellulose solvents suitable for homogeneous etherification. Macromol Biosci. 2009;9(9):836–41.

    Google Scholar 

  72. Kondo T, Gray DG. The preparation of O-methyl- and O-ethyl-celluloses having controlled distribution of substituents. Carbohydr Res. 1991;220:173–83.

    Google Scholar 

  73. Petzold-Welcke K, Kötteritzsch M, Heinze T. 2,3-O-methyl cellulose: studies on synthesis and structure characterization. Cellulose. 2010;17(2):449–57.

    Google Scholar 

  74. Saake B, Patt R, Puls J, Philipp B. Molecular weight distribution of cellulose. Papier (Darmstadt). 1991;45:727–35.

    Google Scholar 

  75. Gericke M, Schlufter K, Liebert T, Heinze T, Budtova T. Rheological properties of cellulose/ionic liquid solutions: from dilute to concentrated states. Biomacromolecules. 2009;10(5):1188–94.

    Google Scholar 

  76. Sescousse R, Le KA, Ries ME, Budtova T. Viscosity of cellulose-imidazolium-based ionic liquid solutions. J Phys Chem B. 2010;114(21):7222–8.

    Google Scholar 

  77. Matsumoto T, Tatsumi D, Tamai N, Takaki T. Solution properties of celluloses from different biological origins in LiCl center dot DMAc. Cellulose. 2001;8(4):275–82.

    Google Scholar 

  78. Blachot J-F, Brunet N, Navard P, Cavaillé JY. Rheological behavior of cellulose/monohydrate of n-methylmorpholine n-oxide solutions Part 1: Liquid state. Rheol Acta. 1998;37(2):107–14.

    Google Scholar 

  79. Roy C, Budtova T, Navard P. Rheological properties and gelation of aqueous cellulose-NaOH solutions. Biomacromolecules. 2003;4(2):259–64.

    Google Scholar 

  80. Gavillon R, Budtova T. Kinetics of cellulose regeneration from cellulose-NaOH-water gels and comparison with cellulose-N-methylmorpholine-N-oxide-water solutions. Biomacromolecules. 2007;8(2):424–32.

    Google Scholar 

  81. Froba AP, Kremer H, Leipertz A. Density, refractive index, interfacial tension, and viscosity of ionic liquids [EMIM][EtSO4], [EMIM][NTf2], [EMIM][N(CN)2], and [OMA][NTf2] in dependence on temperature at atmospheric pressure. J Phys Chem B. 2008;112(39):12420–30.

    Google Scholar 

  82. Okoturo OO, VanderNoot TJ. Temperature dependence of viscosity for room temperature ionic liquids. J Electroanal Chem. 2004;568(1–2):167–81.

    Google Scholar 

  83. Alder RW, Allen PR, Williams SJ. Stable carbenes as strong bases. J Chem Soc Chem Commun. 1995;12:1267–8.

    Google Scholar 

  84. Amyes TL, Diver ST, Richard JP, Rivas FM, Toth K. Formation and stability of N-heterocyclic carbenes in water: the carbon acid pKa of imidazolium cations in aqueous solution. J Am Chem Soc. 2004;126(13):4366–74.

    Google Scholar 

  85. Canal JP, Ramnial T, Dickie DA, Clyburne JAC. From the reactivity of N-heterocyclic carbenes to new chemistry in ionic liquids. Chem Commun. 2006;17:1809–18.

    Google Scholar 

  86. Enders D, Niemeier O, Henseler A. Organocatalysis by N-heterocyclic carbenes. Chem Rev. 2007;107(12):5606–55.

    Google Scholar 

  87. Liebert T, Heinze T. Interaction of ionic liquids with polysaccharides. 5. Solvents and reaction media for the modification of cellulose. Bioresources. 2008;3(2):576–601.

    Google Scholar 

  88. Ebner G, Schiehser S, Potthast A, Rosenau T. Side reaction of cellulose with common 1-alkyl-3-methylimidazolium-based ionic liquids. Tetrahedron Lett. 2008;49(51):7322–4.

    Google Scholar 

  89. Rodriguez H, Gurau G, Holbrey JD, Rogers RD. Reaction of elemental chalcogens with imidazolium acetates to yield imidazole-2-chalcogenones: direct evidence for ionic liquids as proto-carbenes. Chem Commun. 2011;47(11):3222–4.

    Google Scholar 

  90. Handy ST, Okello M. The 2-position of imidazolium ionic liquids: substitution and exchange. J Org Chem. 2005;70(5):1915–8.

