Skip to main content

Solubilization of Biomass Components with Ionic Liquids Toward Biomass Energy Conversions

  • Chapter
  • First Online:
Production of Biofuels and Chemicals with Ionic Liquids

Part of the book series: Biofuels and Biorefineries ((BIOBIO,volume 1))

Abstract

Ionic liquids (ILs) are collecting keen interest as novel solvents for plant biomass, especially for cellulose. ILs have several unique properties and they dissolve cellulose under milder condition than existing procedures. Here, we give an outline of the development of biomass dissolving ILs together with their physico-chemical properties. Dissolution and/or extraction of not only cellulose but also lignin with ILs are overviewed. The extracted biomass is expected to be converted into other energies. For this purpose, energy-saving biomass treatment is inevitable, and ILs are one of the most potential media for this. This chapter will deliver further ideas on the design of ILs for cellulose dissolution or plant biomass treatment in the near future.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Welton T. Room-temperature ionic liquids. Solvents for synthesis and catalysis. Chem Rev. 1999;99:2071–83.

    Article  Google Scholar 

  2. Limayem A, Ricke SC. Lignocellulosic biomass for bioethanol production: current perspectives, potential issues and future prospects. Prog Energy Comb Sci. 2012;38:449–67.

    Article  Google Scholar 

  3. Zugenmaier P. Conformation and packing of various crystalline cellulose fibers. Prog Polym Sci. 2001;26:1341–417.

    Article  Google Scholar 

  4. Bochek AM. Effect of hydrogen bonding on cellulose solubility in aqueous and nonaqueous solvents. Russ J Appl Chem. 2003;76:1711–19.

    Article  Google Scholar 

  5. Graenacher C. Cellulose solution. US Patent, No. 1943176.

    Google Scholar 

  6. Swatloski RP, Spear SK, Holbrey JD, Rogers RD. Dissolution of cellose with ionic liquids. J Am Chem Soc. 2002;124:4974–5.

    Article  Google Scholar 

  7. Vitz J, Erdmenger T, Haensch C, Schubert US. Extended dissolution studies of cellulose in imidazolium based ionic liquids. Green Chem. 2009;11:417–24.

    Article  Google Scholar 

  8. Heinze T, Schwikal K, Barthel S. Ionic liquids as reaction medium in cellulose functionalization. Macromol Biosci. 2005;5:520–5.

    Article  Google Scholar 

  9. Mizumo T, Marwanta E, Matsumi N, Ohno H. Allylimidazolium halides as novel room temperature ionic liquids. Chem Lett. 2004;33:1360–1.

    Article  Google Scholar 

  10. Zhang H, Wu J, Zhang J, He J. 1-Allyl-3-methylimidazolium chloride room temperature ionic liquid: a new and powerful nonderivatizing solvent for cellulose. Macromolecules. 2005;38:8272–7.

    Article  Google Scholar 

  11. Remsing RC, Swatloski RP, Rogers RD, Moyna G. Mechanism of cellulose dissolution in the ionic liquid 1-n-butyl-3-methylimidazolium chloride: a C-13 and Cl-35/37 NMR relaxation study on model systems. Chem Commun. 2006;2006:1271–3.

    Article  Google Scholar 

  12. Youngs TGA, Hardacre C, Holbrey JD. Glucose solvation by the ionic liquid 1,3-dimethylimidazolium chloride: a simulation study. J Phys Chem B. 2007;111:13765–74.

    Article  Google Scholar 

  13. Gross AS, Bell AT, Chu J-W. Thermodynamics of cellulose solvation in water and the ionic liquid 1-butyl-3-methylimidazolim chloride. J Phys Chem B. 2011;115:13433–40.

    Article  Google Scholar 

  14. Hansen CM. 50 years with solubility parameters – past and future. Prog Org Coat. 2004;51:77–84.

    Article  Google Scholar 

  15. Klamt A. Conductor-like screening model for real solvents: a new approach to the quantitative calculation of solvation phenomena. J Phys Chem. 1995;99:2224–35.

    Article  Google Scholar 

  16. Kamlet MJ, Taft RW. The solvatochromic comparison method. I. The beta.-scale of solvent hydrogen-bond acceptor (HBA) basicities. J Am Chem Soc. 1976;98:377–83.

    Article  Google Scholar 

  17. Crowhurst L, Mawdsley PR, Perez-Arlandis JM, Salter PA, Welton T. Solvent-solute interactions in ionic liquids. Phys Chem Chem Phys. 2003;5:2790–4.

    Article  Google Scholar 

  18. Brandt A, Gräsvik J, Hallett JP, Welton T. Deconstruction of lignocellulosic biomass with ionic liquids. Green Chem. 2013;15:550–83.

