Skip to main content

Cancer Cardiotoxicity and Cardiac Biomarkers

  • Reference work entry
Biomarkers in Cancer

Abstract

Modern cancer therapies are highly effective in the treatment of malignancy; however, they are associated with the possible development of side effects, in particular involving heart function. This particular form of cardiotoxicity is related to many factors: age, cumulative dose of the drug administered, drug combination, smoking, prior radiotherapy, and prior cardiovascular disease. Different types of events may manifest: the more important and difficult to manage is a progressive LV dysfunction, which may lead to the development of cardiac failure. Other side effects are represented by acute coronary syndromes, hypertension, thromboembolic events, and arrhythmias. Anthracyclines are one of the anticancer drugs more studied, and they are known to cause CTX through different molecular mechanisms; the damage induced by AC is dose dependent and usually irreversible. Also newer therapies like targeted therapy (i.e., trastuzumab) or angiogenesis inhibitors are all associated with some form of cardiac toxicity: while targeted drugs may induce a reversible damage, angiogenesis inhibitors have a prothrombotic activity, which leads to a high incidence of thromboembolic events.

Patients were followed up with serial cardiological visits and evaluation of the LVEF, which however detects the damage already installed. In the last 20 years, a new appealing approach has been proposed: it is based on the evaluation of circulating troponin and/or natriuretic peptides. Especially for troponin, many studies underlined the predictive value of this marker, which can detect minimal cardiac damage, well before the onset of cardiac dysfunction, allowing for a personalized follow-up and cardiological preventive treatment.

In this light, many studies have recently evaluated the protective effect of different drugs, such as dexrazoxane, beta blockers, and ACE inhibitors, with in some cases very promising results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Abbreviations

AC:

Anthracycline

ACEIs:

Angiotensin-Converting Enzyme Inhibitors

ANP:

Atrial Natriuretic Peptide

ASCO:

American Society of Clinical Oncology

BB:

β-blockers

BNP:

Brain Natriuretic Peptide

CHF:

Congestive Heart Failure

CNP:

C-Type Natriuretic Peptide

cTn:

Cardiac Troponin

CT:

Chemotherapy

CTX:

Cardiotoxicity

ESMO:

European Society for Medical Oncology

ECG:

Electrocardiogram

FDA:

Food and Drug Administration

HDC:

High-Dose Chemotherapy

HER2, ErB2:

Epidermal Growth Factor Receptor-2

hs-cTn:

High-Sensitivity Troponin

LV:

Left Ventricular

LVEF:

Left Ventricular Ejection Fraction

MUGA:

Multi-Gated Radionuclide Angiography

MRI:

Magnetic Resonance Imaging

NPs:

Natriuretic Peptide

ROS:

Reactive Oxygen Species

RT:

Radiotherapy

TnC:

Troponin C

TnI:

Troponin I

TnT:

Troponin T

TKI:

Tyrosine Kinase Inhibitor

VEGF:

Vascular Endothelial Growth Factor

References

  • American Cancer Society. Cancer facts & figures 2010. www.cancerfactsfigures/cancerfactsfigures/cancerfacts-and-figures-2010

  • Auner HW, Tinchon C, Linkesch W, et al. Prolonged monitoring of troponin T for the detection of anthracycline cardiotoxicity in adults with hematological malignancies. Ann Hematol. 2003;82:218–22.

    CAS  PubMed  Google Scholar 

  • Barrett-Lee PJ, Dixon JM, Farrell C, et al. Expert opinion on the use of anthracyclines in patients with advanced breast cancer at cardiac risk. Ann Oncol. 2009;20:816–27.

    Article  CAS  PubMed  Google Scholar 

  • Barry E, Alvarez JA, Scully RE, et al. Anthracycline-induced cardiotoxicity: course, pathophysiology, prevention and management. Expert Opin Pharmacother. 2007;8:1039–58.

    Article  CAS  PubMed  Google Scholar 

  • Bird BR, Swain SM. Cardiac toxicity in breast cancer survivors: review of potential cardiac problems. Clin Cancer Res. 2008;14:14–24.