    Google Scholar 

  91. Liebner F, Patel I, Ebner G, Becker E, Horix M, Potthast A, Rosenau T. Thermal aging of 1-alkyl-3-methylimidazolium ionic liquids and its effect on dissolved cellulose. Holzforschung. 2010;64(2):161–6.

    Google Scholar 

  92. Gordon CM, Muldoon MJ, Wagner M, Hilgers C, Davis JH, Wasserscheid P. Synthesis and purification. In: Ionic liquids in synthesis. Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA; 2008. p. 7–55.

    Google Scholar 

  93. Anthony JL, Maginn EJ, Brennecke JF. Solution thermodynamics of imidazolium-based ionic liquids and water. J Phys Chem B. 2001;105(44):10942–9.

    Google Scholar 

  94. Hsu W-H, Lee Y-Y, Peng W-H, Wu KCW. Cellulosic conversion in ionic liquids (ILs): effects of H2O/cellulose molar ratios, temperatures, times, and different ILs on the production of monosaccharides and 5-hydroxymethylfurfural (HMF). Catal Today. 2011;174(1):65–9.

    Google Scholar 

  95. Zhang Z, Wang W, Liu X, Wang Q, Li W, Xie H, Zhao ZK. Kinetic study of acid-catalyzed cellulose hydrolysis in 1-butyl-3-methylimidazolium chloride. Bioresour Technol. 2012;112:151–5.

    Google Scholar 

  96. Mazza M, Catana D-A, Vaca-Garcia C, Cecutti C. Influence of water on the dissolution of cellulose in selected ionic liquids. Cellulose. 2009;16(2):207–15.

    Google Scholar 

  97. Le K, Sescousse R, Budtova T. Influence of water on cellulose-EMIMAc solution properties: a viscometric study. Cellulose. 2012;19(1):45–54.

    Google Scholar 

  98. Kosmulski M, Gustafsson J, Rosenholm JB. Thermal stability of low temperature ionic liquids revisited. Thermochim Acta. 2004;412(1–2):47–53.

    Google Scholar 

  99. Dorn S, Wendler F, Meister F, Heinze T. Interactions of ionic liquids with polysaccharides-7: thermal stability of cellulose in ionic liquids and N-methylmorpholine-N-oxide. Macromol Mater Eng. 2008;293(11):907–13.

    Google Scholar 

  100. Wendler F, Todi L-N, Meister F. Thermostability of imidazolium ionic liquids as direct solvents for cellulose. Thermochim Acta. 2012;528:76–84.

    Google Scholar 

  101. Wendler F, Graneß G, Heinze T. Characterization of autocatalytic reactions in modified cellulose/NMMO solutions by thermal analysis and UV/VIS spectroscopy. Cellulose. 2005;12(4):411–22.

    Google Scholar 

  102. Wendler F, Konkin A, Heinze T. Studies on the stabilization of modified lyocell solutions. Macromol Symp. 2008;262(1):72–84.

    Google Scholar 

  103. Kroon MC, Buijs W, Peters CJ, Witkamp G-J. Quantum chemical aided prediction of the thermal decomposition mechanisms and temperatures of ionic liquids. Thermochim Acta. 2007;465(1–2):40–7.

    Google Scholar 

  104. Chambreau SD, Boatz JA, Vaghjiani GL, Koh C, Kostko O, Golan A, Leone SR. Thermal decomposition mechanism of 1-ethyl-3-methylimidazolium bromide ionic liquid. J Phys Chem A. 2011;116(24):5867–76.

    Google Scholar 

  105. Gutowski KE, Broker GA, Willauer HD, Huddleston JG, Swatloski RP, Holbrey JD, Rogers RD. Controlling the aqueous miscibility of ionic liquids: aqueous biphasic systems of water-miscible ionic liquids and water-structuring salts for recycle, metathesis, and separations. J Am Chem Soc. 2003;125(22):6632–3.

    Google Scholar 

  106. Ventura SPM, Sousa SG, Serafim LS, Lima ÁS, Freire MG, Coutinho JAP. Ionic liquid based aqueous biphasic systems with controlled pH: the ionic liquid cation effect. J Chem Eng Data. 2011;56(11):4253–60.

    Google Scholar 

  107. Hazarika S, Dutta NN, Rao PG. Dissolution of lignocellulose in ionic liquids and its recovery by nanofiltration membrane. Sep Purif Technol. 2012;97:123–9.

    Google Scholar 

  108. Haerens K, Van Deuren S, Matthijs E, Van der Bruggen B. Challenges for recycling ionic liquids by using pressure driven membrane processes. Green Chem. 2010;12(12):2182–8.