    Article  Google Scholar 

  19. Ohira K, Abe Y, Kawatsura M, Suzuki K, Mizuno M, Amano Y, Itoh T. Design of cellulose dissolving ionic liquids inspired by nature. ChemSusChem. 2012;5:388.

    Article  Google Scholar 

  20. Ohno H, Fukaya Y. Task specific ionic liquids for cellulose technology. Chem Lett. 2009;38:2–7.

    Article  Google Scholar 

  21. Hermanutz F, Gähr F, Uerdingen E, Meister F, Kosan B. New developments in dissolving and processing of cellulose in ionic liquids. Macromol Symp. 2008;262:23–7.

    Article  Google Scholar 

  22. Swatloski RP, Rogers RD, Holbrey JD. Dissolution and processing of cellulose using ionic liquids. 2003, WO 029329.

    Google Scholar 

  23. Fukaya Y, Sugimoto A, Ohno H. Superior solubility of polysaccharides in low viscosity, polar, and halogen-free 1,3-dialkylimidazolium formats. Biomacromolecules. 2006;7:3295–7.

    Article  Google Scholar 

  24. Remsing RC, Hernandez G, Swatloski RP, Massefski WW, Rogers RD, Moyna G. Solvation of carbohydrates in N, N′-dialkylimidazolium ionic liquids: a multinuclear NMR spectroscopy study. J Phys Chem B. 2008;112:11071–8.

    Article  Google Scholar 

  25. Zhang J, Zhang H, Wu J, Zhang J, He J, Xiang J. NMR spectroscopic studies of cellobiose solvation in EmimAc aimed to understand the dissolution mechanism of cellulose in ionic liquids. Phys Chem Chem Phys. 2010;12:1941–7.

    Article  Google Scholar 

  26. Liu H, Sale KL, Holmes BM, Simmons BA, Singh S. Understanding the interactions of cellulose with ionic liquids: a molecular dynamics study. J Phys Chem B. 2010;114:4293–301.

    Article  Google Scholar 

  27. Xu A, Wang J, Wang H. Effects of anionic structure and lithium salts addition on the dissolution of cellulose in 1-butyl-3-methylimidazolium-based ionic liquid solvent systems. Green Chem. 2010;12:268–75.

    Article  Google Scholar 

  28. Fukaya Y, Hayashi K, Wada M, Ohno H. Cellulose dissolution with polar ionic liquids under mild conditions: required factors for anions. Green Chem. 2008;10:44–6.

    Article  Google Scholar 

  29. Kosan B, Michels C, Meister F. Dissolution and forming of cellulose with ionic liquids. Cellulose. 2008;15:59–66.

    Article  Google Scholar 

  30. Zavrel M, Bross D, Funke M, Buchs J, Spiess AC. High-throughput screening for ionic liquids dissolving (ligno-)cellulose. Bioresour Technol. 2009;100:2580–7.

    Article  Google Scholar 

  31. Barthel S, Heinze T. Acylation and carbanilation of cellulose in ionic liquids. Green Chem. 2006;8:301–6.

    Article  Google Scholar 

  32. Lateef H, Grimes S, Kewcharoenwong P, Feinberg B. Separation and recovery of cellulose and lignin using ionic liquids: a process for recovery from paper-based waste. J Chem Technol Biotechnol. 2009;84:1818–27.

    Article  Google Scholar 

  33. Erdmenger T, Haensch C, Hoogenboom R, Shubert US. Homogeneous tritylation of cellulose in 1-butyl-3-methylimidazolium chloride. Macromol Biosci. 2007;7:440–5.

    Article  Google Scholar 

  34. Fukumoto K, Yoshizawa M, Ohno H. Room temperature ionic liquids from 20 natural amino acids. J Am Chem Soc. 2005;127:2398–9.

    Article  Google Scholar 

  35. Kagimoto J, Noguchi K, Murata K, Fukumoto K, Nakamura N, Ohno H. Polar and low viscosity ionic liquid mixtures from amino acids. Chem Lett. 2008;37:1026–7.

    Article  Google Scholar 

  36. Ohno H, Fukumoto K. Amino acid ionic liquids. Acc Chem Res. 2007;40:1122–9.

    Article  Google Scholar 

  37. Fukumoto K, Ohno H. LCST-type phase changes of a mixture of water and ionic liquids derived from amino acids. Angew Chem Int Ed. 2007;46:1852–5.

    Article  Google Scholar 

  38. Kagimoto J, Taguchi S, Fukumoto K, Ohno H. Hydrophobic and low-density amino acid ionic liquids. J Mol Liq. 2010;153:133–8.