    Article  CAS  PubMed  Google Scholar 

  • Bonow RO, Bennett S, Casey Jr DE, American College of Cardiology, American Heart Association Task Force on Performance Measures, Heart Failure Society of America, et al. ACC/AHA clinical performance measures for adults with chronic heart failure: a report of the American College of Cardiology/American Heart Association Task Force on Performance Measures (Writing Committee to Develop Heart Failure Clinical Performance Measures): endorsed by the Heart Failure Society of America. Circulation. 2005;112:1853–87.

    Article  PubMed  Google Scholar 

  • Bovelli D, Plataniotis G, Roila F, ESMO Guidelines Working Group. Cardiotoxicity of chemotherapeutic agents and radiotherapy-related heart disease: ESMO Clinical Practice Guidelines. Ann Oncol. 2010;21 Suppl 5:277–82.

    Article  Google Scholar 

  • Bristow MR, Mason JW, Billingham ME, et al. Dose-effect and structure-function relationship in doxorubicin cardiomyopathy. Am Heart J. 1981;102:709–18.

    Article  CAS  PubMed  Google Scholar 

  • Cadeddu C, Piras A, Mantovani G, et al. Protective effects of the angiotensin II receptor blocker telmisartan on epirubicin-induced inflammation, oxidative stress, and early ventricular impairment. Am Heart J. 2010;160:487.e1–7.

    Article  Google Scholar 

  • Cardinale D, Sandri MT. Role of biomarkers in chemotherapy-induced cardiotoxicity. Prog Cardiovasc Dis. 2010;53:121–9.

    Article  CAS  PubMed  Google Scholar 

  • Cardinale D, Sandri MT, Martinoni A, et al. Left ventricular dysfunction predicted by early troponin I release after high-dose chemotherapy. J Am Coll Cardiol. 2000;36:517–22.

    Article  CAS  PubMed  Google Scholar 

  • Cardinale D, Sandri MT, Martinoni A, et al. Myocardial injury revealed by plasma troponin I in breast cancer treated with high-dose chemotherapy. Ann Oncol. 2002;13:710–5.

    Article  CAS  PubMed  Google Scholar 

  • Cardinale D, Sandri MT, Colombo A, et al. Prognostic value of Troponin I in cardiac risk stratification of cancer patients undergoing high-dose chemotherapy. Circulation. 2004;109:2749–54.

    Article  CAS  PubMed  Google Scholar 

  • Cardinale D, Colombo A, Sandri MT, et al. Prevention of high-dose chemotherapy- induced cardiotoxicity in high-risk patients by angiotensin-converting enzyme inhibition. Circulation. 2006;114:2474–81.

    Article  CAS  PubMed  Google Scholar 

  • Cardinale D, Colombo A, Cipolla CM. Prevention and treatment of cardiomyopathy and heart failure in patients receiving cancer chemotherapy. Curr Treat Options Cardiovasc Med. 2008;10:486–95.

    Article  PubMed  Google Scholar 

  • Cardinale D, Colombo A, Torrisi R, et al. Trastuzumab-induced cardiotoxicity: clinical and prognostic implications of troponin I evaluation. J Clin Oncol. 2010;28:3910–6.

    Article  CAS  PubMed  Google Scholar 

  • Cardinale D, Bacchiani G, Beggiato M, et al. Strategies to prevent and treat cardiovascular risk in cancer patients. Semin Oncol. 2013;40:186–98.

    Article  CAS  PubMed  Google Scholar 

  • Cheitlin MD, Armstrong WF, Aurigemma GP, et al. ACC/AHA/ASE 2003 guideline update for the clinical application of echocardiography: summary article: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (ACC/AHA/ASE Committee to Update the 1997 Guidelines for the Clinical Application of Echocardiography). Circulation. 2003;108:1146–62.

    Article  PubMed  Google Scholar 

  • Choueiri TK, Schutz FA, Je Y, et al. Risk of arterial thromboembolic events with sunitinib and sorafenib: a systematic review and meta-analysis of clinical trials. J Clin Oncol. 2010;28:2280–5.