    Google Scholar 

  109. King AWT, Asikkala J, Mutikainen I, Järvi P, Kilpeläinen I. Distillable acid–base conjugate ionic liquids for cellulose dissolution and processing. Angew Chem Int Ed. 2011;50(28):6301–5.

    Google Scholar 

  110. Glasser W, Atalla R, Blackwell J, Malcolm Brown Jr R, Burchard W, French A, Klemm D, Nishiyama Y. About the structure of cellulose: debating the Lindman hypothesis. Cellulose. 2012;19(3):589–98.

    Google Scholar 

  111. Brandt A, Hallett JP, Leak DJ, Murphy RJ, Welton T. The effect of the ionic liquid anion in the pretreatment of pine wood chips. Green Chem. 2010;12(4):672–9.

    Google Scholar 

  112. Xu AR, Wang JJ, Wang HY. Effects of anionic structure and lithium salts addition on the dissolution of cellulose in 1-butyl-3-methylimidazolium-based ionic liquid solvent systems. Green Chem. 2010;12(2):268–75.

    Google Scholar 

  113. Fukaya Y, Sugimoto A, Ohno H. Superior solubility of polysaccharides in low viscosity, polar, and halogen-free 1,3-dialkylimidazolium formates. Biomacromolecules. 2006;7(12):3295–7.

    Google Scholar 

  114. Fukaya Y, Hayashi K, Wada M, Ohno H. Cellulose dissolution with polar ionic liquids under mild conditions: required factors for anions. Green Chem. 2008;10(1):44–6.

    Google Scholar 

  115. Fukaya Y, Hayashi K, Kim Seung S, Ohno H. Design of polar ionic liquids to solubilize cellulose without heating. In: Cellulose solvents: for analysis, shaping and chemical modification, ACS symposium series, vol. 1033. Washington, DC: American Chemical Society; 2010. p. 55–66.

    Google Scholar 

  116. Hummel M, Froschauer C, Laus G, Roder T, Kopacka H, Hauru LKJ, Weber HK, Sixta H, Schottenberger H. Dimethyl phosphorothioate and phosphoroselenoate ionic liquids as solvent media for cellulosic materials. Green Chem. 2011;13(9):2507–17.

    Google Scholar 

  117. Bara JE, Shannon MS. Beyond 1,3-difunctionalized imidazolium cations. Nanomater Energy. 2012;1:237–42.

    Google Scholar 

  118. Zhou Z-B, Matsumoto H, Tatsumi K. Low-melting, low-viscous, hydrophobic ionic liquids: aliphatic quaternary ammonium salts with perfluoroalkyltrifluoroborates. Chem Eur J. 2005;11(2):752–66.

    Google Scholar 

  119. Hummel M, Laus G, Schwärzler A, Bentivoglio G, Rubatscher E, Kopacka H, Wurst K, Kahlenberg V, Gelbrich T, Griesser Ulrich J, Röder T, Weber Hedda K, Schottenberger H, Sixta H. Non-halide ionic liquids for solvation, extraction, and processing of cellulosic materials. In: Cellulose solvents: for analysis, shaping and chemical modification, ACS symposium series, vol. 1033. Washington, DC: American Chemical Society; 2010. p. 229–59.

    Google Scholar 

  120. Pernak J, Kordala R, Markiewicz B, Walkiewicz F, Poplawski M, Fabianska A, Jankowski S, Lozynski M. Synthesis and properties of ammonium ionic liquids with cyclohexyl substituent and dissolution of cellulose. RSC Adv. 2012;2(22):8429–38.

    Google Scholar 

  121. Tang S, Baker GA, Zhao H. Ether- and alcohol-functionalized task-specific ionic liquids: attractive properties and applications. Chem Soc Rev. 2012;41(10):4030–66.

    Google Scholar 

  122. Chen Z, Liu S, Li Z, Zhang Q, Deng Y. Dialkoxy functionalized quaternary ammonium ionic liquids as potential electrolytes and cellulose solvents. New J Chem. 2011;35(8):1596–606.

    Google Scholar 

  123. Tang S, Baker GA, Ravula S, Jones JE, Zhao H. PEG-functionalized ionic liquids for cellulose dissolution and saccharification. Green Chem. 2012;14(10):2922–32.

    Google Scholar 

  124. McHale G, Hardacre C, Ge R, Doy N, Allen RWK, MacInnes JM, Bown MR, Newton MI. Density − viscosity product of small-volume ionic liquid samples using quartz crystal impedance analysis. Anal Chem. 2008;80(15):5806–11.

    Google Scholar 

  125. Fendt S, Padmanabhan S, Blanch HW, Prausnitz JM. Viscosities of acetate or chloride-based ionic liquids and some of their mixtures with water or other common solvents. J Chem Eng Data. 2010;56(1):31–4.