    Article  Google Scholar 

  39. Ohira K, Yoshida K, Hayase S, Itoh T. Amino acid ionic liquid as an efficient cosolvent of dimethyl sulfoxide to realize cellulose dissolution at room temperature. Chem Lett. 2012;41:987–9.

    Article  Google Scholar 

  40. Hirao M, Sugimoto H, Ohno H. Preparation of novel room-temperature molten salts by neutralization of amines. J Electrochem Soc. 2000;147:4168–72.

    Article  Google Scholar 

  41. King AWT, Asikkala J, Mutikainen I, Jarvi P, Kilpelainen I. Distillable acid-base conjugate ionic liquids for cellulose dissolution and processing. Angew Chem Int Ed. 2011;50:6301–5.

    Article  Google Scholar 

  42. Mazza M, Catana DA, Garcia CV, Cecutti C. Influence of water on the dissolution of cellulose in selected ionic liquids. Cellulose. 2009;16:207–15.

    Article  Google Scholar 

  43. Gericke M, Liebert T, Seoud AE, Heinze T. Tailored media for homogeneous cellulose chemistry: ionic liquid/co-solvent mixtures. Macromol Mater Eng. 2011;296:483–93.

    Article  Google Scholar 

  44. Hauru LKJ, Hummel M, King AWT, Kilpeläinen I, Sixta H. Role of solvent parameters in the regeneration of cellulose from ionic liquid solutions. Biomacromolecules. 2012;13:2896–905.

    Article  Google Scholar 

  45. Cammarata L, Kazarian SG, Salter PA, Welton T. Molecular states of water in room temperature ionic liquids. Phys Chem Chem Phys. 2001;3:5192–200.

    Article  Google Scholar 

  46. Troshenkova SV, Sashina ES, Novoselov NP, Arndt K-F, Jankowsky S. Structure of ionic liquids on the basis of imidazole and their mixtures with water. Russ J Gen Chem. 2010;80:106–11.

    Article  Google Scholar 

  47. Abe M, Fukaya Y, Ohno H. Fast and facile dissolution of cellulose with tetrabutylphosphonium hydroxide containing 40 wt% water. Chem Commun. 2012;48:1808–10.

    Article  Google Scholar 

  48. Fort DA, Remsing RC, Swatloski RP, Moyna P, Moyna G, Rogers RD. Can ionic liquids dissolve wood? Processing and analysis of lignocellulosic materials with 1-n-butyl-3-methylimidazolium chloride. Green Chem. 2007;9:63–9.

    Article  Google Scholar 

  49. Kilpeläinen I, Xie H, King A, Granstrom M, Heikkinen S, Argyropoulos DS. Dissolution of wood in ionic liquids. J Agric Food Chem. 2007;55:9142–8.

    Article  Google Scholar 

  50. Wang X, Li H, Cao Y, Tang Q. Cellulose extraction from wood chip in an ionic liquid 1-allyl-3-methylimidazolium chloride (AmimCl). Bioresour Technol. 2011;102:7959–65.

    Article  Google Scholar 

  51. Miyafuji H, Suzuki N. Observation by light microscope of sugi (Cryptomeria japonica) treated with the ionic liquid 1-ethyl-3-methylimidazolium chloride. J Wood Sci. 2011;57:459–61.

    Article  Google Scholar 

  52. Sun N, Rahman M, Qin Y, Maxim ML, Rodriguez H, Rogers RD. Complete dissolution and partial delignification of wood in the ionic liquid 1-ethyl-3-methylimidazolium acetate. Green Chem. 2009;11:646–55.

    Article  Google Scholar 

  53. Casas A, Oliet M, Alonso MV, Rodriguez F. Dissolution of Pinus radiata and Eucalyptus globulus woods in ionic liquids under microwave radiation: lignin regeneration and characterization. Sep Purif Technol. 2012;97:115–22.

    Article  Google Scholar 

  54. Li W, Sun N, Stoner B, Jiang X, Lu X, Rogers RD. Rapid dissolution of lignocellulosic biomass in ionic liquids using temperatures above the glass transition of lignin. Green Chem. 2011;13:2038–47.

    Article  Google Scholar 

  55. Miyafuji H, Miyata K, Saka S, Ueda F, Mori M. Reaction behavior of wood in an ionic liquid, 1-ethyl-3-methylimidazolium chloride. J Wood Sci. 2009;55:215–19.