    Article  CAS  PubMed  Google Scholar 

  • Choueiri TK, Mayer EL, Je Y, et al. Congestive heart failure risk in patients with breast cancer treated with bevacizumab. J Clin Oncol. 2011;29:632–8.

    Article  CAS  PubMed  Google Scholar 

  • Clerico A, Emdin M. Natriuretic peptides. The hormones of the heart. Berlin: Springer; 2006.

    Book  Google Scholar 

  • Criscitello C, Metzger-Filho O, Saini KS, et al. Targeted therapies in breast cancer: are heart and vessels also being targeted? Breast Cancer Res. 2012;14:209.

    Article  Google Scholar 

  • Curigliano G, Cardinale D, Suter T, et al. Cardiovascular toxicity induced by chemotherapy, targeted agents and radiotherapy: ESMO Clinical Practice Guidelines. Ann Oncol. 2012;23 Suppl 7:155–66.

    Article  Google Scholar 

  • Dodos F, Halbsguth T, Erdmann E, et al. Usefulness of myocardial performance index and biochemical markers for early detection of anthracycline-induced cardiotoxicity in adults. Clin Res Cardiol. 2008;97:318–26.

    Article  PubMed  Google Scholar 

  • Dolci A, Dominici R, Cardinale D, et al. Biochemical markers for prediction of chemotherapy-induced cardiotoxicity: systematic review of the literature and recommendations for use. Am J Clin Pathol. 2008;130:688–95.

    Article  CAS  PubMed  Google Scholar 

  • Du XL, Xia R, Liu CC, et al. Cardiac toxicity associated with anthracycline-containing chemotherapy in older women with breast cancer. Cancer. 2009;115:5296–308.

    Article  PubMed  Google Scholar 

  • Ederhy S, Massard C, Dufaitre G, et al. Frequency and management of troponin I elevation in patients treated with molecular targeted therapies in phase I trials. Invest New Drugs. 2012;30:611–5.

    Article  CAS  PubMed  Google Scholar 

  • Ekstein S, Nir A, Rein AJ, et al. N-terminal-proB-type natriuretic peptide as a marker for acute anthracycline cardiotoxicity in children. J Pediatr Hematol Oncol. 2007;29:440–4.

    Article  CAS  PubMed  Google Scholar 

  • Eschenhagen T, Force T, Ewer MS, et al. Cardiovascular side effects of cancer therapies: a position statement from the Heart Failure Association of the European Society of Cardiology. Eur J Heart Fail. 2011;13:1–10.

    Article  PubMed  Google Scholar 

  • Ewer MS, Lippman SM. Type II chemotherapy-related cardiac dysfunction: time to recognize a new entity. J Clin Oncol. 2005;23:2900–2.

    Article  CAS  PubMed  Google Scholar 

  • Gianni L, Herman EH, Lipshultz SE, et al. Anthracycline cardiotoxicity: from bench to bedside. J Clin Oncol. 2008;26:3777–84.

    Article  PubMed  PubMed Central  Google Scholar 

  • Hayes DF, Picard MH. Heart of darkness: the downside of trastuzumab. J Clin Oncol. 2006;24:4056–8.

    Article  CAS  PubMed  Google Scholar 

  • Herman EH, Zhang J, Lipshultz SE, et al. Correlation between serum levels of cardiac troponin-T and the severity of the chronic cardiomyopathy induced by doxorubicin. J Clin Oncol. 1999;17:2237–43.

    CAS  PubMed  Google Scholar 

  • Hershman DL, McBride RB, Eisenberger A, et al. Doxorubicin, cardiac risk factors, and cardiac toxicity in elderly patients with diffuse B-cell non-Hodgkin’s lymphoma. J Clin Oncol. 2008;26:3159–65.

    Article  CAS  PubMed  Google Scholar 

  • Huh WW, Jaffe N, Durand JB, et al. Comparison of doxorubicin cardiotoxicity in pediatric sarcoma patients when given with dexrazoxane versus continuous infusion. Pediatr Hematol Oncol. 2010;27:546–57.