    Google Scholar 

  126. Wu YS, Sasaki T, Kazushi K, Seo T, Sakurai K. Interactions between spiropyrans and room-temperature ionic liquids: photochromism and solvatochromism. J Phys Chem B. 2008;112(25):7530–6.

    Google Scholar 

  127. Harris KR, Kanakubo M, Woolf LA. Temperature and pressure dependence of the viscosity of the ionic liquid 1-butyl-3-methylimidazolium tetrafluoroborate: viscosity and density relationships in ionic liquids. J Chem Eng Data. 2007;52(6):2425–30.

    Google Scholar 

  128. Heintz A. Recent developments in thermodynamics and thermophysics of non-aqueous mixtures containing ionic liquids. A review. J Chem Thermodyn. 2005;37(6):525–35.

    MathSciNet  Google Scholar 

  129. Mellein BR, Aki SNVK, Ladewski RL, Brennecke JF. Solvatochromic studies of ionic liquid/organic mixtures. J Phys Chem B. 2007;111(1):131–8.

    Google Scholar 

  130. Palomar J, Torrecilla JS, Lemus J, Ferro VR, Rodriguez F. A COSMO-RS based guide to analyze/quantify the polarity of ionic liquids and their mixtures with organic cosolvents. Phys Chem Chem Phys. 2010;12(8):1991–2000.

    Google Scholar 

  131. Khupse ND, Kumar A. Delineating solute − solvent interactions in binary mixtures of ionic liquids in molecular solvents and preferential solvation approach. J Phys Chem B. 2011;115(4):711–8.

    Google Scholar 

  132. Gericke M, Liebert T, Seoud OAE, Heinze T. Tailored media for homogeneous cellulose chemistry: ionic liquid/co-solvent mixtures. Macromol Mater Eng. 2011;296(6):483–93.

    Google Scholar 

  133. Rinaldi R. Instantaneous dissolution of cellulose in organic electrolyte solutions. Chem Commun. 2011;47(1):511–3.

    Google Scholar 

  134. Hauru LKJ, Hummel M, King AWT, Kilpeläinen I, Sixta H. Role of solvent parameters in the regeneration of cellulose from ionic liquid solutions. Biomacromolecules. 2012;13(9):2896–905.

    Google Scholar 

  135. Brackhagen M, Heinze T, Dorn S, Koschella A. Method for manufacturing cellulose derivatives containing amino groups in ionic liquids, EP 2072530 A1; 2009.

    Google Scholar 

  136. Liebert T, Heinze T, Gericke M. Production water-soluble, low-substituted cellulose sulfates, DE102007035322 B4; 2009.

    Google Scholar 

  137. Granström M, Mormann W, Frank P. Method for chlorinating polysaccharides or oligosaccharides, WO2011086082A1; 2011.

    Google Scholar 

  138. Casarano R, El Seoud OA. Successful application of an ionic liquid carrying the fluoride counter-ion in biomacromolecular chemistry: microwave-assisted acylation of cellulose in the presence of 1-allyl-3-methylimidazolium fluoride/DMSO mixtures. Macromol Biosci. 2013;13(2):191–202.

    Google Scholar 

  139. Zarth C, Koschella A, Pfeifer A, Dorn S, Heinze T. Synthesis and characterization of novel amino cellulose esters. Cellulose. 2011;18(5):1315–25.

    Google Scholar 

  140. Gesellschaft für Chemische Industrie in Basel. Verfahren zur Herstellung einer neuen Zelluloselösung und neue Zelluloselösung, CH153446; 1932.

    Google Scholar 

  141. Graenacher C. Cellulose solution, US 1,943,176; 1934.

    Google Scholar 

  142. Linko Y-Y, Viskari R, Pohjola L, Linko P. Preparation and performance of cellulose bead-entrapped whole cell glucose isomerase. J Solid-Phase Biochem. 1977;2(3):203–12.

    Google Scholar 

  143. Husemann VE, Siefert E. N-äthyl-pyridinium-chlorid als lösungsmittel und reaktionsmedium für cellulose. Die Makromolekulare Chemie. 1969;128(1):288–91.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Heinze .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Heinze, T., Gericke, M. (2014). Ionic Liquids as Solvents for Homogeneous Derivatization of Cellulose: Challenges and Opportunities. In: Fang, Z., Smith, Jr., R., Qi, X. (eds) Production of Biofuels and Chemicals with Ionic Liquids. Biofuels and Biorefineries, vol 1. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-7711-8_5

Download citation

Publish with us

Policies and ethics