    Article  Google Scholar 

  56. D’Andola G, Szarvas L, Massonne K, Stegmann V. (BASF), Ionic liquids for solubilizing polymers. 2008, WO 043837.

    Google Scholar 

  57. Pu Y, Jiang N, Ragauskas AJ. Ionic liquid as a green solvent for lignin. J Wood Chem Technol. 2007;27:23–33.

    Article  Google Scholar 

  58. Lee SH, Doherty TV, Linhardt JS. Ionic liquid-mediated selective extraction of lignin from wood leading to enhanced enzymatic cellulose hydrolysis. Biotechnol Bioeng. 2009;102:1368–76.

    Article  Google Scholar 

  59. Tan SSY, MacFarlane DR, Upfal J, Edye LA, Doherty WOS, Patti AF, Pringle JM, Scott JL. Extraction of lignin from lignocellulose at atmospheric pressure using alkylbenzenesulfonate ionic liquid. Green Chem. 2009;11:339–45.

    Article  Google Scholar 

  60. Pinkert A, Goeke DF, Marsh KN, Pang S. Extracting wood lignin without dissolving or degrading cellulose: investigations on the use of food additive-derived ionic liquids. Green Chem. 2011;13:3124–36.

    Article  Google Scholar 

  61. Fu D, Mazza G, Tamaki Y. Lignin extraction from straw by ionic liquids and enzymatic hydrolysis of the cellulosic residues. J Agric Food Chem. 2010;58:2915–22.

    Article  Google Scholar 

  62. Anugwom I, Mäki-Arvela P, Virtanen P, Willför S, Sjöholm R, Mikkola J-P. Selective extraction of hemicelluloses from spruce using switchable ionic liquids. Carbohydr Polym. 2012;87:2005–11.

    Article  Google Scholar 

  63. Xu C, Leppänen A-S, Eklund P, Holmlund P, Sjöholm R, Sundberg K, Willför S. Acetylation and characterization of spruce (Picea abies) galactoglucomannans. Carbohydr Res. 2010;345:810–16.

    Article  Google Scholar 

  64. Usuki T, Yasuda N, Yoshizawa-Fujita M, Rikukawa M. Extraction and isolation of shikimic acid from Ginkgo biloba leaves utilizing an ionic liquid that dissolves cellulose. Chem Commun. 2011;47:10560–2.

    Article  Google Scholar 

  65. Farina V, Brown JD. Tamiflu: the supply problem. Angew Chem Int Ed. 2006;45:7330–4.

    Article  Google Scholar 

  66. Li Q, He Y-C, Xian M, Jun G, Xu X, Yang J-M, Li L-Z. Improving enzymatic hydrolysis of wheat straw using ionic liquid 1-ethyl-3-methyl imidazolium diethyl phosphate pretreatment. Bioresour Technol. 2009;100:3570–5.

    Article  Google Scholar 

  67. Tan HT, Lee KT. Understanding the impact of ionic liquid pretreatment on biomass and enzymatic hydrolysis. Chem Eng J. 2012;183:448–58.

    Article  Google Scholar 

  68. Uju N, Shoda Y, Nakamoto A, Goto M, Tokuhara W, Noritake Y, Katahira S, Ishida N, Nakashima K, Ogino C, Kamiya N. Short time ionic liquids pretreatment on lignocellulosic biomass to enhance enzymatic saccharification. Bioresour Technol. 2012;103:446–52.

    Article  Google Scholar 

  69. Bahcegul E, Apaydin S, Haykir NI, Tatli E, Bakir U. Different ionic liquids favor different lignocellulosic biomass particle sizes during pretreatment to function efficiently. Green Chem. 2012;14:1896–903.

    Article  Google Scholar 

  70. Abe M, Fukaya Y, Ohno H. Extraction of polysaccharides from bran with phosphonate or phosphinate-derived ionic liquids under short mixing time and low temperature. Green Chem. 2010;12:1274–80.

    Article  Google Scholar 

  71. Padmanabhan S, Kim M, Blanch HW, Prausnitz JM. Solubility and rate of dissolution for Miscanthus in hydrophilic ionic liquids. Fluid Phase Equilib. 2011;309:89–96.

    Article  Google Scholar 

Download references

Acknowledgement

Our research results mentioned here were obtained under the support of a Grant-in-Aid for Scientific Research from the Japan Society for the Promotion of Science (No. 21225007). It was also partly supported by Japan Science and Technology Agency (JST) through the CREST program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroyuki Ohno .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Abe, M., Ohno, H. (2014). Solubilization of Biomass Components with Ionic Liquids Toward Biomass Energy Conversions. In: Fang, Z., Smith, Jr., R., Qi, X. (eds) Production of Biofuels and Chemicals with Ionic Liquids. Biofuels and Biorefineries, vol 1. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-7711-8_2

Download citation

Publish with us

Policies and ethics