    Article  CAS  PubMed  Google Scholar 

  • Hull MC, Morris CG, Pepine CJ, et al. Valvular dysfunction and carotid, subclavian, and coronary artery disease in survivors of Hodgkin lymphoma treated with radiation therapy. JAMA. 2003;290:2831–7.

    Article  CAS  PubMed  Google Scholar 

  • Jones LW, Haykowsky MJ, Swartz JJ, et al. Early breast cancer therapy and cardiovascular injury. J Am Coll Cardiol. 2007;50:1435–41.

    Article  PubMed  Google Scholar 

  • Jones AL, Barlow M, Barrett-Lee PJ, et al. Management of cardiac health in trastuzumab-treated patients with breast cancer: updated United Kingdom National Cancer Research Institute recommendations for monitoring. Br J Cancer. 2009;100:684–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kalay N, Basar E, Ozdogru I, et al. Protective effects of carvedilol against anthracyclines induced cardiomyopathy. J Am Coll Cardiol. 2006;48:2258–62.

    Article  CAS  PubMed  Google Scholar 

  • Kalyanaraman B, Joseph J, Kalivendi S, et al. Doxorubicin-induced apoptosis: implications in cardiotoxicity. Mol Cell Biochem. 2002;234–235:119–24.

    Article  PubMed  Google Scholar 

  • Kaya MG, Ozkan M, Gunebakmaz O, et al. Protective effects of nebivolol against anthracycline-induced cardiomyopathy: a randomized control study. Int J Cardiol. 2013;167:2306–10.

    Article  PubMed  Google Scholar 

  • Kilickap S, Barista I, Akgul E, et al. cTnT can be a useful marker for early detection of anthracycline cardiotoxicity. Ann Oncol. 2005;16:798–804.

    Article  CAS  PubMed  Google Scholar 

  • Kismet E, Varan A, Ayabakan C, et al. Serum troponin T levels and echocardiographic evaluation in children treated with doxorubicin. Pediatr Blood Cancer. 2004;42:220–4.

    Article  PubMed  Google Scholar 

  • Knobloch K, Tepe J, Lichtinghagen R, et al. Simultaneous hemodynamic and serological cardiotoxicity monitoring during immunotherapy with trastuzumab. Int J Cardiol. 2008;125:113–5.

    Article  CAS  PubMed  Google Scholar 

  • Lipshultz SE, Lipsitz SR, Mone SR, et al. Female sex and drug dose as risk factors for late cardiotoxic effects of doxorubicin therapy for childhood cancer. N Engl J Med. 1995;332:1738–43.

    Article  CAS  PubMed  Google Scholar 

  • Lipshultz SE, Rifai N, Sallan SE, et al. Predictive value of cardiac troponin T in pediatric patients at risk for myocardial injury. Circulation. 1997;96:2641–8.

    Article  CAS  PubMed  Google Scholar 

  • Lipshultz SE, Rifai N, Dalton VM, et al. The effects of dexrazoxane on myocardial injury in doxorubicin-treated children with acute lymphoblastic leukemia. N Engl J Med. 2004;351:1451–2.

    Article  Google Scholar 

  • Lipshultz SE, Miller TL, Scully RE, et al. Changes in cardiac biomarkers during doxorubicin treatment of pediatric patients with high-risk acute lymphoblastic leukemia: associations with long-term echocardiographic outcomes. J Clin Oncol. 2012;30:1042–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mahajan VS, Jarolim P. How to interpret elevated cardiac troponin levels. Circulation. 2011;124:2350–4.

    Article  PubMed  Google Scholar 

  • Meinardi MT, van der Graaf WT, van Veldhuisen DJ, et al. Detection of anthracycline-induced cardiotoxicity. Cancer Treat Rev. 1999;25:237–47.

    Article  CAS  PubMed  Google Scholar 

  • Mertens AC, Yasui Y, Neglia JP, et al. Late mortality experience in five-year survivors of childhood and adolescent cancer: the Childhood Cancer Survivor Study. J Clin Oncol. 2001;19:3163–72.

    CAS  PubMed  Google Scholar 

  • Newby LK, Jesse RL, Babb JD, et al. ACCF 2012 expert consensus document on practical clinical considerations in the interpretation of troponin elevations: a report of the American College of Cardiology Foundation Task Force on Clinical Expert Consensus Documents. J Am Coll Cardiol. 2012;60:2427–63.

    Article  PubMed  Google Scholar 

  • Onitilo AA, Engel JM, Stankowski RV, et al. High-sensitivity C-reactive protein (hs-CRP) as a biomarker for trastuzumab-induced cardiotoxicity in HER2-positive early-stage breast cancer: a pilot study. Breast Cancer Res Treat. 2012;134:291–8.

    Article  CAS  PubMed  Google Scholar 

  • Perik PJ, Lub-De Hooge MN, Gietema JA, et al. Indium-111-labeled trastuzumab scintigraphy in patients with human epidermal growth factor receptor 2-positive metastatic breast cancer. J Clin Oncol. 2006;24:2276–82.

    Article  CAS  PubMed  Google Scholar 

  • Richards CJ, Je Y, Schutz FA, et al. Incidence and risk of congestive heart failure in patients with renal and nonrenal cell carcinoma treated with sunitinib. J Clin Oncol. 2011;29:3450–6.

    Article  CAS  PubMed  Google Scholar 

  • Romano S, Fratini S, Ricevuto E, et al. Serial measurements of NT-proBNP are predictive of not-high-dose anthracycline cardiotoxicity in breast cancer patients. Br J Cancer. 2011;105:1663–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roziakova L, Bojtarova E, Mistrik M, et al. Serial measurements of cardiac biomarkers in patients after allogeneic hematopoietic stem cell transplantation. J Exp Clin Cancer Res. 2012;31:13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Salmon DJ, Leyland-Jones B, Shak S, et al. Use of chemotherapy plus monoclonal antibody against HER2 for metastatic breast cancer that overexpresses HER2. N Engl J Med. 2001;344:783–92.

    Article  Google Scholar 

  • Sandri MT, Cardinale D, Zorzino L, et al. Minor increases in plasma troponin I predict decreased left ventricular ejection fraction after high-dose chemotherapy. Clin Chem. 2003;49:248–52.

    Article  CAS  PubMed  Google Scholar 

  • Sandri MT, Salvatici M, Cardinale D, et al. N-terminal pro-B-type natriuretic peptide after high-dose chemotherapy: a marker predictive of cardiac dysfunction? Clin Chem. 2005;51:1405–10.

    Article  CAS  PubMed  Google Scholar 

  • Sawaya H, Sebag IA, Plana JC, et al. Early detection and predictor of cardiotoxicity in chemotherapy-treated patients. Am J Cardiol. 2011;9:1375–80.

    Article  Google Scholar 

  • Sawaya H, Sebag IA, Plana JC, et al. Assessment of echocardiography and biomarkers for the extended prediction of cardiotoxicity in patients treated with anthracyclines, taxanes, and trastuzumab. Circ Cardiovasc Imaging. 2012;5:596–603.

    Article  PubMed  PubMed Central  Google Scholar 

  • Schmidinger M, Zielinski CC, Vogl UM, et al. Cardiac toxicity of sunitinib and sorafenib in patients with metastatic renal cell carcinoma. J Clin Oncol. 2008;26:5204–12.

    Article  PubMed  Google Scholar 

  • Seidman A, Hudis C, Pierri MK, et al. Cardiac dysfunction in the trastuzumab clinical trial experience. J Clin Oncol. 2002;20:1215–21.

    Article  CAS  PubMed  Google Scholar 

  • Shapiro CL, Haedenbergh PH, Gelman R, et al. Cardiac effects of adjuvant doxorubicin and radiation therapy in breast cancer patients. J Clin Oncol. 1998;16:3493–501.

    CAS  PubMed  Google Scholar 

  • Shave R, Baggish A, George K, et al. Exercise-induced cardiac troponin elevation: evidence, mechanisms, and implications. J Am Coll Cardiol. 2010;56:169–176.

    Google Scholar 

  • Soker M, Kervancioglu M. Plasma concentrations of NT-pro-BNP and cardiac troponin-I in relation to doxorubicin-induced cardiomyopathy and cardiac function in childhood malignancy. Saudi Med J. 2005;26:1197–202.

    PubMed  Google Scholar 

  • Spallarossa P, Garibaldi S, Altieri P, et al. Carvedilol prevents doxorubicin-induced free radical release and apoptosis in cardiomyocytes in vitro. J Mol Cell Cardiol. 2004;37:837–46.

    Article  CAS  PubMed  Google Scholar 

  • Specchia G, Buquicchio C, Pansini N, et al. Monitoring of cardiac function on the basis of serum troponin I levels in patients with acute leukemia treated with anthracyclines. J Lab Clin Med. 2005;145:212–20.

    Article  CAS  PubMed  Google Scholar 

  • Suter TM, Ewer MS. Cancer drugs and the heart: importance and management. Eur Heart J. 2013;34:1102–1111.

    Google Scholar 

  • Suzuki T, Hayashi D, Yamazaki T, et al. Elevated B-type natriuretic peptide levels after anthracycline administration. Am Heart J. 1998;136:362–3.

    Article  CAS  PubMed  Google Scholar 

  • Swain SM, Whaley FS, Ewer MS. Congestive heart failure in patients treated with doxorubicin: a retrospective analysis of three trials. Cancer. 2003;97:2869–79.

    Article  CAS  PubMed  Google Scholar 

  • Tarantini L, Cioffi G, Gori S, et al. Trastuzumab adjuvant chemotherapy and cardiotoxicity in real-world women with breast cancer. J Card Fail. 2012;18:113–9.

    Article  CAS  PubMed  Google Scholar 

  • Tebbi CK, London WB, Friedman D, et al. Dexrazoxane-associated risk for acute myeloid leukemia/myelodysplastic syndrome and other secondary malignancies in pediatric Hodgkin’s disease. J Clin Oncol. 2007;25:493–500.

    Article  CAS  PubMed  Google Scholar 

  • Troughton RW, Frampton CM, Yandle T, et al. Treatment of heart failure guided by plasma aminoterminal brain natriuretic peptide (N-BNP) concentrations. Lancet. 2000;355:1126–30.

    Article  CAS  PubMed  Google Scholar 

  • Van Dalen EC, Caron HN, Dickinson HO, et al. Cardioprotective interventions for cancer patients receiving anthracyclines. Cochrane Database Syst Rev. 2011;6:CD003917.

    Google Scholar 

  • Vogel CL, Cobleigh MA, Tripathy D, et al. Efficacy and safety of trastuzumab as a single agent in first-line treatment of HER2-overexpressing metastatic breast cancer. J Clin Oncol. 2002;20:719–26.

    Article  CAS  PubMed  Google Scholar 

  • Wouters KA, Kremer LCM, Miller TL, et al. Protecting against anthracycline-induced myocardial damage: a review of the most promising strategies. Br J Haematol. 2005;131:561–78.

    Article  CAS  PubMed  Google Scholar 

  • Yeh ET, Bickford CL. Cardiovascular complications of cancer therapy: incidence, pathogenesis, diagnosis, and management. J Am Coll Cardiol. 2009;53:2231–47.

    Article  CAS  PubMed  Google Scholar 

  • Zhang S, Liu X, Bawa-Khalfe T, et al. Identification of the molecular basis of doxorubicin-induced cardiotoxicity. Nat Med. 2012;18:1639–42.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Teresa Sandri .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Dordrecht

About this entry

Cite this entry

Salvatici, M., Cardinale, D., Colombo, A., Sandri, M.T. (2015). Cancer Cardiotoxicity and Cardiac Biomarkers. In: Preedy, V., Patel, V. (eds) Biomarkers in Cancer. Biomarkers in Disease: Methods, Discoveries and Applications. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-7681-4_20

Download citation

Publish with us

Policies and ethics